JPS60264061A - Zinc-bromine battery - Google Patents

Zinc-bromine battery

Info

Publication number
JPS60264061A
JPS60264061A JP59119036A JP11903684A JPS60264061A JP S60264061 A JPS60264061 A JP S60264061A JP 59119036 A JP59119036 A JP 59119036A JP 11903684 A JP11903684 A JP 11903684A JP S60264061 A JPS60264061 A JP S60264061A
Authority
JP
Japan
Prior art keywords
electrolyte
electrode chamber
zinc
battery
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59119036A
Other languages
Japanese (ja)
Other versions
JPH0443391B2 (en
Inventor
Kenichiro Jinnai
健一郎 陣内
Takashi Hashimoto
敬史 橋本
Yasuo Ando
保雄 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP59119036A priority Critical patent/JPS60264061A/en
Priority to CA000482814A priority patent/CA1244078A/en
Priority to US06/739,224 priority patent/US4614693A/en
Priority to AT85303945T priority patent/ATE66545T1/en
Priority to EP85303945A priority patent/EP0165000B1/en
Priority to DE8585303945T priority patent/DE3583825D1/en
Publication of JPS60264061A publication Critical patent/JPS60264061A/en
Publication of JPH0443391B2 publication Critical patent/JPH0443391B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Filling, Topping-Up Batteries (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To form the circulation duct of an electrolyte as a single system and improve performance by connecting a positive electrode chamber to a common electrolyte tank through a pump using a liquid sending pipe and a liquid return pipe and connecting a negative electrode chamber to the common electrolyte tank using the liquid return pipe. CONSTITUTION:A zinc-bromine secondary battery is formed by partioning a battery main unit 1 into a negative electrode chamber 2 and a positive electrode chamber 3 by means of a separator 4 made of an ion exchange membrane, connecting the positive electrode chamber 3 to a common electrolyte tank 13 using a liquid sending pipe 9 and a liquid return pipe 9' in which a pump 11 is inserted, and connecting the negative electrode chamber 2 to the common electrolyte tank 13 using a liquid return pipe 10'. Then, the electrolyte is sent to the positive electrode chamber 3 from the common electrolyte tank 13. The electrolyte diffused in the negative electrode chamber 2 is returned to the tank 13 through the separator 4 and is operated as a one-system circulation path. As a result, a system can be simplified only with one pump, and performance can be improved by offseting the Dendrite event.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電解液循環型金属ハロゲン積層二次電池に関
するものであって、特に充電時における亜鉛のテントラ
イト(樹枝状結晶)を抑制し、併せて陰極室へ電解液を
送入するポ:/プを除去して、電解液を陽、陰画極室併
用とすることによシ、電池システム全体の性能向上を図
った亜鉛−臭素電池を捉供するものである、 〔従来の技術〕 従来の電解液循環型金属ノ・ロゲン積層二次電池は、そ
の−例を第4図の亜鉛−臭素二次電池に示す如く、電池
本体(1)をイオン交換膜または多孔質膜からなるセパ
レーター即ち隔膜(4)で陽極室(2)と陰極室(3)
とに区画し、該両極室にそれぞれ電解液を循環させるた
めの送液管(9)α1と返液管(9) (10’)によ
り接続された電解液タンク(7) (8)を設け、臭化
亜鉛(z n B r2)の電解液をそれぞれの電極室
に循環させるようにしだものである。尚、(5)は陽極
、(6)は陰極、αpに)は共に送液ポンプである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrolyte circulation type metal halogen laminated secondary battery, and particularly to a metal halide laminated secondary battery that suppresses zinc tentrites (dendritic crystals) during charging. In addition, by removing the port that supplies electrolyte to the cathode chamber and using the electrolyte in both positive and negative electrode chambers, the performance of the entire battery system is improved. [Prior Art] A conventional electrolyte circulation type metal-logen laminated secondary battery has a battery main body (1 ) is separated into an anode chamber (2) and a cathode chamber (3) by a separator (4) consisting of an ion exchange membrane or a porous membrane.
and electrolyte tanks (7) and (8) connected by liquid sending pipes (9) α1 and liquid return pipes (9) and (10') for circulating electrolyte in the bipolar chambers, respectively. , an electrolytic solution of zinc bromide (z n B r2) is circulated through each electrode chamber. Note that (5) is an anode, (6) is a cathode, and αp) are both liquid pumps.

