JPS60262136A - Driving method of liquid-crystal element - Google Patents

Driving method of liquid-crystal element

Info

Publication number
JPS60262136A
JPS60262136A JP59118186A JP11818684A JPS60262136A JP S60262136 A JPS60262136 A JP S60262136A JP 59118186 A JP59118186 A JP 59118186A JP 11818684 A JP11818684 A JP 11818684A JP S60262136 A JPS60262136 A JP S60262136A
Authority
JP
Japan
Prior art keywords
liquid crystal
electrode
display
state
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59118186A
Other languages
Japanese (ja)
Inventor
Shinjiro Okada
伸二郎 岡田
Yasuyuki Tamura
泰之 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59118186A priority Critical patent/JPS60262136A/en
Priority to US06/724,828 priority patent/US4697887A/en
Priority to FR8506484A priority patent/FR2563649B1/en
Publication of JPS60262136A publication Critical patent/JPS60262136A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13781Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering using smectic liquid crystals
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3651Control of matrices with row and column drivers using an active matrix using multistable liquid crystals, e.g. ferroelectric liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/122Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode having a particular pattern
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/06Details of flat display driving waveforms
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • G09G3/3655Details of drivers for counter electrodes, e.g. common electrodes for pixel capacitors or supplementary storage capacitors

Abstract

PURPOSE:To form an image on a large screen at a high speed by connecting ferroelectric liquid crystal and FETs to intersections of an active matrix, and outputting a display signal obtained by impressing an electric field between a scanning and a common electrode to a display electrode. CONSTITUTION:Glass substrates 1 and 1' are coated with a transparent electrode and liquid crystal of chiral smectic C phase having a liquid-crystal molecule phase 2 oriented at right angles to glass surfaces is charged between the transparent electrodes. When a voltage higher than a threshold value is impressed between the substrates 1 and 1', the spiral structure of liquid-crystal molecules 3 is destroyed and bipolar moment 4 is made uniform in an upward direction E or downward direction E' according to the polarity of the voltage. This ferroelectric liquid crystal is connected to the active matrix M consisting of scanning electrodes 6 (GN, GN+1, and GN+2), display electrodes 7 (CN, CN+1, and CN+2), and common electrodes 8 (SN, SN+1, and SN+2) through FETs, and a signal is inputted to a scanning electrode 6 and a common electrode 7 to obtain an output signal at a display electrode 7. Consequently, a large image is formed and displayed 7 at a high speed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は液晶を用いた光シヤツターアレイ、画像表示装
置等の駆動方法に関するものであり、さらに詳しくは双
安定性液晶、特に強誘電性液晶をアクティブマトリック
ス構成により駆動する方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for driving optical shutter arrays, image display devices, etc. using liquid crystals, and more specifically relates to bistable liquid crystals, particularly ferroelectric liquid crystals. The present invention relates to a method of driving a liquid crystal using an active matrix configuration.

[従来の技術] 従来より、走査電極群と信号電極群をマトリクス状に構
成し、その電極間に液晶化合物を充填 。
[Prior Art] Conventionally, a group of scanning electrodes and a group of signal electrodes are arranged in a matrix, and a liquid crystal compound is filled between the electrodes.

し、多数の画素を形成して画像或いは情報の表示を行う
液晶表示素子は、よく知られている。この表示素子の駆
動法としては、走査電極群に、順次、周期的にアドレス
信号を選択印加し、信号電極群には所定の情報信号をア
ドレス信号と同期させて並列的に選択印加する時分割駆
動が採用されているが、この表示素子及びその駆動法は
、以下に述べる如き致命的とも言える大きな欠点を有し
ていた。
However, liquid crystal display elements that display images or information by forming a large number of pixels are well known. The driving method for this display element is a time-sharing method in which an address signal is selectively and periodically applied to a group of scanning electrodes, and a predetermined information signal is selectively applied in parallel to a group of signal electrodes in synchronization with the address signal. However, this display element and its driving method had major and fatal drawbacks as described below.

即ち、画素密度を高く、或いは画面を大きくするのが難
しいことである。従来の液晶の中で応答速度が比較的高
く、しかも消費電力が小さいことから、表示素子として
実用に供されているのは殆どが、例えば、M、 5ch
adtとW、 He1frich著、Applied 
Physics Letters” 、 Vat、 1
8. No、4(197+、 2.15) 、 P、 
127〜+28 (7)Vo I tage−Depe
ndent 0ptical Activity of
 a TwistedNematic Liquid 
Crystal″に示されたTNj (twisted
 nematic)型の液晶を用いたものであ′□” 
リ、この型の液晶は、無電界状態で正の誘電異方性をも
つ、ネマチック液晶の分子が、液晶層厚方向で捩れた構
造(ヘリカル構造)を形成し、両電極面でこの液晶の分
子が互いに並行に配列した構造を形成している。一方、
電界印加状態では、正の誘電異方性をもつネマチック液
晶が電界方向に配列し、この結果光調変調を起すことが
できる。
That is, it is difficult to increase the pixel density or enlarge the screen. Among conventional liquid crystals, most of them are practically used as display elements because they have relatively high response speed and low power consumption, for example, M, 5ch.
adt and W, He1frich, Applied
Physics Letters”, Vat, 1
8. No, 4 (197+, 2.15), P,
127~+28 (7) VoItage-Depe
ndent 0ptical Activity of
a Twisted Nematic Liquid
TNj (twisted
It uses a nematic) type liquid crystal.
In this type of liquid crystal, the molecules of nematic liquid crystal, which has positive dielectric anisotropy in the absence of an electric field, form a twisted structure (helical structure) in the direction of the liquid crystal layer thickness, and the molecules of this liquid crystal are twisted on both electrode surfaces. The molecules form a structure in which they are arranged parallel to each other. on the other hand,
When an electric field is applied, nematic liquid crystals with positive dielectric anisotropy are aligned in the direction of the electric field, resulting in optical modulation.

