JPS60264328A - Synthesis of bi2moo6 of koechlinite type - Google Patents

Synthesis of bi2moo6 of koechlinite type

Info

Publication number
JPS60264328A
JPS60264328A JP59122773A JP12277384A JPS60264328A JP S60264328 A JPS60264328 A JP S60264328A JP 59122773 A JP59122773 A JP 59122773A JP 12277384 A JP12277384 A JP 12277384A JP S60264328 A JPS60264328 A JP S60264328A
Authority
JP
Japan
Prior art keywords
type
bi2moo6
coniclinite
gamma
koechlinite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59122773A
Other languages
Japanese (ja)
Other versions
JPS6316339B2 (en
Inventor
Hiroshi Kodama
博志 小玉
Akiteru Watanabe
渡辺 昭輝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Research in Inorganic Material
Original Assignee
National Institute for Research in Inorganic Material
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Research in Inorganic Material filed Critical National Institute for Research in Inorganic Material
Priority to JP59122773A priority Critical patent/JPS60264328A/en
Publication of JPS60264328A publication Critical patent/JPS60264328A/en
Publication of JPS6316339B2 publication Critical patent/JPS6316339B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To prepare Bi2MoO6 of koechlinite type by a simple process easily in a short time, by heating Bi2MoO6 of gamma' type under pressure. CONSTITUTION:Bi2MoO6 or gamma' type is heated at 400-600 deg.C while pressurizing it at >=150kg/cm<2> (in the pressure-temperature phase equilibrium diagram, a region at the right side of the dotted line is a thermodynamically stable range of Bi2 MoO6 of gamma' type, a region at the left side of the dotted line is a thermodynamically stable range of Bi2MoO6 of koechlinite type, the region A enclosed in the oblique lines is a range wherein transition from gamma' type to koechlinite type takes place within 120hr). A mixture (mixture in a molar ratio of 1:1 calculated as Bi2O3 and MoO3) of a Bi compound to form Bi2O3 by thermal decomposition and an Mo compound to form MoO3 by thermal decomposition may be heat- treated under pressure instead of Bi2MoO4 or gamma' type.

Description

【発明の詳細な説明】 産業上の利用分骨 本発明はコニクリナイト型B12M006の合成法に関
する。コニクリナイト型B12M0O6は不飽和炭化水
素の酸化触媒として有効寿ものであり、特にプロピレン
からアクリルニトリルを合成する触媒として重要外もの
である。
DETAILED DESCRIPTION OF THE INVENTION Industrial Application The present invention relates to a method for the synthesis of coniclinite type B12M006. Coniclinite type B12M0O6 has a long life as an oxidation catalyst for unsaturated hydrocarbons, and is particularly unimportant as a catalyst for synthesizing acrylonitrile from propylene.

従来技術 従来のコニクリナイト型B12M006の合成法としく
 1 ) 一国は、湿式法と乾式法が知られている。
Prior Art Conventional methods for synthesizing coniclinite type B12M006: 1) A wet method and a dry method are known in one country.

湿式法では、例えば(NH4)6MO7024・4H2
0を溶解したアンモニア水溶液と% Bi(No5)、
・5H20を溶解した硝酸水溶液とを混合して、pI(
8の状態で約80℃に1時間保持[7た後、濃アンモニ
ア水でpHI]とかし蒸発乾固し、これを500℃で約
20時間加熱することにより合成されていた。この合成
法によるときは、溶液の調整とpHの調整に多大の労力
と薬剤を必要とするばかシで彦<、更に蒸発乾固・仮焼
の多工程と長時間を必要とする問題点があった。
In the wet method, for example, (NH4)6MO7024.4H2
Ammonia aqueous solution in which 0 was dissolved and % Bi (No5),
・Mix with a nitric acid aqueous solution in which 5H20 is dissolved to obtain pI (
It was synthesized by holding the mixture at about 80° C. for 1 hour in the state of 8 [7, then pHI with concentrated aqueous ammonia], evaporating to dryness, and heating this at 500° C. for about 20 hours. When using this synthesis method, there are problems in that it requires a lot of labor and chemicals to prepare the solution and adjust the pH, and it also requires multiple steps of evaporation to dryness and calcination and a long time. there were.

