JPS602628A - Method for cooling continuously cast billet of ferritic stainless steel containing niobium - Google Patents

Method for cooling continuously cast billet of ferritic stainless steel containing niobium

Info

Publication number
JPS602628A
JPS602628A JP10988283A JP10988283A JPS602628A JP S602628 A JPS602628 A JP S602628A JP 10988283 A JP10988283 A JP 10988283A JP 10988283 A JP10988283 A JP 10988283A JP S602628 A JPS602628 A JP S602628A
Authority
JP
Japan
Prior art keywords
cooling
stainless steel
ferritic stainless
continuously cast
slab
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10988283A
Other languages
Japanese (ja)
Other versions
JPH0332604B2 (en
Inventor
Akio Yamamoto
章夫 山本
Shigenao Anzai
安斎 栄尚
Takeo Ashiura
芦浦 武夫
Shuichi Funaki
船木 秀一
Susumu Kurosawa
黒澤 進
Katsutoshi Sugawara
克俊 菅原
Jiyouji Tamura
田村 譲児
Yoshio Abe
阿部 義男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10988283A priority Critical patent/JPS602628A/en
Publication of JPS602628A publication Critical patent/JPS602628A/en
Publication of JPH0332604B2 publication Critical patent/JPH0332604B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the cracking of a continuously cast billet of a ferritic stainless steel contg. Nb by reheating the billet at a specified temp. without cooling to <=300 deg.C and by cooling it at a specified average cooling rate to obtain a cooled billet. CONSTITUTION:A contiuously cast billet of a ferritic stainless steelcontg.> 0.1wt% Nb and >10wt% Cr is heated once at 800-1,300 deg.C for 1-10hr without cooling to <=100 deg.C. It is then cooled to 300 deg.C at <=40 deg.C/hr average cooling rate to obtain a cooled billet.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は含ニオブフェライト系ステンレス鋼連続鋳造鋳
片(以下「連鋳片」という。)を冷却する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for cooling a continuous cast slab of niobium ferritic stainless steel (hereinafter referred to as "continuous cast slab").

(従来技術) SUS 430銅で代表されるフェライト系ステンレス
鋼は同価なN1を大量に含まず従って安価であるため、
自動車外装部品や建築内装品などの比較的マイルドな腐
食環境で表面の美麗さを要求される用途に広く用いられ
ている。しかし、SUS 304鋼で代表されるオース
テナイト系ステンレス鋼に比べて一般的に耐食性が劣る
ため用途が限定されていた。
(Prior art) Ferritic stainless steel represented by SUS 430 copper does not contain a large amount of equivalent N1 and is therefore inexpensive.
It is widely used in applications that require beautiful surfaces in relatively mild corrosive environments, such as automobile exterior parts and architectural interior parts. However, its uses have been limited because it generally has inferior corrosion resistance compared to austenitic stainless steel, typified by SUS 304 steel.

また、フェライト系ステンレス鋼は、部品製造において
絞シ加工や引張シ加工を受けるとりジンクまたはロービ
ングと称される凹凸の縞模様が発生して外観を著しく損
なうという欠点を有していたO これに対して本出願人は、NbとCuを複合添加して特
に光輝焼鈍仕上げで耐銹性を向上させたフェライト系ス
テンレス鋼を発明しく特開昭57−140860号公報
)さらにN量をはじめとする成分を厳密に管理しかつ熱
延栄件と粗焼鈍条件を限定して事実上りジンクの全くな
いフェライト系ステンレス鋼板の製造方法を発明した(
特願昭57−82281)。これらの発明によるフェラ
イト系ステンレス鋼はSUS 304鋼と全く同様に使
用することが可能となったばかシでなく溶接部熱影響部
の耐食性劣化がないことや応力腐食割れ感受性がないこ
とからむしろSUS 304鋼の使用分野以外でも使用
が可能となるなど、安価なフェライト系ステンレス鋼の
使用範囲を著しく拡大した。
In addition, ferritic stainless steel has the disadvantage that when it is subjected to drawing or tension forming in the manufacture of parts, uneven striped patterns called zinc or roving occur, which seriously impairs the appearance. On the other hand, the present applicant has invented a ferritic stainless steel in which the rust resistance is improved especially by bright annealing by adding Nb and Cu in combination. Invented a method for manufacturing ferritic stainless steel sheets with virtually no zinc by strictly controlling the ingredients and limiting the hot rolling and rough annealing conditions (
Patent application No. 57-82281). The ferritic stainless steel according to these inventions is not only usable in exactly the same way as SUS 304 steel, but also because it does not deteriorate the corrosion resistance of the heat-affected zone of the weld and is not susceptible to stress corrosion cracking. This significantly expanded the scope of use of inexpensive ferritic stainless steel, allowing it to be used in fields other than steel.