しかして、充電時には、電解液が図の矢印の方向に循環
し、陰極(6)ではzn + ’le −+ Zn、陽
極(5)では2B量→Br”+20の反応を生じ、陽極
(5)で生成された臭素は分子となり、電解液中に混じ
シ、一部溶解し、大部分は陽極液中の錯化剤によって錯
化物となシ、陽極室側の電解液タンク(7)内に沈殿し
て蓄積される。又、放電時には、電解液が循環した状態
で各電極(5) (6)ではそれぞれ前記反応式と逆の
反応を生じ、析出物(z’n、Brz)が各電極(5)
(6)−上で消費(酸化、還元”)され、電気′エネル
ギ−が放出式れZ)。
During charging, the electrolyte circulates in the direction of the arrow in the figure, causing a reaction of zn + 'le -+ Zn at the cathode (6) and 2B amount → Br'' + 20 at the anode (5), and the reaction occurs at the anode (5). The bromine generated in ) becomes molecules, mixes in the electrolyte, partially dissolves, and mostly becomes a complex by the complexing agent in the anolyte, and is stored in the electrolyte tank (7) on the anode chamber side. In addition, during discharge, a reaction opposite to the above reaction formula occurs at each electrode (5) and (6) with the electrolyte circulating, and the precipitates (z'n, Brz) Each electrode (5)
(6) - It is consumed (oxidized, reduced) and the electrical energy is released.

このような構造の従来の亜鉛−臭素電池は、次の点で総
合エネルギー効率とエネルギー密度を低下させる要因を
含んでいた。
The conventional zinc-bromine battery having such a structure includes the following factors that reduce the overall energy efficiency and energy density.

(イ)電解液を陽、陰両極にそれぞれ送り込むため2台
のポンプを必要とする。
(a) Two pumps are required to send the electrolyte to both the positive and negative electrodes.

(ロ)陽極室に含−を才(でいる陰極活物質(亜鉛)電
池本来の指向力看っすれば、性能を向上式せることも重
要な課題でidあるが、電池システム全体を通しての1
生1jFZ向上も、現在残されている重要な課題で力、
る。。
(b) Considering the inherent directivity of the battery (cathode active material (zinc) contained in the anode chamber), it is also an important issue to improve the performance.
Improving raw 1j FZ is also an important issue that remains.
Ru. .