乾式法でけ% Bi2O3または熱分解によりB120
うを生成するBi化合物と、Woo3tたは熱分解によ
りMoo、を生成するMo化合物とを混合し、この混合
物を500〜600°Cで加熱することによね合成して
いた。この方法によるときは、反応可能温度の範囲が狭
く、比較的高温を必要とし、反応終結に長時間を要する
。また加熱温度を500℃以下にすると反応性が低下し
、未反応のものが残る欠点があった。
B120 by dry method % Bi2O3 or thermal decomposition
Synthesis was accomplished by mixing a Bi compound that produces a molten metal with a Mo compound that produces Woo3t or Moo by thermal decomposition, and heating this mixture at 500 to 600°C. This method has a narrow reaction temperature range, requires a relatively high temperature, and takes a long time to complete the reaction. Furthermore, when the heating temperature is lower than 500° C., the reactivity decreases and there is a drawback that unreacted substances remain.

Q 1 発明の目的 本発明は従来法における欠点を解消すべくなされたもの
で、その目的は、溶液及びpHの調整を必要とせず、少
工程、小労力で容易に、かつ短時間で、優れたコニクリ
ナイト型B12M006を合成する方法を提供するにあ
る。
Q1 Purpose of the Invention The present invention was made to solve the drawbacks of conventional methods.The purpose is to easily and quickly produce an excellent solution without requiring adjustment of solution and pH, with few steps and little labor. The present invention provides a method for synthesizing coniclinite type B12M006.

発明の構成 りi2Mob6化合物には熱力学的に安定々同質異像の
ものとしてコニクリナイト型のほかγ′型と称するもの
がある。コニクリナイト型は斜方晶系に属し、a = 
5.5061 、 b = 5.487 X 、 C=
16.226叉であり、γ′型は単斜晶系に属し、a 
=17.251 X。
Structure of the Invention Among the i2Mob6 compounds, there are thermodynamically stable isomorphic compounds called the γ' type as well as the coniclinite type. The coniclinite type belongs to the orthorhombic system, and a =
5.5061, b = 5.487 X, C=
16.226 prongs, the γ' type belongs to the monoclinic system, and the a
=17.251X.

b = 22.422 X 、 c = 5.851 
X、β=89°30′である。コニクリナイト型は空中
で加熱されると、600℃附近で準安定相のγ′となり
、次いで660°C附近でγ′型に転位する。しかしな
がら、冷却過程、j、、・ ″パ″Chr’9”“°”
?1J−)()“へ°1”1見られない。即ち、γ′型
への転移は不可逆であり、γ′型が室温でも安定に存在
する。
b = 22.422X, c = 5.851
X, β=89°30'. When the coniclinite type is heated in air, it becomes a metastable γ' phase at around 600°C, and then transforms to the γ' type at around 660°C. However, during the cooling process, j...
? 1J-) () "to °1" 1 not seen. That is, the transition to the γ' form is irreversible, and the γ' form exists stably even at room temperature.

しかしながら、γ′型は準安定相であるため、600”
ニー4.1e6o°Cの温度領域においては時間の経過
と共に徐々にγ′型へ転移する。このため、600℃以
上で熱処理すると、γ′型のBi2Mob6となる。従
ってコニクリナイト型B12Woo6を得るためには大
気圧下では600℃より低い温度で加熱しなければなら
ない。しかし、この温度領域では反応性が低い。
However, since the γ′ type is a metastable phase, the 600”
In the temperature range of 4.1e6o°C, it gradually transitions to the γ' type with the passage of time. Therefore, when heat treated at 600° C. or higher, it becomes γ'-type Bi2Mob6. Therefore, in order to obtain coniclinite type B12Woo6, it is necessary to heat at a temperature lower than 600° C. under atmospheric pressure. However, reactivity is low in this temperature range.

不発8ASらは、コニクリナイト型B12M006の熱
力学的安定領域について鋭意研究の結果、この化合物が
高圧安定相であることを見出し、圧力を加えながら、γ
′型B12M006を加熱すると、これまで不可逆と考
えられていたコニクリナイト型B12M0O6への転移
を容易に行わしめうろこと、またγ′型Bi、、Woo
3に代え、熱分解によってBi2O3を生成するB1化
合物と、熱分解によりM2O3を生成するM。
As a result of intensive research on the thermodynamic stability region of coniclinite type B12M006, Misfire 8AS et al. discovered that this compound is a high-pressure stable phase, and while applying pressure, γ
When '-type B12M006 is heated, it easily undergoes a transition to coniclinite-type B12M0O6, which was previously thought to be irreversible.
3, a B1 compound that generates Bi2O3 through thermal decomposition and M that generates M2O3 through thermal decomposition.