しかし、この含Nbフェライト系ステンレス鋼は以上述
べたような多くの利点を有しているものの、連続鋳造に
よる鋳片が冷却時に割れ易いという欠点を有している。
However, although this Nb-containing ferritic stainless steel has many advantages as described above, it has the disadvantage that slabs produced by continuous casting tend to crack during cooling.

即ち、含Nbフェライト系ステンレス鋼の連鋳片は、冷
却途中で横方向に割れを生じたシ、熱延のための再加熱
中に折損して圧延を中止せざるを得ない事故が発生し易
い。また割れが軽微でたとえ圧延が終了しても著しい山
へげ状の疵や貫通孔が残存し商品価値をなくしてしまう
ことが起き易い。
In other words, continuous cast slabs of Nb-containing ferritic stainless steel cracked in the transverse direction during cooling, and broke during reheating for hot rolling, causing accidents that forced the suspension of rolling. easy. In addition, even if the cracking is slight and rolling is finished, significant ridge-like flaws and through holes are likely to remain, which may cause the product to lose its commercial value.

これに対して従来は徐冷炉等で800℃付近から100
℃付近までを徐冷する方法や、鋳片の遷移温度が300
℃付近にあることから300℃以下に冷却することなく
再加熱する方法(特開昭58−39732号公報)。ま
た鋳片の引張シ強さが150℃以下で熱応力よシも小さ
くなることから150℃以下に冷却することなく再加熱
する方法(%開閉54−128464号公報)が開ボさ
れている。
On the other hand, in the past, temperatures ranging from around 800℃ to 100℃ were
There is a method of slow cooling down to around 300°C, and a method where the transition temperature of the slab is 300°C.
A method of reheating without cooling to below 300°C since the temperature is around 300°C (Japanese Unexamined Patent Publication No. 58-39732). Furthermore, since thermal stress is also reduced when the tensile strength of the slab is 150°C or lower, a method of reheating the slab without cooling it to 150°C or lower has been developed (Reference No. 54-128464).

これらの方法は、いずれも実用的でなかったシ、不完全
で最適方法とは言えカい。即ち、まず徐冷するという方
法は、その速度を5℃/hr程度まで低下しても効果が
なく、たとえそれ以下にすることで効果があったとして
もコスト的に不利である。
All of these methods were impractical, incomplete, and far from optimal. That is, the method of first performing slow cooling is ineffective even if the cooling rate is reduced to about 5° C./hr, and even if it is effective to reduce the cooling rate below that, it is disadvantageous in terms of cost.

300℃以下に冷却しないという対策は割れ発生に対し
ては後述する考え方に基づいて適切な方法であると思わ
れるが、300℃以上では鋳片の表面精整ができないと
いう、表面の品質が重視されるステンレス鋼にとっては
重大な欠点を有している。また150℃以下に冷却しな
いという対策は、熱応力そのものが鋼の微量成分や鋳造
方法、冷却方法に依存して大きく変わるなど完全な方法
とは言えない。また、冷片にすることができないという
ことは製造工程の自由度を著しく制限するもので、製造
上からは重大な欠点であるということができる。
The measure of not cooling the slab below 300°C is considered to be an appropriate method to prevent cracking based on the concept described below, but the surface quality of the slab cannot be polished at temperatures above 300°C, so the emphasis is on surface quality. Stainless steel has serious drawbacks. Furthermore, the measure of not cooling the steel to below 150°C cannot be called a perfect method as the thermal stress itself varies greatly depending on the trace components of the steel, the casting method, and the cooling method. Furthermore, the fact that it cannot be made into cold pieces significantly limits the degree of freedom in the manufacturing process, and can be said to be a serious drawback from a manufacturing standpoint.

(発明の目的) 本発明は以上のよう力欠点のない実用的な鋳片の冷却方
法を提供することを目的とするものである。
(Object of the Invention) An object of the present invention is to provide a practical method for cooling a slab without the above-mentioned force defects.

