JPS6027558Y2 - Continuous casting mold - Google Patents

Continuous casting mold

Info

Publication number
JPS6027558Y2
JPS6027558Y2 JP967278U JP967278U JPS6027558Y2 JP S6027558 Y2 JPS6027558 Y2 JP S6027558Y2 JP 967278 U JP967278 U JP 967278U JP 967278 U JP967278 U JP 967278U JP S6027558 Y2 JPS6027558 Y2 JP S6027558Y2
Authority
JP
Japan
Prior art keywords
mold
corner
slab
wall thickness
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP967278U
Other languages
Japanese (ja)
Other versions
JPS54116223U (en
Inventor
庸 竹内
正樹 森川
秀昭 吉田
利玄 臂
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP967278U priority Critical patent/JPS6027558Y2/en
Publication of JPS54116223U publication Critical patent/JPS54116223U/ja
Application granted granted Critical
Publication of JPS6027558Y2 publication Critical patent/JPS6027558Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Description

【考案の詳細な説明】 この考案は、連続鋳造装置における鋳型に関するもので
ある。
[Detailed Description of the Invention] This invention relates to a mold for a continuous casting device.

一般に、例えば連続鋳造装置における鋳型としては、上
方位置のタンディシュから供給される溶融金属を通過さ
せつつ、前記溶融金属を4側方から冷却して凝固殻を形
式するものがあり、この鋳型の製造形態によってブロッ
ク形式、チューブラ形式、および組立形式などに分類さ
れている。
In general, for example, a mold used in a continuous casting apparatus is one in which molten metal supplied from an upper tundish is passed through and the molten metal is cooled from four sides to form a solidified shell. They are classified into block format, tubular format, and assembly format depending on their shape.

いずれの形式の鋳型も、鋳型外側面を高速水流によって
冷却することにより、つぎの水スプレー冷却域において
鋳片にブレイクアウト(鋳片未凝固部の外部流出)が発
生しない最適の厚みの凝固殻を形式するように冷却能が
定められている。
In both types of molds, by cooling the outer surface of the mold with a high-speed water stream, a solidified shell with an optimal thickness is created to prevent breakout (flow of unsolidified parts of the slab to the outside) of the slab in the next water spray cooling area. The cooling capacity is determined in the form of .

すなわち、例えばチューブラ形式の鋳型について見ると
、第1図に横断面図で示されているように、鋳型1は純
銅製で、正方形断面、均等肉厚ち、および長さ0.6〜
1.2771を有し、その外側には高速水流を通す均一
な間隙もの冷却水路2を備えている。
That is, for example, when looking at a tubular mold, as shown in the cross-sectional view in FIG.
1.2771, and the outside thereof is equipped with cooling channels 2 with uniform gaps through which high-speed water flows.

鋳型1に溶融金属が供給されると、溶融金属は4側方か
ら冷却されて凝固殻3を形式し、その内部が未凝固部4
の固液2層の鋳片5となる。
When molten metal is supplied to the mold 1, the molten metal is cooled from 4 sides to form a solidified shell 3, the inside of which forms an unsolidified part 4.
The slab 5 has two solid-liquid layers.

上記鋳片5は、冷却水路2の間隙t2および鋳型1の肉
厚ちがともに均一であるために、形式凝固殻3の厚みも
が4側部においてほぼ均一となった状態で、直下のスプ
レー冷却域(図示せず)に向けて引抜かれていくが、鋳
片かど部5Aに割れが生じ易く、ブレイクアウトの原因
となる場合が多い。
Since the gap t2 of the cooling channel 2 and the wall thickness of the mold 1 are both uniform, the slab 5 has a uniform solidified shell 3 with a substantially uniform thickness on the 4 sides, and is sprayed directly below. Although the slab is drawn out toward a cooling area (not shown), cracks tend to occur in the corner portion 5A of the slab, which often causes breakouts.

そこで、第2図に横断面図で示されるように、鋳片かど
部5Aが接する鋳型隅部lA’における肉厚tRを最小
とし、鋳型面部5Bが接する鋳型面部lB’の中央部に
おける肉厚t。
Therefore, as shown in the cross-sectional view in FIG. 2, the wall thickness tR at the corner lA' of the mold where the corner part 5A of the slab comes into contact is the minimum, and the wall thickness tR at the center part of the mold face lB' where the mold surface part 5B comes into contact t.

を最大とした外側形状が正8角形の鋳型1′が開発され
た。
A mold 1' having a regular octagonal outer shape with a maximum of .