化合物の粉末を、Bi2O5: MoO3のモル比で約
1=1の割合で混合した混合物を圧力を加えながら加熱
すると、反応が著しく促進され、500°C以下の温度
でもコニクリナイト型B12M0O6を合成し得ること
を究明し得た。この知見に基いて本発明を完成した。
By heating a mixture of compound powders at a molar ratio of Bi2O5: MoO3 of approximately 1=1 while applying pressure, the reaction is significantly accelerated, and coniclinite type B12M0O6 can be synthesized even at temperatures below 500°C. I was able to find out. The present invention was completed based on this knowledge.

216発明の要旨はγ′型B12Woo6または、熱分
解により Bi2O,を生成するBi化合物と熱分解に
よりMoO2を生成するMO化合物の粉末をBi2O3
: MoO2のモル比で1=1の割合で混合した混合物
を150に97cm2以上に加圧しながら400〜60
0°Cに加熱することを特徴とするコニクリナイト型B
12M006の合成法にある。
216 The gist of the invention is to combine powders of γ'-type B12Woo6 or Bi compounds that generate Bi2O through thermal decomposition and MO compounds that generate MoO2 through thermal decomposition into Bi2O3.
: A mixture of MoO2 mixed at a molar ratio of 1=1 was heated to 150 to 400 to 600 cm while pressurizing it to 97 cm2 or more.
Coniclinite type B characterized by heating to 0°C
12M006.

第1図はコニクリナイト型Bi2Mob6とγ′型B1
2Woo6についての圧力一温度相平衡図であり、領域
Aはコニクリナイト型B12M006が安定に存在でき
る領域で、領域Bはγ′型B12M0O6が安定に存在
できる領域を示す。第2図は本発明の方法による転移に
よυコニクリナイト型Bi2Mob6を生成することが
可能な温度−圧力範囲を示す。斜線で囲まれた領域Aは
γ′型からコニクリナイト型Bi2Mob6への転移が
120時間以内に行われる領域で、線分Bは従来技術で
コニクリナイト型B12M006の合成が可能であった
領域である。点線で表わされた面線はγ′型B1゜M2
O3とコニクリナイト型B12M006の安定領域の境
界線を示す。
Figure 1 shows coniclinite type Bi2Mob6 and γ' type B1.
This is a pressure-temperature phase equilibrium diagram for 2Woo6, where region A is a region where coniclinite type B12M006 can stably exist, and region B shows a region where γ' type B12M0O6 can stably exist. FIG. 2 shows the temperature-pressure range in which υconiclinite type Bi2Mob6 can be produced by transformation according to the method of the present invention. Region A surrounded by diagonal lines is a region where the transition from γ' type to coniclinite type Bi2Mob6 takes place within 120 hours, and line segment B is a region where coniclinite type B12M006 could be synthesized using the conventional technique. The dotted surface line is γ′ type B1°M2
The boundary between the stability regions of O3 and coniclinite type B12M006 is shown.

(5) 第1図が示すように、大気圧下でのコニクリナイト型B
12M006からγ′型812M0o6ヘノ転移温度は
約570℃である。そして第2図における温度軸上に太
線で示す部分が従来の乾式合成法による転移温度範囲で
、本発明による転移範囲が広い面的広がりを持つことが
わかる。
(5) As shown in Figure 1, coniclinite type B under atmospheric pressure
The transition temperature of 12M006 to γ' form 812M0o6 is about 570°C. The part indicated by the thick line on the temperature axis in FIG. 2 is the transition temperature range according to the conventional dry synthesis method, and it can be seen that the transition range according to the present invention has a wide area spread.