(発明の構成・作用) 本発明者らは、連鋳片の割れの原因について種種調査を
重ねた結果、含Nbフェライト系ステンレス鋼の連鋳片
の粒界には、板状のNb炭化物がしだの葉状に粗大に析
出しておシ、その部分を基点として割れが発生している
ことを見出した。さらに基点付近では粒界割れであるが
、大きな全体の割れは主として脆性破壊であること、そ
して微細な粒界割れは大きな割れ以外に鋳片内に多数存
在していることを発見した。このような事実から鋳片割
れは、粗大なしだの葉状析出物のある粒界が冷却時の熱
応力によって粒界割れを起こし、その割れ部分に応力が
集中し、その状態で遷移温度以下になった場合に脆性的
に大きな割れに至るものと(5) 考察した。このような考察に基づくと遷移温度以下に下
げないという対策は、微細な粒界割れはたとえ発生して
も(このよう々微細側れは圧延時に圧着されるので問題
がない)大きな割れに至らないということで、理論にか
なっておシ、非常に適切な方法であると言える。含Nb
フェライト系ステンレス鋼連鋳片の遷移温度は、実験室
的に測定すると約300℃であるので、300℃以下に
下げないという対策は容易に考えられる。
(Structure and operation of the invention) As a result of repeated investigations into the causes of cracks in continuously cast slabs, the present inventors found that plate-shaped Nb carbides were found in the grain boundaries of continuous cast slabs of Nb-containing ferritic stainless steel. It was found that coarse precipitates were deposited in the shape of fern leaves, and cracks occurred from these areas. Furthermore, it was discovered that although intergranular cracks occur near the base point, large overall cracks are mainly brittle fractures, and that many fine intergranular cracks exist in the slab in addition to large cracks. From these facts, slab cracking is caused by intergranular cracking of grain boundaries with coarse weeping leaf-like precipitates due to thermal stress during cooling, stress concentrates at the cracked part, and in that state the temperature drops below the transition temperature. It was considered (5) that large brittle cracks would occur if the Based on these considerations, the countermeasure of not lowering the temperature below the transition temperature is that even if fine grain boundary cracks occur (such fine sidewalls are crimped during rolling, there is no problem), they will not lead to large cracks. Since there is no such thing, it can be said that it is a very appropriate method in accordance with the theory. Contains Nb
Since the transition temperature of a continuously cast ferritic stainless steel slab is approximately 300°C when measured in a laboratory, it is easy to consider measures to prevent the temperature from decreasing below 300°C.

一方、このような考察に基づくと鋳片割れが単なる引張
強さの差で起こる延性破断でないことからたとえ含Nb
 7工ライト系ステンレス鋼鋳片の引張強さが150℃
以下で熱応力よシ小さくなるとして150℃以下に下げ
ないという対策をとっても鋳片割れを防止できないこと
もまた良く理解できるO 本発明者らは、以上の考えに基づき含Nbフェライト系
ステンレス鋼連鋳片の割れの起点をなくす方法を種々検
討した結果、割れの起点としての感受性は粒界に析出し
た析出物の形態との関係が大(6) きいことを見出し本発明を成しとげた。
On the other hand, based on these considerations, slab cracking is not a ductile fracture caused by a mere difference in tensile strength, so even if Nb-containing
Tensile strength of 7-grade light stainless steel slab is 150℃
It is also well understood that cracking of slabs cannot be prevented even if measures are taken not to lower the temperature below 150°C, even though the thermal stress will be smaller. As a result of various studies on methods for eliminating the starting points of cracks in pieces, it was discovered that the susceptibility to starting points of cracks has a strong relationship with the form of precipitates precipitated at grain boundaries (6), and the present invention was accomplished.

本発明の要旨とするところはNbを0.1チ以上、Cr
を10%以上含む含Nbフェライト系ステンレス鋼連続
鋳造鋳片を300℃以下に冷却するととなく、一旦80
0℃以上1300℃以下の温度で1時間以上10時間以
下加熱し、しかる後平均冷却速度40℃/h r以下の
冷却速度で300℃まで冷却し、冷片とすることを特徴
とする含ニオブフェライト系ステンレス鋼連鋳片の冷却
方法にある。
The gist of the present invention is that Nb is 0.1 or more, Cr is
A continuously cast slab of Nb-containing ferritic stainless steel containing 10% or more of
The niobium-containing material is heated at a temperature of 0°C or more and 1300°C or less for 1 hour or more and 10 hours or less, and then cooled to 300°C at an average cooling rate of 40°C/hr or less to obtain a cold piece. A cooling method for continuous cast slabs of ferritic stainless steel.