この鋳型1′は、機械加工により製造されたもので、間
隙桜の冷却水路2が均一である場合、冷却の進行が最も
速い鋳片かど部5Aにおいて凝固殻3の形式が促進され
、鋳片面部5Bにおいて凝固殻3の形式が最も遅れたも
のとなる。
This mold 1' is manufactured by machining, and when the cooling channels 2 of the gap cherry are uniform, the solidification shell 3 is promoted at the corner part 5A of the slab where the cooling progresses fastest, and the shape of the solidified shell 3 is In 5B, the type of solidified shell 3 is the latest.

この結果形式された凝固殻3は鋳片かど部5Aにおける
厚みt4が最大となり、鋳型面部5Bの中央部における
厚み(が最小となるから、このようにして形式された鋳
片5は鋳片かど部5Aの凝固殻3の厚みt4に不足のな
いものとなり、ブレイクアウトの発生ははとんどないも
のとなる。
As a result, the solidified shell 3 formed in this manner has a maximum thickness t4 at the slab corner 5A, and a minimum thickness (t4) at the center of the mold surface 5B. The thickness t4 of the solidified shell 3 in the portion 5A is sufficient, and the occurrence of breakout is almost impossible.

しかしながら、反面鋳型1′は鋳型隅部IA’の肉厚t
Rが小さいために、この部分の強度が不足する結果とな
って第3図に横断面図で示すような変形を生じるように
なる。
However, on the other hand, the mold 1' has a wall thickness t of the mold corner IA'.
Since R is small, the strength of this portion is insufficient, resulting in deformation as shown in the cross-sectional view in FIG. 3.

このような鋳型変形は鋳片にブレイクアウトを誘発させ
る原因となるばかりでなく、鋳型の使用不能を招くこと
にもなる。
Such mold deformation not only causes breakout in the slab, but also makes the mold unusable.

この考案は、上述のような観点にもとすき、鋳片かと部
における凝固殻の厚みを十分に大きくすることができ、
かつ鋳型かど部からの変形のおそれのない連続鋳造用鋳
型を提供するもので、肉厚を他部分に比して小さくした
鋳型隅部を有し、この鋳型隅部を加工硬化による最大強
度域に猛威した点に特徴を有するものである。
This invention also has the above-mentioned points of view, and it is possible to sufficiently increase the thickness of the solidified shell at the heel of the slab.
The present invention provides a continuous casting mold with no risk of deformation from the mold corner.The mold corner has a wall thickness smaller than that of other parts, and this mold corner is hardened to the maximum strength range by work hardening. It is characterized by the fact that it has become very widespread.

ついで、この考案の連続鋳造用鋳型を実施例により図面
を参照しながら説明する。
Next, the continuous casting mold of this invention will be explained by way of examples with reference to the drawings.

第4図には、この考案の連続鋳造鋳型の第1実施例が強
度分布を説明するための平面図で示され。
FIG. 4 shows a first embodiment of the continuous casting mold of this invention in a plan view for explaining the strength distribution.

°ている。°is.

図示されるように、この考案の鋳型1″は丸型銅素管よ
り引抜き加工により正4角形に成形されたものであり、
鋳型隅部1A″の肉厚tRは他のいずれの部分よりも小
さく猛威されている。
As shown in the figure, the mold 1'' of this invention is formed into a regular square by drawing from a round copper tube.
The wall thickness tR of the mold corner 1A'' is smaller than any other portion.

鋳型面部IB“の肉厚t。Wall thickness t of mold surface part IB".

は全体に亘って均等であるが、鋳型隅部IA“の肉厚t
Rに比して小さくなっている。
is uniform throughout the mold, but the wall thickness t of the mold corner IA
It is smaller than R.

鋳型1″の強度分布において、鋳型隅部IA“の加工硬
化による最大強度域aが猛威されるように、ダイスによ
り引抜き加工する際、鋳型隅部の加工率が最大となるよ
うにしである。
In the strength distribution of the mold 1'', the machining rate of the mold corner is maximized when drawing with a die so that the maximum strength region a due to work hardening of the mold corner IA'' is maximized.

このように引抜き加工により猛威され、この考案の連続
鋳造用鋳型における鋳型隅部IA″と鋳型面部1B″の
肉厚および引張り強度、並びに100回の連続鋳造にお
けるブレイクアウト発生率を第1表に示した。
Table 1 shows the wall thickness and tensile strength of the mold corner IA'' and the mold surface 1B'' in the continuous casting mold of this invention, as well as the breakout incidence after 100 continuous castings. Indicated.