併して、従来の?(i、池において上記(イ)および(
ロ)のシスナへを採らざるを得なかった理由として、充
電時におりる亜鉛のシンドライドがあった。この亜鉛の
チンドラくトは、陰極に析出した亜鉛の結晶が隔膜を通
過し陽極室側域で成長するもので、電解液の流速および
亜鉛濃度に依存する。つまり、陰極側の液循環システム
はテンドライト抑制に有効に作用するが、陽極室内に成
長した亜鉛は陰極室内の亜鉛濃度が減少すると、陰極室
内′に拡散し、亜鉛濃度をある一定以上に保つ役割をし
ており、これによシブ/ドライド抑制に有効な役割をし
ている。
Also, conventional? (i. In the pond, the above (a) and (
(b) The reason why we had to adopt Cysna was because of the zinc sindride that comes off when charging. The zinc crystals deposited on the cathode pass through the diaphragm and grow in the side area of the anode chamber, and depend on the flow rate of the electrolyte and the zinc concentration. In other words, the liquid circulation system on the cathode side works effectively to suppress tendrite, but when the zinc concentration in the cathode chamber decreases, the zinc that has grown inside the anode chamber diffuses into the cathode chamber, and plays a role in keeping the zinc concentration above a certain level. This plays an effective role in suppressing shiv/dry.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、従来の亜鉛−臭素電池における上記の課題即
ち電解液を両電極室へ循環させるためのポンプを2台必
要とすること、および陽極室に含まれている陰極活物質
(亜鉛)のデンドライト現象など、電池システム全体を
通しての性能向上を図るべくなされたものである。
The present invention solves the above-mentioned problems in conventional zinc-bromine batteries, namely the need for two pumps to circulate the electrolyte to both electrode chambers, and the problem that the negative electrode active material (zinc) contained in the anode chamber This was done to improve the performance of the entire battery system, including dendrite phenomena.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明においては、上述の従来の亜鉛−臭素電池の課題
を解決するだめの手段として、テンドライト発生に関す
る流速、亜鉛濃度の影響等に種々検討を加えた結果、従
来のこの種の電池には用いられていた陰極側の電解液送
入ポンプを除去し、電解液は陽、陰画極室を1系統の循
環管路とし、一つのポンプによシ強制循環させるように
したものでロシ、これによりデンドライトを解消すると
共に、電池システム全体の性能向上を図ったものである
In the present invention, as a means to solve the problems of the conventional zinc-bromine battery described above, we have conducted various studies on the influence of flow velocity and zinc concentration on tendrite generation, and as a result, we have developed The electrolyte feed pump on the cathode side, which had previously been used, was removed, and the electrolyte was forced to circulate through the positive and negative electrode chambers in one system, using a single pump. This aims to eliminate dendrites and improve the performance of the entire battery system.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の亜鉛−臭素電池の一実施例を示し、こ
の図では陽、陰極の位置関係が従来技術を説明した第4
図の場合と逆になっている。すなわち、(1)は電池本
体、(2)は陰極室、(3)は陽極室、(4)はセパレ
ーター(隔膜’) 、 (5)は陰極、(6)は陽極で
ある。■は本発明において重要な共通電解液タンクであ
り、前記陽極室(3)と送液管(9)および返液管(9
′)によって連通されており、前記送液管(9)には送
入ポンプ(1111が介在させである。又、陰極室(2
)は返液管(10’)Kより前記共通電解液タンク(至
)に連通されている。従って、前記送入ポンプαめを図
示を省略しである駆動源によシ駆動すると、電池全体が
陽陰両極室間の隔膜(4)を通して1系統の循環路を構
成して、電解液が強制循環させられるようにしである。
FIG. 1 shows an embodiment of the zinc-bromine battery of the present invention, and in this figure, the positional relationship of the anode and cathode is the same as that of the fourth embodiment of the prior art.
This is the opposite of what is shown in the figure. That is, (1) is the battery body, (2) is the cathode chamber, (3) is the anode chamber, (4) is the separator (diaphragm'), (5) is the cathode, and (6) is the anode. (2) is a common electrolyte tank which is important in the present invention, and includes the anode chamber (3), the liquid sending pipe (9) and the liquid return pipe (9).
A feeding pump (1111) is interposed in the liquid feeding pipe (9). Also, a cathode chamber (2
) is communicated with the common electrolyte tank (to) through a liquid return pipe (10')K. Therefore, when the feed pump α is driven by a drive source (not shown), the entire battery forms one circulation path through the diaphragm (4) between the anode and cathode chambers, and the electrolyte is It is forced to circulate.

以上の構成になる第1図の実施例は、1ポンプ1タンク
型の亜鉛−臭素電池でめり、陽極室(3)には共通電解
液タンク(6)から送入ポンプa)で電解液が送シ込ま
れる。陰極室(2)には隔膜(4)を通して拡散した電
解液が満たされることになる。そして陰極室(2)から
溢れた電解液は、陰極室(2)の上部がら返液管(1的
を通って共通電解液タンク(2)に戻される。この点、
第2図の実施例では、前記返液管(10’)の他に陰極
室(2)の下部から直接共通電解液タンク(2)へ電解
液を戻すための流下管α◆が設けである。
The embodiment shown in Fig. 1 with the above configuration uses a one-pump, one-tank type zinc-bromine battery, and the anode chamber (3) is supplied with electrolyte by pump a) from a common electrolyte tank (6). is sent. The cathode chamber (2) will be filled with the electrolyte that has diffused through the diaphragm (4). The electrolyte overflowing from the cathode chamber (2) is returned to the common electrolyte tank (2) through the return tube (1) from the upper part of the cathode chamber (2).
In the embodiment shown in FIG. 2, in addition to the liquid return pipe (10'), a flow pipe α◆ is provided for returning the electrolyte directly from the lower part of the cathode chamber (2) to the common electrolyte tank (2). .