この型の液晶を用いてマトリクス電極構造によって表示
素子を構成した場合、走査電極と信号電極が共に選択さ
れる領域(選択点)には、液晶分子を電極面に垂直に配
列させるに要する閾値以上の電圧が印加され、走査電極
と信号電極が共に選択されない領域(非選択点)には電
圧は印加されず、したがって液晶分子は電極面に対して
並行な安定配列を保っている。このような液晶セルの−
1−下に、互いにクロスニコル関係にある直線偏光子を
配置することにより、選択点では光が透過せず、非選択
点では光が透過するため、画像素子とすることが可能と
なる。然し乍ら、マトリクス電極構造を構成した場合に
は、走査電極が選択され、信号電極が選択されない領域
或いは、走査電極が選択されず、信号電極が選択される
領域(所謂パ半選択点″)にも有限の電界がかかってし
まう。選択点にかかる電圧と、半選択点にかかる電圧の
差が充分に大きく、液晶分子を電界に垂直に配列させる
に要する電圧閾値がこの中間の電圧値に設定されるなら
ば1表示素子は正常に動作するわけである。しかし、こ
の方式において、走査線数(N)を増やして行った場合
、画面全体(lフレーム)を走査する間に一つの選択点
に有効な電界がかかっている時間(duty比)は、1
/Hの割合で減少してしまう。このために、くり返し走
査を行った場合の選択点と非選択点にかかる実効値とし
ての電圧差は、走査線数が増えれば増える程小さくなり
、結果的には画像コントラストの低下やクロストークが
避は難い欠点となっている。このような現象は、双安定
状態を有さない液晶(電極面に対し、液晶分子が水平に
配向しているのが安定状態であり、電界が有効に印加さ
れている間のみ垂直に配向する)を、時間的蓄積効果を
利用して駆動する(即ち、繰り返し走査する)ときに生
じる本質的には避は難い問題点である。この点を改良す
るために、電圧平均化法、2周波駆動法や多重マトリク
ス法等が既に提案されているが、いずれの方法でも不充
分であり、表示素子の大画面化や高密度化は、走査線数
が充分に増やせないことによって頭打ちになっているの
が現状である。
When a display element is constructed with a matrix electrode structure using this type of liquid crystal, the area where both the scanning electrode and the signal electrode are selected (selected point) has a threshold value greater than or equal to the threshold required to align the liquid crystal molecules perpendicular to the electrode surface. A voltage is applied to the region where neither the scanning electrode nor the signal electrode is selected (unselected point), and therefore the liquid crystal molecules maintain a stable alignment parallel to the electrode plane. This kind of liquid crystal cell -
1- By arranging linear polarizers in a cross-Nicol relationship with each other below, light does not pass through selected points, but light passes through non-selected points, making it possible to use it as an image element. However, when a matrix electrode structure is configured, there may be areas where scanning electrodes are selected and signal electrodes are not selected, or areas where scanning electrodes are not selected and signal electrodes are selected (so-called semi-selected points). A finite electric field is applied.The difference between the voltage applied to the selected point and the voltage applied to the half-selected point is sufficiently large, and the voltage threshold required to align the liquid crystal molecules perpendicular to the electric field is set to an intermediate voltage value. If the number of scanning lines (N) is increased in this method, one selected point will operate normally while scanning the entire screen (1 frame). The time during which an effective electric field is applied (duty ratio) is 1
/H. For this reason, when repeated scanning is performed, the effective voltage difference between selected points and non-selected points becomes smaller as the number of scanning lines increases, resulting in a decrease in image contrast and crosstalk. This is a drawback that is difficult to avoid. This phenomenon is caused by liquid crystals that do not have a bistable state (the stable state is when the liquid crystal molecules are aligned horizontally with respect to the electrode surface, and they are aligned vertically only while an electric field is effectively applied). ) is essentially an unavoidable problem that arises when driving using the temporal accumulation effect (that is, repeatedly scanning). In order to improve this point, voltage averaging method, dual frequency drive method, multiple matrix method, etc. have already been proposed, but all of these methods are insufficient, and it is difficult to increase the screen size and density of display elements. Currently, the number of scanning lines has reached a plateau due to the inability to increase the number of scanning lines sufficiently.