なお、第1表には第1図に示される断面形状をもった従
来鋳型のそれを合せて示した。
Table 1 also shows the conventional molds having the cross-sectional shape shown in FIG.

第1表に示されるように、この考案の鋳型においては、
鋳型隅部IA″の肉厚tRが鋳型面部に比して小さくし
であるために、鋳型外側が高速水流により冷却されてい
る状態で、溶融金属が供給されると、鋳型隅部1A″に
接する鋳片かと部が他部よりもより速く冷却されるので
、鋳片の凝固殻は鋳片かど部において厚くなり、ブレイ
クアウトの発生率がきわめて小さいものとなっており、
鋳型隅部IA“は引抜き加工によって加工硬化され、最
大強度域aとなっているので、鋳造操作中に変形を生じ
ることもない。
As shown in Table 1, in the mold of this invention,
Since the wall thickness tR of the mold corner IA'' is smaller than that of the mold surface, when molten metal is supplied while the outside of the mold is being cooled by a high-speed water flow, the mold corner IA'' is Since the contacting slab corners cool faster than other parts, the solidified shell of the slab is thicker at the slab corners, and the incidence of breakouts is extremely small.
The mold corner IA" is work hardened by drawing and has the maximum strength region a, so that no deformation occurs during the casting operation.

これに対して、鋳型隅部と鋳造面部の肉厚および強度が
同じである第1図に示される従来鋳型においては、鋳片
かど部におけるブレイクアウトの発生率はきわめて高い
ものであった。
On the other hand, in the conventional mold shown in FIG. 1, in which the corner portions of the mold and the casting surface have the same wall thickness and strength, the incidence of breakouts at the corner portions of the slab was extremely high.

第5図に、同様に強度分布を説明するための平面図で示
される第2実施例のこの考案の鋳型は、丸型銅素管より
猛威されたもので、第2図に示されると同一の外形を有
し、外形正8角形に機械加工される以前に、予め冷間鍛
造により塑性加工されて鋳型隅部I A ”’が加工硬
化され、最大強度域aが猛威されている。
The mold of this invention of the second embodiment, which is also shown in a plan view for explaining the strength distribution in FIG. 5, is the same as that shown in FIG. Before being machined into a regular octagonal external shape, it is plastically worked by cold forging to work harden the mold corner I A '', and the maximum strength region a is strengthened.

この結果形成されたこの考案の鋳型における鋳型隅部I
A ”’と鋳型面部I B ’の肉厚および引張り強
さ、並びに100回の連続鋳造における鋳型変形発生ま
での鋳造回数を、第2図に示される従来鋳型と対比して
第2表に示した。
Mold corner I in the mold of this invention formed as a result
Table 2 shows the wall thickness and tensile strength of A'' and mold surface IB', as well as the number of castings until mold deformation occurs in 100 continuous castings, in comparison with the conventional mold shown in Fig. 2. Ta.

第2表に示されるように、鋳型隅部I A ”’の強度
を鋳型面部I B ”’に比して大きくし、最大強度域
aを猛威したこの考案の鋳型は100回の連続鋳造にお
いても全く変形が発生していないのに対して、鋳型隅部
lA’と鋳型面部l B’の強度が等しい従来鋳型にお
いては、30回の連続鋳造で鋳型変形を起臥使用不能と
なった。
As shown in Table 2, the mold of this invention, in which the strength of the mold corner I A '' is made larger than that of the mold face I B '', and the maximum strength range a is extremely strong, has a high strength in 100 continuous castings. In contrast, in a conventional mold in which the strength of the mold corner lA' and the mold face lB' were equal, the mold deformed and became unusable after 30 continuous castings.

なお、この考案の鋳型は、丸型銅素管を中子拡管法によ
って中空角形に成形することによっても製造できるが、
この場合も鋳型隅部を加工硬化させて最大強度域を形成
することは勿論である。
The mold of this invention can also be manufactured by forming a round copper pipe into a hollow rectangular shape using the core expansion method.
In this case as well, it goes without saying that the corners of the mold are work-hardened to form the maximum strength region.