この第2図の実施例のようにすれば、放電時に溶解する
亜鉛が陰極室(2)の下部へ蓄積するのを防止できる。
With the embodiment shown in FIG. 2, it is possible to prevent zinc dissolved during discharge from accumulating in the lower part of the cathode chamber (2).

このようにすれば放電時の亜鉛の濃度分極は低減され、
また陰極活物質である亜鉛は、充電時雨シ 極室から供給され、放電時には戻でれる。この実施例の
電池特性を第6図(a)(b)および次の第1表に示す
・ 第 1 表 上の第1表の数値によると、エネルギー効率において本
発明のものは従来のものに対し約1ろチ低下しているけ
れども、第6図の充放電曲線に電池の異常を示す変化は
なく、充放電終了後解体しり結果、隔膜(4)人のデン
ドライトの付着も見られなかった。本発明の最大のポイ
ントは充電時における亜鉛のテンドライト抑制でろるが
、充電終了後電池を解体したが、著しいデンドライトの
発生はなかった。なお、電解液には所定の抑制剤を添カ
ロ し プこ 。
In this way, the concentration polarization of zinc during discharge is reduced,
Zinc, which is a cathode active material, is supplied from the rain shield chamber during charging and returned during discharging. The battery characteristics of this example are shown in Figure 6 (a) and (b) and the following Table 1. According to the numerical values in Table 1 above, the battery of the present invention is superior to the conventional battery in terms of energy efficiency. However, there was no change in the charge/discharge curve shown in Figure 6 that would indicate an abnormality in the battery, and when the battery was dismantled after charging and discharging, no dendrites were observed on the diaphragm (4). . The most important point of the present invention is the suppression of zinc tendrites during charging, but when the battery was disassembled after charging, no significant dendrites were observed. In addition, a specified inhibitor is added to the electrolyte.

〔発明の効果〕〔Effect of the invention〕

本発明の亜鉛−臭素電池は、以上の構成になるもので、
次の効果を奏する。
The zinc-bromine battery of the present invention has the above configuration,
It has the following effects.

(1)電解液タンクは従来2個であったのを本発明では
1個とした。
(1) Conventionally, there were two electrolyte tanks, but in the present invention, there is one.

(11)電解液送入ポンプを陽極室のみの1個とした1
−。
(11) One electrolyte supply pump for the anode chamber only 1
−.

011)陰極室は陽極室から隔膜を通して拡散する電解
液を用い、陰極室から溢れた電解液は一定速度で電解液
タンクへ戻され、再びポンプで陽極室−\送られる。従
って、陰極活物質は陽極室より供給されるものであり、
放電時には陽極室へ戻される。
011) The cathode chamber uses an electrolyte that diffuses from the anode chamber through the diaphragm, and the electrolyte overflowing from the cathode chamber is returned to the electrolyte tank at a constant rate and sent to the anode chamber again by a pump. Therefore, the cathode active material is supplied from the anode chamber,
During discharge, it is returned to the anode chamber.

4ψ陰極側の流速は零に等しいが、このような状態にお
いても、著しいデンドライトの発生がなく、通常の8時
間充放電が可能でろる。
Although the flow rate on the 4ψ cathode side is equal to zero, even under such conditions, there is no significant dendrite formation, and normal 8-hour charging and discharging is possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電池の一実施例を示す断面図、第2図
は本発明の別の一実施例を示す断面図、第3図は本発明
実施例による充放電特性を示し、(a)は充電特性を示
すグラフ、(b)は放電特性を示すグラフでめる。第4
図は従来の電池を示す断面図でろる。 (1)電池本体、(2)陽極室、(3)陰極室、(4)
セパレーター、(5)陽極、(6)陰極、(9)陽極室
送液管、(9′)陽極室返液管、(1σ)陰極室返液管
、α罎共通電解液タンク、ぐ◆陰極室流下管、 代理人 弁理士 木 村 三 朗 同 同 佐々木 宗 治 第1図 第2図
FIG. 1 is a sectional view showing one embodiment of the battery of the present invention, FIG. 2 is a sectional view showing another embodiment of the invention, and FIG. 3 is a sectional view showing the charge/discharge characteristics according to the embodiment of the present invention. A) is a graph showing charging characteristics, and (b) is a graph showing discharging characteristics. Fourth
The figure is a cross-sectional view of a conventional battery. (1) Battery body, (2) Anode chamber, (3) Cathode chamber, (4)
Separator, (5) anode, (6) cathode, (9) anode chamber liquid sending tube, (9') anode chamber liquid return tube, (1σ) cathode chamber liquid return tube, alpha common electrolyte tank, ◆ cathode Under Muroryu, Attorney: Mitsuru Kimura and Souji Sasaki, Figure 1, Figure 2