[発明が解決しようとする問題点] 本発明の目的は、前述したような従来の液晶表示素子に
おける問題点を悉く解決した新規な双安定性液晶、特に
強調電性液晶素子の駆動法を提供することにある。
[Problems to be Solved by the Invention] An object of the present invention is to provide a method for driving a novel bistable liquid crystal, particularly an enhanced electrostatic liquid crystal element, which solves all the problems of conventional liquid crystal display elements as described above. It's about doing.

即ち、本発明は電圧応答速度が早く、状態記憶性を有す
る強誘電性液晶をアクティブマトリックスにより2方向
の電界を印加して明、暗の2つの状態に駆動することに
より、画素数の多い大画面の表示及び高速度で画像を表
示する強誘電性液晶の駆動方法を提供することを目的と
するものである。
In other words, the present invention applies an electric field in two directions using an active matrix to drive a ferroelectric liquid crystal having a fast voltage response speed and state memory property into two states of bright and dark. The object of the present invention is to provide a screen display and a method for driving a ferroelectric liquid crystal that displays images at high speed.

[問題点を解決するための手段]及び[作用]本発明の
液晶素子の駆動方法は、(電界効果トランジスタ) F
ETのゲート以外の端子である第一端子と接続した画素
電極を該FETに対応して複数設けた第一基板と該画素
電極に対向する対向電極を設けた第二基板を有し、前記
画素電極と対向電極の間に電界に対して双安定状態を有
する強誘電性液晶を挟持した構造の液晶素子の駆動法で
あって、前記FETのゲートがゲートオン状態となる信
号印加と同期させてFETのゲート以外の端子である第
一端子と第一端子の間で電界を形成することによって、
第一の配向状態に強誘電性液晶の配列を制御する第一位
相と、前記第一端子と第二端子の間で形成した電界と逆
極性の電界を第一端子と第二端子の間で形成することに
よって、第二の配向状態に強誘電性液晶の配列を制御す
る第二位相を有し、前記対向電極に表示信号を印加する
とともに各画素に対応しているFET端子のうち、ソー
スもしくは、ドレインを共通端子に接続してゲートに走
査信号を印加する時分割駆動であることを特徴とするも
のである。
[Means for solving the problem] and [Operation] The method for driving a liquid crystal element of the present invention includes (field effect transistor) F
The pixel includes a first substrate provided with a plurality of pixel electrodes corresponding to the FETs connected to a first terminal that is a terminal other than the gate of the ET, and a second substrate provided with a counter electrode facing the pixel electrodes. A method for driving a liquid crystal element having a structure in which a ferroelectric liquid crystal having a bistable state with respect to an electric field is sandwiched between an electrode and a counter electrode, the FET being driven in synchronization with a signal application that turns the gate of the FET into a gate-on state. By forming an electric field between the first terminal, which is a terminal other than the gate of
A first phase that controls the alignment of the ferroelectric liquid crystal in a first alignment state, and an electric field of opposite polarity to the electric field formed between the first terminal and the second terminal is applied between the first terminal and the second terminal. By forming a second phase for controlling the alignment of the ferroelectric liquid crystal in a second alignment state, a display signal is applied to the counter electrode, and a source terminal of the FET terminal corresponding to each pixel is applied to the counter electrode. Alternatively, it is characterized by time division driving in which the drain is connected to a common terminal and a scanning signal is applied to the gate.

一層具体的には、走査信号線(ゲート電極)に所定の走
査信号を印加するとともに、表示信号線(ストライプ状
の対向電極群)に表示画像信号を印加することによって
第一の配向状態に基づく表示状態と第二の配向状態に基
づく表示状態を同時に書き込むことを第2の特徴として
いる。
More specifically, by applying a predetermined scanning signal to the scanning signal line (gate electrode) and applying a display image signal to the display signal line (striped counter electrode group), the first orientation state is determined. The second feature is that the display state and the display state based on the second orientation state are written simultaneously.

本発明の駆動法で用いる強誘電性液晶としては、加えら
れる電界に応じて第一の光学的安定状態と第二の光学的
安定状態とのいずれかを取る、すなわち電界に対する双
安定状態を有する物質、特にこのような性質を有する液
晶が用いられる。
The ferroelectric liquid crystal used in the driving method of the present invention takes either a first optically stable state or a second optically stable state depending on the applied electric field, that is, it has a bistable state with respect to the electric field. A substance, in particular a liquid crystal having such properties, is used.

