JPS60263A - Refrigeration cycle - Google Patents

Refrigeration cycle

Info

Publication number
JPS60263A
JPS60263A JP10765783A JP10765783A JPS60263A JP S60263 A JPS60263 A JP S60263A JP 10765783 A JP10765783 A JP 10765783A JP 10765783 A JP10765783 A JP 10765783A JP S60263 A JPS60263 A JP S60263A
Authority
JP
Japan
Prior art keywords
flow rate
pressure
differential pressure
tube
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10765783A
Other languages
Japanese (ja)
Other versions
JPH0120692B2 (en
Inventor
晃 渥美
研作 小国
千秋 隆雄
吉岡 和雄
誠 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10765783A priority Critical patent/JPS60263A/en
Publication of JPS60263A publication Critical patent/JPS60263A/en
Publication of JPH0120692B2 publication Critical patent/JPH0120692B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Landscapes

  • Saccharide Compounds (AREA)
  • Fats And Perfumes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はパッケージ形窒調機、ルームエアコンなどのガ
スインジェクション回路を備えた冷凍サイクルに関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a refrigeration cycle equipped with a gas injection circuit, such as a packaged nitrogen conditioner or a room air conditioner.

〔発明の背景〕[Background of the invention]

第1図に示されるような第2減圧器4にキャピラリチュ
ーブを用いたガスインジェクションサイクルでは、凝縮
温度が低下(例えば、冷房運転で外気温度が低下)して
第2減圧器人口出口の圧力差が小さくなった場合、キャ
ピラリチューブでの流量特性が変化して、サイクル各部
の圧力が周期的に変動する状況が生じたり、極度に流量
が減少して能力不足の状態となる。
In the gas injection cycle in which a capillary tube is used as the second pressure reducer 4 as shown in FIG. If the flow rate becomes small, the flow rate characteristics in the capillary tube change, causing a situation where the pressure in each part of the cycle fluctuates periodically, or the flow rate decreases extremely, resulting in a state of insufficient capacity.

これは第2減圧器でるるキャピラリチューブの流量特性
によるものである。第2図にキャピラリチューブの流量
特性を示す。図は入口圧力を一定として出口圧力を変化
させた場合の入口出口の差圧ΔPと流量G12)関係で
あり、入口圧力がパラメータとなりている。入口圧力P
1の場合を例疼とると、差圧△Pが小さい領域では、差
圧△P■増加とともに流量Gは増加するが、ある差圧6
21以上では、出口部でチョーク現象を起こすために差
圧ΔPに対して流量Gはほぼ一定(歳入流量U、)とな
る。また入口圧力が低くなると流量は小さくなるが、こ
の傾向は同様である。第3図は冷凍サイクルにおいて、
凝縮器側の負荷が変動、例えば冷房運転で外気温贋が変
化した場合の第2減圧b(キャピラリチューブ)での作
動点を示す。標準の4 設計点においては、差圧Δhに対して最大流量G!が得
られるようにキャピラリチューブの寸法諸元双 (管直径於び長さ)が決定される。凝縮温度が低下する
と、キャピラリチューブ入口圧力はP、 、 P。
This is due to the flow rate characteristics of the capillary tube passing through the second pressure reducer. Figure 2 shows the flow characteristics of the capillary tube. The figure shows the relationship between the pressure difference ΔP at the inlet and outlet and the flow rate G12) when the inlet pressure is kept constant and the outlet pressure is varied, and the inlet pressure is the parameter. Inlet pressure P
Taking case 1 as an example, in a region where the differential pressure △P is small, the flow rate G increases as the differential pressure △P■ increases, but at a certain differential pressure 6
21 or more, the flow rate G becomes almost constant (revenue flow rate U,) with respect to the differential pressure ΔP because a choke phenomenon occurs at the outlet. Furthermore, as the inlet pressure decreases, the flow rate decreases, but this trend remains the same. Figure 3 shows the refrigeration cycle.
The operating point at the second reduced pressure b (capillary tube) is shown when the load on the condenser side fluctuates, for example, when the outside air temperature changes during cooling operation. At the standard 4 design point, the maximum flow rate G for the differential pressure Δh! The dimensions of the capillary tube (tube diameter and length) are determined so that As the condensing temperature decreases, the capillary tube inlet pressure increases to P, , P.