以下に訓育結果に基づいて説明する。The following is an explanation based on the training results.

割れの発生した鋳片を詳細に訓育すると割れの起きた粒
界は主としてしだの葉状析出物が認められ、球状ないし
針状の析出物の多い粒界には割れの発生がなかった。こ
れに基づきしだの葉状析出物の形態を変えるために圧下
その他の方法も含め種々検討した結果、800℃以上に
望ましくは900℃以上に1時間以上加熱することで可
能であるとの結果を得た。800℃以上でかなシの部分
の析出物の形態が変わるが、一部にしだの葉状で残るの
で全体の析出物形態を変え得る900℃以上が望ましい
。しかし、このように単に析出物の形態を変えただけで
は不充分であった。即ち800℃以上では炭素の一部が
まだ鋼中に固溶しているものと推定され、冷却過程でし
だの葉状に、あるいはしだの葉状析出物と同程度の割れ
感受性を有す・る形態の析出物として析出するためでは
ないかと思われる。このため冷却の条件を検討した結果
、加熱温度から300℃寸での平均冷却速度を30℃/
hr以下の徐冷を実施すれば粒界析出物の形態は球状な
いし針状に変化し、かつ粒内の析出も増加した。この結
果、鋳片を常温まで冷却しても割れの発生はなくなった
When the cracked slabs were trained in detail, it was found that the grain boundaries where the cracks had occurred mainly consisted of fern leaf-like precipitates, and no cracks had occurred at the grain boundaries where there were many spherical or needle-shaped precipitates. Based on this, we investigated various methods including rolling and other methods to change the form of the fern leaf-like precipitates, and as a result, we found that it is possible to change the form of the fern leaf-like precipitate by heating it to 800°C or higher, preferably 900°C or higher for 1 hour or more. Obtained. At 800° C. or higher, the form of the precipitate changes in the kana part, but some portions remain in the form of leaves, so a temperature of 900° C. or higher is desirable because it can change the overall form of the precipitate. However, simply changing the form of the precipitate in this way was not sufficient. In other words, at temperatures above 800°C, it is assumed that some carbon is still dissolved in the steel, and during the cooling process, the carbon becomes like a weeping leaf, or has the same degree of cracking susceptibility as a welding leaf-like precipitate. This is thought to be due to the fact that it precipitates as a precipitate. For this reason, as a result of examining the cooling conditions, the average cooling rate at 300°C from the heating temperature was set at 30°C/30°C.
When slow cooling was carried out for less than hr, the shape of the grain boundary precipitates changed from spherical to acicular, and the intragranular precipitation also increased. As a result, no cracking occurred even when the slab was cooled to room temperature.

次に本発明の構成要件の限定理由を示す。Next, reasons for limiting the constituent elements of the present invention will be shown.

Nb量が0.1%未満では鋳片の粒界にしだの葉状析出
物ができず、かつ鋳片割れの発生頻度も低いことから、
0.1%以上とした。
When the amount of Nb is less than 0.1%, no leaf-like precipitates are formed at the grain boundaries of the slab, and the frequency of slab cracking is low.
The content was set to 0.1% or more.

Crは10%未満ではステンレス鋼としての基本的な耐
食性を維持できないので10チ以上に限定した。
If the Cr content is less than 10%, the basic corrosion resistance of stainless steel cannot be maintained, so the content is limited to 10% or more.

加熱前の鋳片の取扱い温度は300℃以下に冷却すると
脆性領域になるため割れが顕在化するため、300℃以
下に冷却することなく再加熱することと限定した。
The handling temperature of the slab before heating was limited to reheating without cooling to 300°C or lower, since cooling it to 300°C or lower would cause it to become brittle and cause cracks to become apparent.

加熱処理温度は800℃未満ではしだの葉状析出物の形
態を変えるのには長時間を要するため、また1300℃
を超える温度域では結晶粒が粗大化して冷延後の品質が
劣化するため800℃以上1300℃以下とした。
If the heat treatment temperature is lower than 800°C, it will take a long time to change the form of the leaf-like precipitates.
In a temperature range exceeding 1,300°C, the crystal grains become coarse and the quality after cold rolling deteriorates, so the temperature was set at 800°C or higher and 1300°C or lower.