上述のように、鋳型隅部を薄肉として最大強度域に形成
した、この考案の鋳型によれば、鋳片における鋳片かど
部の凝固殻の厚みを大きくすることができるので、ブレ
イクアウトの発生をきわめて少なくすることができ、一
方鋳型隅部に帰因する鋳型変形も皆無であるので、長期
に亘っての使用が可能となるなどの実用上有用な効果が
もたらされるのである。
As mentioned above, according to the mold of this invention, in which the corners of the mold are made thin and formed in the maximum strength range, it is possible to increase the thickness of the solidified shell at the corners of the slab, thereby preventing the occurrence of breakouts. Since there is no mold deformation attributable to the corners of the mold, practical effects such as long-term use are achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は均一肉厚の従来鋳型の横断面図、第2図は不均
一肉厚の従来鋳型の横断面図、第3図は第2図の従来鋳
型の変形態様を示す横断面図、第4図はこの考案の鋳型
の第1実施例を強度分布状態で示した平面図、第5図は
同第2実施例を強度分布状態で示した平面図である。 図面において、1″ 1 nt・・・・・・この考案の
鋳型、IA”、IA”’・・・・・・鋳型隅部、IB”
、IB”’・・・・・・鋳型面部、tR・・・・・・鋳
型隅部肉厚、ち・・・・・・鋳型面部肉厚。
Fig. 1 is a cross-sectional view of a conventional mold with uniform wall thickness, Fig. 2 is a cross-sectional view of a conventional mold with non-uniform wall thickness, and Fig. 3 is a cross-sectional view showing a modified form of the conventional mold of Fig. 2. FIG. 4 is a plan view showing the first embodiment of the mold of this invention in a state of strength distribution, and FIG. 5 is a plan view showing the second embodiment of the same in a state of strength distribution. In the drawings, 1" 1 nt...Mold of this invention, IA", IA"'...Mold corner, IB"
, IB"'...mold surface, tR...mold corner wall thickness, t...mold surface wall thickness.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 鋳片かと部を形式する鋳型隅部の肉厚を他部の肉厚より
も小さく形式した連続鋳造用鋳型において、前記鋳型隅
部に加工硬化による最大強度域を形式したことを特徴と
する連続鋳造用鋳型。
A continuous casting mold in which a wall thickness of a corner part of the mold forming a slab head portion is smaller than that of other parts, characterized in that a maximum strength region by work hardening is formed in the corner part of the mold. Casting mold.
JP967278U 1978-01-31 1978-01-31 Continuous casting mold Expired JPS6027558Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP967278U JPS6027558Y2 (en) 1978-01-31 1978-01-31 Continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP967278U JPS6027558Y2 (en) 1978-01-31 1978-01-31 Continuous casting mold

Publications (2)

Publication Number Publication Date
JPS54116223U JPS54116223U (en) 1979-08-15
JPS6027558Y2 true JPS6027558Y2 (en) 1985-08-20

Family

ID=28820873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP967278U Expired JPS6027558Y2 (en) 1978-01-31 1978-01-31 Continuous casting mold

Country Status (1)

Country Link
JP (1) JPS6027558Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3218100A1 (en) * 1982-05-13 1983-11-17 Kabel- und Metallwerke Gutehoffnungshütte AG, 3000 Hannover METHOD FOR PRODUCING A TUBE CHOCOLATE WITH A RECTANGULAR OR SQUARE CROSS SECTION
JPH0834447B2 (en) * 1987-06-03 1996-03-29 三菱電機株式会社 Portable communication device

Also Published As

Publication number Publication date
JPS54116223U (en) 1979-08-15

Similar Documents

Publication Publication Date Title
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
EP0570751A1 (en) Cooling method and apparatus for continuous casting and its mold
JPS6027558Y2 (en) Continuous casting mold
EP0533133A1 (en) Cooling method of continuous casting and its mold
JP4578586B2 (en) Continuous casting mold for beam blank slab
JP3389449B2 (en) Continuous casting method of square billet
JP3122352B2 (en) Mold for continuous casting equipment
US4744406A (en) Horizontal continuous casting apparatus with break ring formed integral with mold
JP3101069B2 (en) Continuous casting method
JPH08132184A (en) Mold for continuous casting round cast billet and continuous casting method using same
JPH11151555A (en) Mold for continuous casting
JPS59147746A (en) Casting mold for making ingot and ingot making method
JPH1058093A (en) Method for continuously casting steel
JPH05293597A (en) Continuous casting mold for hollow round cast billet
JPS5917475Y2 (en) Bottom metal for continuous casting
JPH09239496A (en) Mold for continuously casting square billet
JPS6145960Y2 (en)
JP2770691B2 (en) Steel continuous casting method
JPH09225593A (en) Mold for continuously casting square billet
JPS6142471A (en) Forcedly cooling type casting method
JP2004042080A (en) Mold for continuous casting
JPH04178246A (en) Builtup casting mold
JPH0242575B2 (en)
JPH0550186A (en) Lower mold for semi-continuous casting apparatus for aluminum
JPH0216839Y2 (en)