と低下し、キャピラリチューブ入1コ出口の差圧△Pも
△PI、△l?、と低下する。入口圧力がP、の場合に
は差圧△P1で最大流量U、が得られる点でバランスす
るが、入口圧力がP、tで低下した場合には、差圧は△
Poとなり、P6に対する最大流量が得られず、これよ
シも少ない派量りとなる。この場合には、差圧△Pに対
して流量Gが変化する%性となるため、突気温度の少し
の変@などにより、キャピラリチューブ人口出口の差圧
が変化して流量が変動するため、冷凍サイクルの運転点
は不安定となり易い。また、△Poでの流量Goは、最
大流量よシも小さいため、蒸発器出口冷媒の過熱Kが大
きい運転となる。このような運転では、運転効率が悪く
、また圧力変動が大きい楊@rには、間欠的に液戻りが
生じることから圧縮機の信頼性低下につながる。
The differential pressure △P at the entrance and exit of the capillary tube also decreases △PI, △l? , and decreases. When the inlet pressure is P, there is a balance in that the maximum flow rate U can be obtained with the differential pressure △P1, but if the inlet pressure decreases by P and t, the differential pressure becomes △
Po, the maximum flow rate for P6 cannot be obtained, and the flow rate becomes even smaller. In this case, the flow rate G changes as a percentage of the differential pressure △P, so a slight change in the temperature of the air rush changes the differential pressure at the capillary tube outlet and the flow rate fluctuates. , the operating point of the refrigeration cycle tends to become unstable. Furthermore, since the flow rate Go at ΔPo is smaller than the maximum flow rate, the operation results in a large superheat K of the refrigerant at the evaporator outlet. In such an operation, the operating efficiency is poor and the pressure fluctuation is large, and liquid returns occur intermittently, leading to a decrease in the reliability of the compressor.

〔発明の目的〕[Purpose of the invention]

本発明は、凝縮温度が低く、第2減圧器入口出口での圧
力差が小さい場合でも、差圧に対して流量が変動しない
最大流量が得られるような流量特性を有する第2減圧器
を提供することを目的とするものである。
The present invention provides a second pressure reducer having flow characteristics such that even when the condensing temperature is low and the pressure difference at the inlet and outlet of the second pressure reducer is small, a maximum flow rate is obtained in which the flow rate does not fluctuate with respect to the differential pressure. The purpose is to

〔発明の概要〕[Summary of the invention]

本発明は、従来のキャピラリチューブの流量特性を改良
すべく、第2減圧器として管長さと管直径の比が2.5
〜40となる短管を用いることを特徴とするものである
In order to improve the flow characteristics of conventional capillary tubes, the present invention provides a second pressure reducer with a tube length to tube diameter ratio of 2.5.
It is characterized by the use of short tubes with diameters of .about.40 mm.

〔発明の実施例〕[Embodiments of the invention]

第4図は、本発明の一実施例を示す短管の断面図であシ
、管長さlと管内径dO比1/dの値は2.5〜40で
ある。
FIG. 4 is a sectional view of a short tube showing an embodiment of the present invention, in which the value of the tube length l and the tube inner diameter dO ratio 1/d is 2.5 to 40.

第5図は、従来のキャピラリチューブ(管直径d = 
0.5〜5都、管長さn=100〜2000關、n/d
=100〜1000程度)の流量特性(笑#iりと、本
発明による短管の流量特性(一点鎖線)の比較を表わす
。図は凝縮温度が低い場合、すなわち冷房運転で外気温
度が低い場合の流量特性であり、e/ctを小さくする
ことによシ、最大流量が得られる差圧△Pが小さくなっ
ている。従来のキャピラリチューブでは、差圧△Pによ
り流量Gが変化する点(差圧△Pa)流量G・)でバラ
ンスするOに対して、本実施例では、このような条件で
も差圧△P、で最大流量げ・が得られている。
Figure 5 shows a conventional capillary tube (tube diameter d =
0.5~5 mm, pipe length n=100~2000 mm, n/d
= 100 to 1000)) and the flow rate characteristics (dotted chain line) of the short pipe according to the present invention. By reducing e/ct, the differential pressure △P at which the maximum flow rate can be obtained becomes smaller.In the conventional capillary tube, the point where the flow rate G changes depending on the differential pressure △P ( In contrast to O, which is balanced by the differential pressure ΔPa) and the flow rate G·), in this embodiment, even under such conditions, the maximum flow rate G·) is obtained with the differential pressure ΔP.