本発明の駆動法で用いることができる双安定性を有する
強誘電性液晶としては、強誘電性を有するカイラルスメ
クティック液晶が最も好ましく、そのうち力イラルスメ
クティックC相(SmC*)又H相(SmH*)の液晶
が適している。この強誘電性液晶ニツイテt−k、”L
E JOllRNAL [lE PHYSIGLIEL
ETTER5” 3B (しE19) 1975. r
FerroelectricLiquid Cryst
als J ; Applied physics L
et−ters″3B (11) 1980、r Su
bmicro 5econd B1−5table E
lectrooptic Switching in 
LiquidCrystals J ; ”固体物理”
 1B (141) 1981 r液晶」等に記載され
ており、本発明ではこれらに開示された強誘電性液晶を
用いることができる。
As the ferroelectric liquid crystal with bistability that can be used in the driving method of the present invention, chiral smectic liquid crystals with ferroelectricity are most preferable, among which chiral smectic C phase (SmC*) or H phase (SmH* ) is suitable. This ferroelectric liquid crystal unit t-k,”L
E JOllRNAL [lE PHYSIGLIEL
ETTER5” 3B (Shi E19) 1975. r
Ferroelectric Liquid Crystal
als J; Applied physics L
et-ters''3B (11) 1980, r Su
bmicro 5econd B1-5table E
Electrooptic Switching in
LiquidCrystals J; “Solid State Physics”
1B (141) 1981 r Liquid Crystal, etc., and the ferroelectric liquid crystal disclosed therein can be used in the present invention.

より具体的には、本発明法に用いられる強誘電性液晶化
合物の例としては、デシロキシベンジリデン−P′−ア
ミノ−2−メチルブチルシンナメー) (DOBAMB
C) 、ヘキシルオキシベンジリデン−P′−アミノ−
2−クロロプロピルシンナメート()IOBAcPc)
および4−o−(2−メチル)−ブチルレゾルシリテン
−4′−オクチルアニリン(MBRA8)等が挙げられ
る。
More specifically, an example of the ferroelectric liquid crystal compound used in the method of the present invention is decyloxybenzylidene-P'-amino-2-methylbutylcinnamese (DOBAMB
C), hexyloxybenzylidene-P'-amino-
2-Chloropropyl cinnamate ()IOBAcPc)
and 4-o-(2-methyl)-butylresolsiliten-4'-octylaniline (MBRA8).

これらの材料を用いて、素子を構成する場合、液晶化合
物がSm1t相又はS+a旧相となるような温度状態に
保持する為、必要に応じて素子をヒーターが埋め込まれ
た銅ブロック等により支持することができる。
When constructing an element using these materials, the element is supported by a copper block with a heater embedded, etc., as necessary, in order to maintain the temperature state such that the liquid crystal compound becomes the Sm1t phase or the S+a old phase. be able to.

第1図は、強誘電性液晶セルの例を模式的に描いたもの
である。lと1′は、In2(15、5n02やITO
(Indium−Tin 0w1de)等の透明電極が
コートされた基板(ガラス板)であり、その間に液晶分
子層2がガラス面に垂直になるよう配向したSac零相
の液晶が封入されている。太線で示した線3が液晶分子
を表わしており、この液晶分子3は、その分子に直交し
た方向に双極子モーメン) (P↓)4を有している。
FIG. 1 schematically depicts an example of a ferroelectric liquid crystal cell. l and 1' are In2 (15, 5n02 or ITO
It is a substrate (glass plate) coated with a transparent electrode such as (Indium-Tin 0w1de), and SAC zero-phase liquid crystal in which the liquid crystal molecular layer 2 is oriented perpendicular to the glass surface is sealed between the substrates (glass plates). A thick line 3 represents a liquid crystal molecule, and this liquid crystal molecule 3 has a dipole moment (P↓)4 in a direction perpendicular to the molecule.

基板1と1′上の電極間に一定の閾値以上の電圧を印加
すると、液晶分子3のらせん構造がほどけ、双極子モー
メント(P上)4はすべて電界方向に向くよう、液晶分
子3の配向方向を変えることができる。液晶分子3は細
長い形状を有しており、その長袖方向と短軸方向で屈折
率異方性を示し、従って例えばガラス面の上下に互いに
クロスニコルの位置関係に配置した偏光子を置けば、電
圧印加極性によって光学特性が変わる液晶光学変調素子
となることは、容易に理解される。さらに液晶セルの厚
さを充分に薄くした場合(例えばip)には、第2図に
示すように電界を印加していない状態でも液晶分子のら
せん構造は、はどけ(非らせん構造1)、その双極子モ
ーメントP又はP′は上向き(4d)又は下向(4b)
のどちらかの状態をとる。このようなセルに第2図に示
す如く一定の閾値以上の極性の異なる電界E又はE′を
所定時間付与すると、双極子モーメントは電界E又はE
′の電界ベクトルに対応して上向き4a又は、下向き4
bと向きを変え、それに応じて液晶分子は第一の配向状
態5かあるいは第二の配向状態5′の何れか一方に配向
する。
When a voltage higher than a certain threshold is applied between the electrodes on the substrates 1 and 1', the helical structure of the liquid crystal molecules 3 is unraveled, and the liquid crystal molecules 3 are aligned so that all dipole moments (on P) 4 point in the direction of the electric field. You can change direction. The liquid crystal molecules 3 have an elongated shape and exhibit refractive index anisotropy in the long axis direction and the short axis direction. Therefore, for example, if polarizers are placed above and below the glass surface in a crossed nicol positional relationship, It is easily understood that this is a liquid crystal optical modulation element whose optical characteristics change depending on the polarity of applied voltage. Furthermore, when the thickness of the liquid crystal cell is made sufficiently thin (for example, IP), the helical structure of the liquid crystal molecules is removed (non-helical structure 1) even when no electric field is applied, as shown in Figure 2. Its dipole moment P or P' is directed upward (4d) or downward (4b)
take either of the following states. When an electric field E or E' with a different polarity above a certain threshold value is applied to such a cell for a predetermined period of time as shown in FIG.
4a or downward 4a corresponding to the electric field vector of '
b, and accordingly, the liquid crystal molecules are aligned in either the first alignment state 5 or the second alignment state 5'.