加熱時間は1時間未満では効果が少なく、10時間を超
えると結晶粒の粗大化による最終製品での品質劣化があ
る上コスト的に不利であるので1時間以上10時間以下
とした。
If the heating time is less than 1 hour, the effect will be small, and if it exceeds 10 hours, the quality of the final product will deteriorate due to coarsening of crystal grains, and it will be disadvantageous in terms of cost.

冷却速度は40’c/hrを超える速度ではしだの葉状
析出物の形態を変化させた効果が小さくなるため40℃
/hr以下とした。
The cooling rate should be set at 40°C because the effect of changing the morphology of the weeping leaf-like precipitates will be small if the cooling rate exceeds 40'c/hr.
/hr or less.

(実施例) 次に実施例を示す。(Example) Next, examples will be shown.

16%Cr−0,4%Nb 、 19 % Cr −0
,4%Nbおよび19%Cr−0,6%Nbを代表成分
とする3種の含Nbフェライト系ステンレス鋼連続鋳造
鋳片を種(9) 種の冷却方法で冷却して冷片にした後、再び加熱して熱
間圧延を行なった。その結果、鋳片の割れの発生の有無
を第1表に示した。()内には圧延数を示した。本発明
方法では冷片にしても全く割れが発生しなかった。
16%Cr-0,4%Nb, 19%Cr-0
, 4% Nb and 19% Cr - 0.6% Nb as representative components, three types of Nb-containing ferritic stainless steel continuously cast slabs were cooled using the cooling method of Type (9) to form cold slabs. Then, it was heated again and hot rolled. As a result, Table 1 shows whether or not cracks occurred in the slabs. The number of rollings is shown in parentheses. In the method of the present invention, no cracking occurred even when the pieces were made into cold pieces.

(10) (発明の効果) 以上詳述したように、本発明によシ割れの発生しやすい
含Nbフェライト系ステンレス鋼も通常のステンレス鋼
同様に冷片にすることが可能となるので、製造工程の自
由度を奪うことなく製造できそあ工業的利益は非常に大
きい。
(10) (Effects of the invention) As detailed above, according to the present invention, Nb-containing ferritic stainless steel, which is prone to cracking, can be made into cold pieces in the same way as ordinary stainless steel. The industrial benefits of being able to manufacture it without taking away the freedom of the process are enormous.

(12) 室蘭市仲町12新日本製鐵株式會 社室蘭製鐵所内 n・発 明 者 阿部義男 川崎市中原区井田1618新日本製 鐵株式會社基礎研究所内 手続補正書 (自発) 昭和58年8月29日 特許庁長官 若 杉 和 夫 殿 1、 事件の表示 昭和58年特許願第109882号 2、 発明の名称 含ニオブフェライト系ステンレス鋼連鋳片の冷却方法 3、補正をする者 事件との関係 特許出願人 東京都千代田区大手町二丁目6番3号 (665)新日本製鐵株式全社 代表者 武 1) 豊 4、代理人〒100 東京都千代田区丸の陶工丁目4番1号 6、補正の対象 明細書の発明の詳細な説明の榴 7、 補正の内容 (1) (1)明細書5頁11行及び13行の「基点」を「起点
」に夫々補正する。
(12) Nippon Steel Corporation Muroran Works, 12 Nakamachi, Muroran City Inventor Yoshio Abe 1618 Ida, Nakahara-ku, Kawasaki-shi Nippon Steel Corporation Basic Research Laboratory Amendment (Voluntary) August 1981 29th, Kazuo Wakasugi, Commissioner of the Japan Patent Office1, Indication of the case, Patent Application No. 109882 of 1982, Title of the invention, Method for cooling continuous cast slabs of niobium ferritic stainless steel, 3, Relationship with the amended person case Patent Applicant: 2-6-3 Otemachi, Chiyoda-ku, Tokyo (665) Nippon Steel Corporation Companywide Representative: Takeshi 1) Yutaka 4, Agent: 4-1-6, Maruno Potter-chome, Chiyoda-ku, Tokyo, 100 Japan; Part 7 of the detailed description of the invention in the specification to be amended, Contents of the amendment (1) (1) The "base point" on page 5, lines 11 and 13 of the specification is amended to the "starting point".