Claims (1)

【特許請求の範囲】[Claims] 電池本体内をセパレーター(隔膜)で陽極室と陰極室と
に区画し、前記陽極室は共通電解液タンクに強制循環装
置を介して送液管友び返液管により接続され、前記陰極
室は前記共通電解液タンクに返液管により接続されてい
ることを特徴とする亜鉛−臭素電池。
The battery main body is divided into an anode chamber and a cathode chamber by a separator (diaphragm), the anode chamber is connected to a common electrolyte tank via a forced circulation device by a liquid supply tube and a liquid return tube, and the cathode chamber is A zinc-bromine battery, characterized in that it is connected to the common electrolyte tank by a return pipe.
JP59119036A 1984-06-06 1984-06-12 Zinc-bromine battery Granted JPS60264061A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59119036A JPS60264061A (en) 1984-06-12 1984-06-12 Zinc-bromine battery
CA000482814A CA1244078A (en) 1984-06-06 1985-05-30 Metal-halogen secondary battery
US06/739,224 US4614693A (en) 1984-06-06 1985-05-30 Metal-halogen secondary battery
AT85303945T ATE66545T1 (en) 1984-06-06 1985-06-04 METAL HALOGEN SECONDARY BATTERY.
EP85303945A EP0165000B1 (en) 1984-06-06 1985-06-04 Metal-halogen secondary battery
DE8585303945T DE3583825D1 (en) 1984-06-06 1985-06-04 SECOND METAL HALOGEN BATTERY.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59119036A JPS60264061A (en) 1984-06-12 1984-06-12 Zinc-bromine battery

Publications (2)

Publication Number Publication Date
JPS60264061A true JPS60264061A (en) 1985-12-27
JPH0443391B2 JPH0443391B2 (en) 1992-07-16

Family

ID=14751369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59119036A Granted JPS60264061A (en) 1984-06-06 1984-06-12 Zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPS60264061A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122835A (en) * 1976-04-07 1977-10-15 Exxon Research Engineering Co Metallhalogen battery and method of operating it

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122835A (en) * 1976-04-07 1977-10-15 Exxon Research Engineering Co Metallhalogen battery and method of operating it

Also Published As

Publication number Publication date
JPH0443391B2 (en) 1992-07-16

Similar Documents

Publication Publication Date Title
JPS60185375A (en) Galvanic cell
US3811945A (en) Electric battery
JPS62208570A (en) Additive for electrolyte improving battery performance
KR102379200B1 (en) Zinc-bromide flow battery comprising conductive interlayer
JPH0574909B2 (en)
JPS60264061A (en) Zinc-bromine battery
JPH0527233B2 (en)
US4677039A (en) Zinc-bromine battery
EP0186204B1 (en) Zinc-bromine battery
US3915744A (en) Electric battery
JPS57101358A (en) Improvement of zinc-bromine battery
JPH02109275A (en) Metal-bromine battery
JPS62136755A (en) Zinc-bromine cell
JPS63252366A (en) Gas circulation type zinc-halogen battery
JPH021355B2 (en)
JPH0367308B2 (en)
JPH04154055A (en) Structure of metal-air cell
JPS58103788A (en) Metal-halogen cell
JPS585266B2 (en) Device for electrochemically separating oxygen from air
JPS607350B2 (en) Fuel supply method for liquid fuel cells
JPWO2019131341A1 (en) Redox flow battery
CN116544527A (en) Lead-based battery and energy storage device
JPH0449823Y2 (en)
JPH04181662A (en) Metal-bromine battery
JPS62271373A (en) Electrolyte circulation type metal-halogen battery