コニクリナイト型B12Woo6を生成する反応の進行
は、圧力と温度と加熱時間に依存する。同一温度に加熱
した実験では圧力が高い程転移あるいは反応の完予時間
が短かくてすむ。また同一圧力に保持した実験では、温
度が高い程転移あるいは反応の完了時間は短かくなる。
The progress of the reaction that produces coniclinite type B12Woo6 depends on pressure, temperature, and heating time. In an experiment where heating to the same temperature is performed, the higher the pressure, the shorter the time required to complete the transition or reaction. Also, in experiments where the pressure was maintained at the same level, the higher the temperature, the shorter the time to complete the transition or reaction.

rl型Bi2Mob6を出発原料として使用した場合に
おける圧力、温度及び加熱時間と転移の進行状況を示す
と次の通りであった。
The pressure, temperature, heating time, and progress of transition when rl type Bi2Mob6 was used as the starting material were as follows.

(6) 第 1 表 温111(’C) 圧力(K9/Cm2) 時間(h)
 結 果400 1500 2] 不十分 400 1500 47 完全転移 400 1000 49 不十分 400 1000 80 完全転移 400 800 120 完全転移 400 650 120 不十分 500 1500 1 不十分 500 1500 3 完全転移 500 1000 1 不十分 500 1000 3 完全転移 500 500 48 不十分 500 500 72 完全転移 500 150 120 完全転移 550 1500 1 不十分 550 1500 2 完全転移 イl’ 550 1000 7 不十分600 100
0 49 完全転移 1iJの結果が示すように、400℃〜600°Cで容
易にコニクリナイト型B12Woo6が得られ、加熱の
際に必要な最小圧力は温度によって異なる。例えば、転
移が120時間以内に完了するためには400°Cで8
00 K9/cm2.500℃で150 Ky/cm2
.600℃で1000Ky/cm2である。
(6) 1st table temperature 111 ('C) pressure (K9/Cm2) time (h)
Result 400 1500 2] Insufficient 400 1500 47 Complete metastasis 400 1000 49 Insufficient 400 1000 80 Complete metastasis 400 800 120 Complete metastasis 400 650 120 Insufficient 500 1500 1 Insufficient 500 1500 3 Complete metastasis 500 1000 1 Insufficient 500 1000 3 Complete metastasis 500 500 48 Insufficient 500 500 72 Complete metastasis 500 150 120 Complete metastasis 550 1500 1 Insufficient 550 1500 2 Complete metastasis I' 550 1000 7 Insufficient 600 100
0 49 Complete transition As shown by the results of 1 iJ, coniclinite type B12Woo6 is easily obtained at 400° C. to 600° C., and the minimum pressure required during heating varies depending on the temperature. For example, in order for the metastasis to be completed within 120 hours, at 400°C
00 K9/cm2.150 Ky/cm2 at 500℃
.. It is 1000 Ky/cm2 at 600°C.

本発明の方法ではγ’ −Bi2Moo、に代えて、熱
分解によりBi2O3,Mob、を生成するB、を化合
物とMo化合物をBi2O,: MoO5のモル比で1
:1の割合で混合物を使用しても同様にコニクリナイト
型Bi2Mob6を合成することができる。
In the method of the present invention, instead of γ'-Bi2Moo, B, which generates Bi2O3, Mob, by thermal decomposition is used as a compound and Mo compound in a molar ratio of Bi2O,:MoO5 of 1.
Coniclinite-type Bi2Mob6 can be similarly synthesized by using a mixture at a ratio of :1.

その代表的な化合物としては、例えば、B1化合物とし
ては、Bi(No、)、・5H20、Bib2(No3
)・5H20゜あるいはBi(OH)3が挙げられ、M
o化合物としては(NH4)6MO702a・4H20
が挙げられる。
Typical compounds include, for example, B1 compounds include Bi(No, ), 5H20, Bib2(No3
)・5H20° or Bi(OH)3, M
o compound is (NH4)6MO702a・4H20
can be mentioned.

(NH4)6MO7024・4H20とBi(OH)3
の酸化物としてのモル比で1:1の混合物を使用した場
合における反応が完全に進行する温度、圧力及び加熱時
間を示すと次の通りであった。
(NH4)6MO7024・4H20 and Bi(OH)3
The temperature, pressure, and heating time for the reaction to proceed completely when a mixture with a molar ratio of 1:1 as an oxide was used was as follows.