(2) 149−(2) 149-

Claims (1)

【特許請求の範囲】[Claims] Nbを0.11以上、Crを10%以上含む含Nbフェ
ライト系ステンレス鋼連続鋳造鋳片を300℃以下に冷
却することなく、一旦800℃以上1300℃以下の温
度で1時間以上10時間以下加熱し、しかる後平均冷却
速度り0℃/hr以下の冷却速度で300℃まで冷却し
、冷片とすることを特徴とする含ニオブフェライト系ス
テンレス鋼連鋳片の冷却方法。
A continuously cast Nb-containing ferritic stainless steel slab containing 0.11% or more of Nb and 10% or more of Cr is heated once at a temperature of 800°C or more and 1300°C or less for 1 hour or more and 10 hours or less, without cooling it to 300°C or less. A method for cooling a continuously cast piece of niobium ferritic stainless steel, the method comprising: cooling it to 300°C at an average cooling rate of 0°C/hr or less to obtain a cold piece.
JP10988283A 1983-06-18 1983-06-18 Method for cooling continuously cast billet of ferritic stainless steel containing niobium Granted JPS602628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10988283A JPS602628A (en) 1983-06-18 1983-06-18 Method for cooling continuously cast billet of ferritic stainless steel containing niobium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10988283A JPS602628A (en) 1983-06-18 1983-06-18 Method for cooling continuously cast billet of ferritic stainless steel containing niobium

Publications (2)

Publication Number Publication Date
JPS602628A true JPS602628A (en) 1985-01-08
JPH0332604B2 JPH0332604B2 (en) 1991-05-14

Family

ID=14521550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10988283A Granted JPS602628A (en) 1983-06-18 1983-06-18 Method for cooling continuously cast billet of ferritic stainless steel containing niobium

Country Status (1)

Country Link
JP (1) JPS602628A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226129A (en) * 2004-02-13 2005-08-25 Nippon Steel & Sumikin Stainless Steel Corp Method for manufacturing ferritic stainless steel cast slab
JP2010274300A (en) * 2009-05-28 2010-12-09 Kobe Steel Ltd Method for treating slab in cooling of slab whose ductile-brittle transition temperature reaches >=160°c

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005226129A (en) * 2004-02-13 2005-08-25 Nippon Steel & Sumikin Stainless Steel Corp Method for manufacturing ferritic stainless steel cast slab
JP4624691B2 (en) * 2004-02-13 2011-02-02 新日鐵住金ステンレス株式会社 Method for producing ferritic stainless steel slab
JP2010274300A (en) * 2009-05-28 2010-12-09 Kobe Steel Ltd Method for treating slab in cooling of slab whose ductile-brittle transition temperature reaches >=160°c

Also Published As

Publication number Publication date
JPH0332604B2 (en) 1991-05-14

Similar Documents

Publication Publication Date Title
KR20000069212A (en) Thermomechanically controlled processed high strength weathering steel with low yield/tensile ratio
KR100259739B1 (en) Ferrite type hot rolled stainless steel sheet having excellent resistance to surface roughening and to high temperature fatigue after working
JPH0371503B2 (en)
JPS6119738A (en) Manufacture of weldable austenite stainless steel slab
JPS602628A (en) Method for cooling continuously cast billet of ferritic stainless steel containing niobium
JPS61136622A (en) Manufacture of high strength low alloy ultrathick steel material
JPH11241145A (en) Austenitic stainless steel excellent in high temperature setting resistance and its production
US4533391A (en) Work-hardenable substantially austenitic stainless steel and method
JPS62110880A (en) Production of two-phase stainless steel clad steel
JPS5939483B2 (en) Manufacturing method of low alloy steel with excellent cold drawing and cold extrusion processability
JPH0225415B2 (en)
JPS62206B2 (en)
JPS63162840A (en) Tool steel for hot working
JP4582850B2 (en) High-strength stainless steel plate with excellent bending workability
JPH02125840A (en) Tool steel for hot working
JPS6039732B2 (en) Manufacturing method of ERW steel pipe for automobiles
JPS6077928A (en) Production of cold-rolled steel plate for drawing
JPS59123718A (en) Production of corrosion resistant alloy steel plate
JPS61261427A (en) Production of steel having superior cold workability and preventing coarsening of grain during carburization heating
JPS5831035A (en) Production of zinc hot dipped steel plate having excellent workability and baking hardenability
JPS5896851A (en) Ferritic stainless steel for formed steel plate with improved ridging resistance
JPS6053725B2 (en) Method for manufacturing austenitic stainless steel sheets and steel strips
JPH02190451A (en) Austenitic stainless steel excellent in stress corrosion cracking resistance and pitting corrosion resistance
JPS63206430A (en) Production of superplastic 2-phase stainless steel sheet
JPH02111846A (en) Martensitic stainless steel excellent in press formability