したがって、最も差圧△Pが小さくなる条件(例えば、
冷房運転で外気温度が20°C程度)でも、最大流量が
得られるように設定された短管を第2減圧器に用いれば
、第6図に仮想て示されるような作動点が得られ、圧力
変動や流量が不足した運転はない。
Therefore, the conditions under which the differential pressure △P is the smallest (for example,
If a short pipe set to obtain the maximum flow rate is used in the second pressure reducer even when the outside temperature is around 20°C during cooling operation, the operating point hypothetically shown in Fig. 6 can be obtained. There were no pressure fluctuations or operations with insufficient flow.

第7図は、第2減圧器のl/dを変化させて上記冷房運
転(外気温度20°C程度)を行った場合の第2減圧器
冷媒陀量と冷几能力及び成績係数(冷房能力を電気入力
で除した値で運転効率を表わす)を表わす。減圧器の抵
抗の大きさは、冷房の標準的な条件(外気温度35℃程
度)で最適に設定されている。第6図に示されるように
外気温度が低下した場合には、l/dによ#)流量01
能力Q1成績係数Cけ大きく変化していることがわかる
。l/dが2.5以下では、一般によく知られているオ
リフィスの流量特性同様常に人口出口の差圧のみで流量
が決定されるため、外気温度の変化に対して制御性は悪
く、この場合は外気温度が低下しても流量が多く、極度
な液戻り運転となシ能力が低下するとともに圧fII1
7機の入力が増加して成績係数も低下する。一方l/d
が40以上の場合には上述したように流量が不足した運
転となり、能力の低下とともに圧力変動などによりM、
績係数が低下する。これに対してl/dが2.5〜40
の範囲では、安定した適正な流量が得られており、冷房
能力、成績係数ともに最大値が得られている。なお第4
図に示した例は流路断面が円形であるが流路長さと断面
積の比が同程度であれは上述の効果は得られるものであ
る。
Figure 7 shows the refrigerant volume of the second pressure reducer, the cooling capacity, and the coefficient of performance (cooling capacity The operating efficiency is expressed as the value divided by the electrical input. The resistance of the pressure reducer is optimally set under standard cooling conditions (outside temperature of about 35° C.). As shown in Fig. 6, when the outside temperature decreases, the flow rate 01
It can be seen that the ability Q1 performance coefficient has changed significantly. When l/d is 2.5 or less, the flow rate is always determined only by the differential pressure at the outlet, similar to the generally well-known flow characteristics of an orifice, so controllability against changes in outside temperature is poor, and in this case The flow rate is large even when the outside temperature drops, resulting in extreme liquid return operation, which reduces the capacity and increases the pressure fII1.
The input of 7 machines increases and the coefficient of performance also decreases. On the other hand l/d
If is 40 or more, as mentioned above, operation will occur with insufficient flow rate, and as well as capacity drop, pressure fluctuations will cause M,
performance coefficient decreases. On the other hand, l/d is 2.5 to 40
In this range, a stable and appropriate flow rate was obtained, and the maximum values were obtained for both the cooling capacity and the coefficient of performance. Furthermore, the fourth
In the example shown in the figure, the cross section of the flow path is circular, but the above-mentioned effect can be obtained if the ratio of the flow path length and cross-sectional area is approximately the same.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、酊房運転で外気温度が低下
した場合にも、安定した運転点が得られることから、運
転効率が向上すると\もに、圧縮機への間欠的な液戻9
も防止され、信頼性向上が図られる。
As described above, according to the present invention, a stable operating point can be obtained even when the outside temperature drops due to intoxication operation, which improves operating efficiency and reduces intermittent liquid return to the compressor. 9
This also prevents problems and improves reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、ガスインジェクシぢンサイクルの冷凍サイク
ル構成。 第2図は、キャピラリチューブの訛量特性。 第3図は、ガスインジェクションサイクルの第2減圧器
にキャビマリチューブを用いた場合の作動点の変化。 第4図は、本発明の一実施例を示す短管の断面図。 第5図は、キャピラリチューブと本発明の短管の流量特
性の比較。 第6図は、本発明の短管をガスインジェクションサイク
ルの第2#圧器として作用させた場合の作動点の変化。 第7図は、本発明による特性曲線図である。 1・・・圧縮機 2・・・凝縮器 3・・・第1減圧器
4・・・気液分離器 5・・・第2*圧器 6・・・蒸
発器 享1酊 す 字Z図 O左氏ムρ 壌3図 半4図 第3m ′ 差圧佇 亭し図 廖7図 ガ
Figure 1 shows the refrigeration cycle configuration of the gas injection cycle. Figure 2 shows the characteristic of the amount of accent of the capillary tube. Figure 3 shows the change in operating point when a cavity tube is used as the second pressure reducer in the gas injection cycle. FIG. 4 is a sectional view of a short tube showing an embodiment of the present invention. FIG. 5 is a comparison of the flow characteristics of a capillary tube and a short tube of the present invention. FIG. 6 shows changes in the operating point when the short tube of the present invention is used as the second pressure vessel in the gas injection cycle. FIG. 7 is a characteristic curve diagram according to the present invention. 1... Compressor 2... Condenser 3... First pressure reducer 4... Gas-liquid separator 5... Second pressure vessel 6... Evaporator Zuo Shi Mu ρ Yang Figure 3 Half Figure 4 Figure 3 m ′ Differential Pressure Pavilion Figure Liao Figure 7 Ga