このような強誘電性液晶を光学変調素子として用いるこ
との利点は2つある。第1に、応答速度が極めて速いこ
と、第2に液晶分子の配向が双安定状態を有することで
ある。第2の点を例えば第2図によって説明すると、電
界Eを印加すると液晶分子は第一の配向状態5に配向す
るが、この状態は電界を切っても安定である。又、逆向
きの電界E′を印加すると、液晶分子は第二の配向状態
5′に配向して、その分子の向きを変えるが、やはり電
界を切ってもこの状態に留っている。又、与える電界E
が一定の閾値を越えない限り、それぞれの配向状態にや
はり維持されている。このよj) うな応答速度の速さ
と、双安定性が有効に実現さト (れるには、セルとしては出来るだけ薄い方が好ましく
、一般的には、0.5 p〜20川、特にlIL〜5p
Lが適している。この種の強誘電性液晶を用いたマトリ
クス電極構造を有する液晶−電気光学装置は、例えばク
ラークとラガバルにより、米国特許第4367924号
明細書で提案されている。
There are two advantages to using such a ferroelectric liquid crystal as an optical modulation element. Firstly, the response speed is extremely fast, and secondly, the alignment of liquid crystal molecules has a bistable state. The second point will be explained with reference to FIG. 2, for example. When the electric field E is applied, the liquid crystal molecules are aligned in the first alignment state 5, and this state remains stable even when the electric field is turned off. When an electric field E' in the opposite direction is applied, the liquid crystal molecules are oriented to a second orientation state 5' and the orientation of the molecules is changed, but they remain in this state even after the electric field is turned off. Also, the electric field E
The respective orientation states are maintained as long as the values do not exceed a certain threshold. In order to effectively realize such a fast response speed and bistability, it is preferable for the cell to be as thin as possible; ~5p
L is suitable. A liquid crystal-electro-optical device having a matrix electrode structure using this type of ferroelectric liquid crystal has been proposed, for example, by Clark and Ragabal in US Pat. No. 4,367,924.

本発明は、アクティブマトリックスを構成するTPT 
(簿膜トランジスタ)等のFET (電界効果トランジ
スタ)構造の素子が、ドレインとソースの印加電圧を逆
にする車により、いずれをドレインとしていずれをソー
スとしても使用しうるという事にもとづいている。アク
ティブマトリックスを構成する素子としてはFET構造
の素子であればアモルファスシリコンTPT 、多結晶
シリコンTPT等のいずれであっても使用しうる。又F
ET構造以外のバイポーラトランジスタであっても同様
に行う事も可能である。
The present invention utilizes TPTs constituting an active matrix.
It is based on the fact that an element with an FET (field effect transistor) structure, such as a film transistor (FET), can be used as either the drain or the source by using a wheel that reverses the voltage applied to the drain and source. As the elements constituting the active matrix, any element having an FET structure, such as amorphous silicon TPT or polycrystalline silicon TPT, can be used. Also F
It is also possible to perform the same operation with bipolar transistors other than the ET structure.

N型FETは、■ をドレイン電圧、V をD C ゲート電圧、■、をソース電圧、■、をゲートソース間
の閾値電圧とするとV > Vs であり す、VG>vS+v、の時導通状態となり、V <V 
+V、の時非導通状態となる。
An N-type FET is in a conductive state when V>Vs, VG>vS+v, where ■ is the drain voltage, V is the DC gate voltage, ■ is the source voltage, and ■ is the threshold voltage between the gate and source. V<V
+V, it becomes non-conductive.

G、 S P型FETにおいてはv <v とし、Vc <S v +v −c’導通状態トナリ、V >V8+V。G, S In P-type FET, v < v, and Vc < S v+v-c' conduction state, V>V8+V.

SP G で非導通状態となる。SP G becomes non-conductive.

P型であってもN型であってもFETの端子のいずれが
ドレインとして作用し、いずれがソースとして作用する
かは、電圧の印加の方向によって定まる。すなわちN型
では電圧の低い方がソースであり、P型では電圧の高い
方がソースとして作用する。
Whether the FET is P-type or N-type, which terminal of the FET acts as the drain and which acts as the source is determined by the direction of voltage application. That is, for N type, the lower voltage side acts as a source, and for P type, the higher voltage side acts as a source.