1 ’/ノ 第 2 表 温度じC) 圧力(Ky/cm2) 時間(h)350
 1500 144 400 91 500 24 550 3 第1表及び第2表の結果からも、本発明の方法において
は、加熱温度は400°C〜600℃であることが必要
である。400°C未満の温度では反応完結時間が非常
にかかり経済的に不利であるか、転移が不能である。ま
た圧力は150 Ky/cm”以上であることが必要で
、150Ky/Cm2未満では完全転移ができ難い。
1'/no Table 2 Temperature C) Pressure (Ky/cm2) Time (h) 350
1500 144 400 91 500 24 550 3 Also from the results in Tables 1 and 2, in the method of the present invention, the heating temperature needs to be 400°C to 600°C. At temperatures below 400°C, the reaction takes too long to complete and is economically disadvantageous, or the transformation is impossible. Further, the pressure needs to be 150 Ky/cm" or more, and if it is less than 150 Ky/cm2, it is difficult to achieve complete transition.

実施例 実施例1゜ 粉末状のγ’−Bi2Mob6を白金管中に封入して、
圧力容器中に静置した。圧力容器を1500 Ky/c
+n2の一定圧力に保ちながら、電気炉にて550℃で
2時間加熱したのち、冷却した。得られたものは黄(9
) (8) 慣色のコニクリナイト型Bi2Mob6であった。
Examples Example 1゜Powdered γ'-Bi2Mob6 was sealed in a platinum tube,
It was placed in a pressure vessel. Pressure vessel 1500 Ky/c
The mixture was heated at 550° C. for 2 hours in an electric furnace while maintaining a constant pressure of +n2, and then cooled. The obtained product is yellow (9
) (8) It was a conventional color coniclinite type Bi2Mob6.

実施例2゜ (NH4)6MO7024・4H20の粉末とBi(O
HJ、の粉末をモル比で1:14の割合で混合した。該
混合物を白金管中に封入t7、圧力容器中に静置した。
Example 2゜(NH4)6MO7024・4H20 powder and Bi(O
Powders of HJ were mixed at a molar ratio of 1:14. The mixture was sealed in a platinum tube (t7) and left in a pressure vessel.

圧力容器を1500 K77cm2の一定圧力に保ちな
がら、電気炉にて550°Cで3時間加熱した。常圧で
さらに1時間加熱し乾燥した。得られたものは黄緑色の
コニクリナイト型B12M006であった。
The pressure vessel was heated at 550°C for 3 hours in an electric furnace while maintaining a constant pressure of 1500K77cm2. The mixture was further dried by heating at normal pressure for 1 hour. What was obtained was yellow-green coniclinite type B12M006.

発明の効果 本発明の方法によると、圧力を加えながら加熱する簡単
な方法で、γ′型B土2 MoO6からコニクリナイト
型B12M006への転移を不可能とされていたものを
容易にしかも比較的低温で転移可能とかし得、また、熱
分解によυそれぞれBi2O3,Mob、を生成するB
i化合物とMo化合物の混合物を使用して、比較的低温
で容易にコニクリナイト型Bi2Mob6を合成し得ら
れる優れた効果を有する。
Effects of the Invention According to the method of the present invention, the transformation from γ' type B soil 2 MoO6 to coniclinite type B12M006, which was thought to be impossible, can be easily performed at a relatively low temperature by heating while applying pressure. B can be transferred by pyrolysis and generates υBi2O3 and Mob, respectively.
Coniclinite-type Bi2Mob6 can be easily synthesized at a relatively low temperature using a mixture of the i compound and the Mo compound, resulting in excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はコニクリナイト型B12M006とγ′型(1
0) 1+li%↓2Mob6についての圧力一温度平衡図を
示し、A:コニクリナイト型BiMO06の安定領域、
B:γ′型B12Mo06ノ安定領域、 第2図は本発明の方法による転移によりコニクリナイト
型B12M006を生成することができる温度−圧力範
囲を示す図である。 斜線で囲まれた領域A:γ′型からコニクリナイト型へ
の転移が120時間以内に行われる範囲。 (11) 第 1 図
Figure 1 shows coniclinite type B12M006 and γ' type (1
0) Shows the pressure-temperature equilibrium diagram for 1+li%↓2Mob6, A: stability region of coniclinite-type BiMO06,
B: Stability region of γ' type B12Mo06. FIG. 2 is a diagram showing the temperature-pressure range in which coniclinite type B12M006 can be produced by transformation according to the method of the present invention. Area A surrounded by diagonal lines: A range where the transition from γ' type to coniclinite type occurs within 120 hours. (11) Figure 1