Claims (1)

【特許請求の範囲】[Claims] 1、圧m機、凝縮器、第1減圧器、気液分離器、第2減
圧器及び蒸発器等を順次接続配管するとともに、上記気
液分離器に設けられた蒸気流出口と上記圧縮機に設けら
れたインジェクションポートとを連絡するガスインジェ
クション回路を備えたガスインジェクションサイクルに
おいて、上記気液分離器と上記蒸発器との間に設ける第
2減圧器として管長さと管直径の比が2.5〜40とな
る短管を用いたことを特徴とする冷凍サイクル。
1. A pressure generator, a condenser, a first pressure reducer, a gas-liquid separator, a second pressure reducer, an evaporator, etc. are connected in sequence, and a vapor outlet provided in the gas-liquid separator and the compressor are connected in sequence. In a gas injection cycle equipped with a gas injection circuit that communicates with an injection port provided at A refrigeration cycle characterized in that a short tube having a diameter of 40 to 40 is used.
JP10765783A 1983-06-17 1983-06-17 Refrigeration cycle Granted JPS60263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10765783A JPS60263A (en) 1983-06-17 1983-06-17 Refrigeration cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10765783A JPS60263A (en) 1983-06-17 1983-06-17 Refrigeration cycle

Publications (2)

Publication Number Publication Date
JPS60263A true JPS60263A (en) 1985-01-05
JPH0120692B2 JPH0120692B2 (en) 1989-04-18

Family

ID=14464723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10765783A Granted JPS60263A (en) 1983-06-17 1983-06-17 Refrigeration cycle

Country Status (1)

Country Link
JP (1) JPS60263A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10406292B2 (en) 2009-06-01 2019-09-10 Sanofi-Aventis Deutschland Gmbh Drug delivery device inner housing having helical spline

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10406292B2 (en) 2009-06-01 2019-09-10 Sanofi-Aventis Deutschland Gmbh Drug delivery device inner housing having helical spline

Also Published As

Publication number Publication date
JPH0120692B2 (en) 1989-04-18

Similar Documents

Publication Publication Date Title
US2520045A (en) Refrigeration system, including capillary tube
JP2007155230A (en) Air conditioner
US11365915B2 (en) Ejector and refrigeration system
JPS61143659A (en) Refrigeration cycle device
US2518587A (en) Refrigerant flow control
JPS60263A (en) Refrigeration cycle
JPH04320762A (en) Freezing cycle
US5910166A (en) Refrigeration system and a capillary tube thereof
US3006164A (en) Reversible refrigeration system
JPS6230696Y2 (en)
JP2002081803A (en) Air conditioner
JPH0648280Y2 (en) Liquid tank for cooling cycle
JPH062992A (en) Refrigerating unit
US6543241B2 (en) Refrigerant feed device
JP3757607B2 (en) Refrigerant circulation device
JPH0718608B2 (en) Refrigeration equipment
JPH04313646A (en) Heat pump type air conditioner
JPS6078254A (en) Air conditioner
JPS5941747A (en) Refrigerator
JPH0784955B2 (en) Screw refrigerator
CN117167998A (en) Air conditioning system, air conditioner and control method of air conditioner
JPS60238646A (en) Gas injection type air conditioner
JPS58148358A (en) Refrigerator
JPS6337865B2 (en)
JPS59112158A (en) Refrigeration cycle