強誘電性液晶においては、液晶セルに印加する、正、負
の電圧に対していずれを「明」状態とし、いずれを「暗
」状態とするかはセルの上下に配置するクロスニコル状
態にした一対の偏光子の偏光軸と、液晶分子長軸との向
きにより自由に設定できる。
In the case of ferroelectric liquid crystals, the cross-Nicol state placed above and below the cell determines which is in the "bright" state and which is in the "dark" state in response to positive and negative voltages applied to the liquid crystal cell. It can be freely set depending on the direction of the polarization axes of the pair of polarizers and the long axis of the liquid crystal molecules.

本発明は液晶セルに印加される電界をアクティブマトリ
ックスの各素子の端子間電圧を制御する事によって制御
し、表示を行なうものであるから、各信号の電圧レベル
は以下の実施例にとられれる事なく、各信号の電位差を
相対的に維持すれば、実施する事が可能である。
Since the present invention performs display by controlling the electric field applied to the liquid crystal cell by controlling the voltage between the terminals of each element of the active matrix, the voltage level of each signal is taken as shown in the following example. This can be carried out without any problems as long as the potential difference between each signal is maintained relatively.

[実施例] 次に、本発明のアクティブマトリックスによる強誘電性
液晶の駆動方法の具体例を第3図〜第7図に基づいて説
明する。
[Example] Next, a specific example of a method for driving a ferroelectric liquid crystal using an active matrix of the present invention will be described based on FIGS. 3 to 7.

第3図はアクティブマトリックスの回路図、第4図は対
応画素の番地を示す説明図及び第5図は対応画素の表示
例を示す説明図である。
FIG. 3 is a circuit diagram of an active matrix, FIG. 4 is an explanatory diagram showing addresses of corresponding pixels, and FIG. 5 is an explanatory diagram showing an example of display of corresponding pixels.

6は走査電極群であり、7は表示電極群である。6 is a scanning electrode group, and 7 is a display electrode group.

最初に走査電極GNが選択された場合について述べる。First, the case where scanning electrode GN is selected will be described.

第6図(a)は走査信号であって、位相t1においてそ
れぞれ選択された走査電極GNに印加される電気信号と
それ以外の走査電極(選択されない走査電極)GN+1
.GN+2に印加される電気信号を示している。第6図
(b)は、表示信号であって位相t1においてそれぞれ
選択された表示電極CCと選択されない表示電極CN+
1にN’ N+2 与えられる電気信号を示している。
FIG. 6(a) shows a scanning signal, which is an electrical signal applied to each selected scanning electrode GN at phase t1 and other scanning electrodes (unselected scanning electrodes) GN+1.
.. It shows the electrical signal applied to GN+2. FIG. 6(b) shows the display signals for the selected display electrode CC and the unselected display electrode CN+ at phase t1.
1 shows an electrical signal given to N' N+2.

第6図においては、それぞれ横軸が時間を、縦軸が電圧
を表す。例えば、動画を表示するような場合には、走査
電極群6は逐次、周期的に選択される。選択された走査
電極6(GN)に与えられる電極信号は、第6図(a)
に示される如く位相(時間)tlでは、+voを、位相
(時間)t2では、−vGである。
In FIG. 6, the horizontal axis represents time and the vertical axis represents voltage. For example, when displaying a moving image, the scanning electrode groups 6 are sequentially and periodically selected. The electrode signal given to the selected scanning electrode 6 (GN) is shown in FIG. 6(a).
As shown in , +vo is at phase (time) tl, and -vG is at phase (time) t2.

一方、それ以外の走査電極GN+□、GM+2は第6図
(a)に示す如く位相t1では一■。である。また、選
択された表示電極CN、CN+2に与えられる電気信号
は、第6図(b)に示される如<+Voであり、また選
択されない表示電極Cに与えらN+1 れる電気信号は−vCである。以上に於て各々の電圧値
は、以下の関係を満足する所望の値に設定される。
On the other hand, the other scan electrodes GN+□ and GM+2 are at 1 at phase t1 as shown in FIG. 6(a). It is. Further, the electrical signals given to the selected display electrodes CN and CN+2 are <+Vo as shown in FIG. 6(b), and the electrical signal given to the unselected display electrodes C is -vC. . In the above, each voltage value is set to a desired value that satisfies the following relationship.

走査電極ff1−qラインに表示電極n=文あ信号線で
「明」、表示電極nq文で「暗」を同時書込みする場合
1 .1[vGIIl−vP>vLc+vs(In=q)]
 vs +vLcくvCn (m=qln=5L)v 
s v LG〉v cn(m= q 、 n x x 
)(m洪q、n洪1 vGm−VP <vCn (m#q、 n= M)但し
、各記号は下記の事項を表わす。
When simultaneously writing "bright" in the display electrode n=text signal line and "dark" in the display electrode nq text on the scan electrode ff1-q line 1. 1 [vGIIl−vP>vLc+vs(In=q)]
vs +vLckuvCn (m=qln=5L)v
s v LG〉v cn (m= q , n x x
) (m Hongq, n Hong1 vGm-VP <vCn (m#q, n=M) However, each symbol represents the following items.