Claims (1)

【特許請求の範囲】[Claims] t γ′型B12M0O6または熱分解によりBi2O
5を生成するB1化合物と熱分解によりMoo3を生成
するMo化合物の粉末をBi2O,: Mob、のモル
比で1:1の割合で混合した混合物を150Ky/cy
n2以上に加圧し寿がら400〜600°Cに加熱する
ことを特徴とするコニクリナイト型B12Woo6の合
成法。
t γ′ type B12M0O6 or Bi2O by thermal decomposition
150 Ky/cy
A method for synthesizing coniclinite type B12Woo6, which is characterized by pressurizing to n2 or more and heating to 400 to 600°C.
JP59122773A 1984-06-14 1984-06-14 Synthesis of bi2moo6 of koechlinite type Granted JPS60264328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59122773A JPS60264328A (en) 1984-06-14 1984-06-14 Synthesis of bi2moo6 of koechlinite type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59122773A JPS60264328A (en) 1984-06-14 1984-06-14 Synthesis of bi2moo6 of koechlinite type

Publications (2)

Publication Number Publication Date
JPS60264328A true JPS60264328A (en) 1985-12-27
JPS6316339B2 JPS6316339B2 (en) 1988-04-08

Family

ID=14844254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59122773A Granted JPS60264328A (en) 1984-06-14 1984-06-14 Synthesis of bi2moo6 of koechlinite type

Country Status (1)

Country Link
JP (1) JPS60264328A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437470A (en) * 2014-11-06 2015-03-25 上海市纳米科技与产业发展促进中心 Homogeneous yolk-shell structure Bi2MoO6 microsphere as well as preparation method and application thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104437470A (en) * 2014-11-06 2015-03-25 上海市纳米科技与产业发展促进中心 Homogeneous yolk-shell structure Bi2MoO6 microsphere as well as preparation method and application thereof

Also Published As

Publication number Publication date
JPS6316339B2 (en) 1988-04-08

Similar Documents

Publication Publication Date Title
Teraoka et al. Hydroxy acid-aided synthesis of perovskite-type oxides of cobalt and manganese.
JPS6451331A (en) Proton-conductive substance and its production
Yoshimura et al. Low‐Temperature Synthesis of Cubic and Rhombohedral Y6WO12 by a Polymerized Complex Method
CN103387214A (en) Microwave preparation method of high-quality aluminum nitride powder
JPS60264328A (en) Synthesis of bi2moo6 of koechlinite type
US20240082826A1 (en) Method for preparing zinc ferrite-based catalyst and zinc ferrite-based catalyst prepared thereby
JPS62209039A (en) Aqueous solution of basic yttrium acetate and production thereof
CN104086181A (en) Preparation method of SLMTON (Sr, La, Mg, Ta, O and N) perovskite-type nitrogen oxide solid solution powder
CN105776331A (en) Self sacrificing template synthesis method for preparation of rare earth vanadate with LRH as template
RU2819355C1 (en) Method of vanadium-nitrogen alloy preparation
CN106008610B (en) A kind of iron coordinating metal organogel and α-Fe2O3The preparation method of nano particle
US2421428A (en) Catalytic oxidation of furfural
JPS61191505A (en) Production of boron nitride
SU259070A1 (en) Method of producing lanthanum aluminate
US1357089A (en) Process of producing alumina from clay and similar materials
CN108585040A (en) A kind of CeVO4The fast preparation method of functional material
CN116081695A (en) Perovskite nano particle and preparation method and application thereof
SU62482A1 (en) The method of producing vanadium nitride
CN110876927B (en) Preparation method of magnesia-alumina spinel material
JPS5712827A (en) Manufacture of mo-bi-sb catalyst
JPH0264100A (en) Production of aln whisker
JPS62197317A (en) Production of vanadium suboxide
SU1399265A1 (en) Method of producing reducing gas
Abdalla et al. SOLID‐SOLID INTERACTIONS IN PURE AND Li2O‐DOPED V2O5/AI2O3 SYSTEM
US3911092A (en) Method for converting ammonium sulfate to ammonium bisulfate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term