vGm=ゲート電極(走査信号)電圧 Vcn:対向電極(表示信号)電圧 vS :ソース又はドレイン(共通端子)電圧vL6:
強誘電性液晶の閾値電圧の絶対値v、:ゲート、ソース
間の閾値 以上の動作をq=l〜Nまで繰返し書込みを行う。この
際、対向電極は第12図に示す様にストライブ形状のも
のとすることができる。
vGm=gate electrode (scanning signal) voltage Vcn: counter electrode (display signal) voltage vS: source or drain (common terminal) voltage vL6:
Absolute value v of the threshold voltage of the ferroelectric liquid crystal: The operation at or above the threshold voltage between the gate and source is repeatedly written from q=1 to N. At this time, the counter electrode can be formed into a stripe shape as shown in FIG.

この様な電気信号が与えられたときの各画素のうち、例
えば第4図中の画素の書込み動作を第7図に示す。第7
図においてはそれぞれ横軸が時間を縦軸がON (明)
上側、0FF(暗)下側の各表示状態を表わす。すなわ
ち、第6図及び第7図より明らかな如く、選択された走
査線上にある画素P 、P N、N N+2.Nで は、位相t1に於て、閾値VL6を越える電圧V LC
< V。−vSが印加される。又、同一走査線上に存在
する画素P では位相t、にN+1.N 於て閾値−■、。を越える電圧−V L c > V 
c−vSが印加される。従って、選択された走査電極線
トに於て1表示電極が選択されたか否かに応じて、選択
された場合には、液晶分子は第一の配向状態に配向を揃
え、画素はON (明)となり、選択されない場合には
第二の配向状態に配向を揃え、画素はOFF (暗)と
なる。
FIG. 7 shows the write operation of, for example, the pixel in FIG. 4 among the pixels when such an electric signal is applied. 7th
In the figures, the horizontal axis shows time, and the vertical axis shows ON (bright).
It represents each display state of the upper side and 0FF (dark) lower side. That is, as is clear from FIGS. 6 and 7, pixels P 1 , P N , N N+2 . N, at phase t1, the voltage VLC exceeding the threshold VL6
<V. -vS is applied. Also, in the pixel P existing on the same scanning line, the phase t is N+1. N at threshold -■,. -V L c > V
c-vS is applied. Therefore, depending on whether one display electrode is selected in the selected scanning electrode line, if one display electrode is selected, the liquid crystal molecules are aligned in the first alignment state, and the pixel is turned ON (bright). ), and if it is not selected, the alignment is aligned to the second alignment state, and the pixel becomes OFF (dark).

一方、第7図に示される如く、選択されない走査線上で
は、すべての画素に印加される電圧は、いずれも閾値電
圧を越えない。従って、選択された走査線北風外の各画
素PN、N+1 ”N+1.N+□。
On the other hand, as shown in FIG. 7, on unselected scanning lines, the voltages applied to all pixels do not exceed the threshold voltage. Therefore, each pixel PN outside the selected scan line north wind, N+1 ''N+1.N+□.

PN+2.N+1・ N、N+2・ N+1.N+2・
 N+2.N+2におけPP P る液晶分子は配向状態を変えることなく前回走査された
ときの信号状態(QN−1)に対応した配向を、そのま
ま保持している。即ち、走査電極が選択されたときにそ
のlライフ分の信号の書き込みが行われ、lフレームが
終了して次回選択されるまでの間は、その信号状態を保
持し得るわけである。従って、走査電極数が増えても、
実質的なデユーティ比はかわらず、コントラストの低下
は全く生じない。
PN+2. N+1・N, N+2・N+1. N+2・
N+2. The liquid crystal molecules at N+2 maintain the orientation corresponding to the signal state (QN-1) when scanned last time without changing the orientation state. That is, when a scanning electrode is selected, signals for one life of the scanning electrode are written, and the signal state can be maintained until the next selection after one frame ends. Therefore, even if the number of scanning electrodes increases,
The actual duty ratio does not change, and there is no reduction in contrast at all.

次に、ディスプレイ装置として駆動を行った場合を考え
てみる。第5図に於て、走査電極GN。
Next, let's consider a case where the device is driven as a display device. In FIG. 5, scanning electrode GN.

N+1・ N・2・°°°と表示電極CN・ON・1・
ON・2・°°°0G 交点で形成する画素のうち、斜線部の画素は「暗」状態
に、白地で示した画素は「明」状態に対応するものとす
る。今、第5図中の表示電極CN上の表示に注目すると
、走査電極GN、GN+2に対応する画素では「明」状
態であり、それ以外の画素は「暗」状態である。走査信
号GNが走査されたとき、時間t1に於て画素PP N、N’ N+2.N には、閾値vLCを越える電圧が印加されるため。
N+1・N・2・°°° and display electrode CN・ON・1・
ON・2・°°°0G Among the pixels formed at the intersections, the pixels in the shaded area correspond to the “dark” state, and the pixels shown in white correspond to the “bright” state. Now, paying attention to the display on the display electrode CN in FIG. 5, the pixels corresponding to the scanning electrodes GN and GN+2 are in a "bright" state, and the other pixels are in a "dark" state. When the scanning signal GN is scanned, at time t1, the pixels PP N, N' N+2 . Because a voltage exceeding the threshold value vLC is applied to N.

前歴に関係なく、画素PN、N、PN+2.Nは一方向
の安定状態、即ち「明」状態に転移(スイ・ンチ)する
。その後は、CN+1.CN+2・・・が走査される間
は第7図に示される如く画素P 、P N、N N+2.N ’± 「明」状態を保ち得る。
Regardless of the previous history, pixels PN, N, PN+2. N transitions to a stable state in one direction, that is, a "bright" state. After that, CN+1. While CN+2... is scanned, the pixels P, P N, N N+2, . . . are scanned as shown in FIG. N'± Can maintain "bright" state.

本発明の強誘電性液晶の駆動方法において、走査電極と
信号電極の配置は任意であり、例えば第8図(a) 、
 (b)に示すように一列に画素を配置することも可能
であり、この様に配置するとシャッターア1/イ等とし
て利用することができる。
In the method for driving a ferroelectric liquid crystal of the present invention, the arrangement of the scanning electrode and the signal electrode can be arbitrary. For example, as shown in FIG. 8(a),
It is also possible to arrange the pixels in a line as shown in (b), and by arranging them in this way, they can be used as shutters A1/A, etc.

次に、以上に説明した実施例において、強誘電性液晶と
してDOBAMBGを駆動するのに好ましい具体的数値
を示すと、例えば 入力周波数f0= I XIO’ 〜I Xl06H2
10< l V、I <60V (波高値)0.3 <
 l ′vSl <IOV (波高値)が挙げられる。
Next, in the embodiment described above, specific numerical values preferable for driving DOBAMBG as a ferroelectric liquid crystal are shown, for example, input frequency f0 = I XIO' ~ I Xl06H2
10< l V, I <60V (peak value) 0.3 <
An example of this is l'vSl<IOV (wave height value).

第9図は本発明において使用されるTFTにおけるFE
Tの構成を示す断面図、第10図はTPTを用いた強誘
電性液晶セルの断面図、第11図はTPT基板の斜視図
、第12図はTPT基板の平面図、第13図は第12図
のA−A′線で切断した部分断面図、第14図は第12
図のB−B′線で切断した部分断面図であり、以上に示
す各図はいずれも本発明の一実施態様を示すものである
Figure 9 shows the FE in the TFT used in the present invention.
10 is a sectional view of a ferroelectric liquid crystal cell using TPT, FIG. 11 is a perspective view of a TPT substrate, FIG. 12 is a plan view of the TPT substrate, and FIG. 13 is a sectional view of a ferroelectric liquid crystal cell using TPT. A partial sectional view taken along line A-A' in Figure 12, and Figure 14 is a partial cross-sectional view taken along line A-A' in Figure 12.
It is a partial sectional view taken along the line BB' in the figure, and each of the figures shown above shows one embodiment of the present invention.

第10図は、本発明の方法で用いうる液晶素子のl t
っの具体例を表わしている。ガラス、プラスチック等の
基板20の上にゲート電極24、絶縁膜22(水素原子
をドーピングした窒化シリコン膜など)を介して形成し
た半導体膜1B(水素原子をドーピングしたアモルファ
スシリコン)と、この半導体膜16に接する2つ端子8
と11で構成したTFTと、TFTの端子11と接続し
た画素電極12(ITO; Indnium Tin 
0w1de)が形成されている。
FIG. 10 shows a liquid crystal device that can be used in the method of the present invention.
It shows a concrete example of. A semiconductor film 1B (amorphous silicon doped with hydrogen atoms) formed on a substrate 20 of glass, plastic, etc. via a gate electrode 24 and an insulating film 22 (such as a silicon nitride film doped with hydrogen atoms), and this semiconductor film Two terminals 8 in contact with 16
and 11, and a pixel electrode 12 (ITO; Indnium Tin) connected to the terminal 11 of the TFT.
0w1de) is formed.

さらに、この上に絶縁層13(ポリイミド、ポリアミド
、ポリビニルアルコール、ポリパラキシリレン、SiO
、SiO□)とアルミニウムやクロムなどからなる光遮
蔽膜9が設けられている。対向基板となる基板20′ノ
上には対向電極21 (ITO; IndniumTi
n 0xide)と絶縁膜22が形成されている。
Furthermore, an insulating layer 13 (polyimide, polyamide, polyvinyl alcohol, polyparaxylylene, SiO
, SiO□), and a light shielding film 9 made of aluminum, chromium, or the like. A counter electrode 21 (ITO; IndniumTi
n 0 oxide) and an insulating film 22 are formed.

この基板20と20′の間には、前述の強誘電性液晶2
3が挟持されている。又、この基板20と20′の周囲
部には強誘電性液晶23を封止するためのシール材25
が設けられている。
Between the substrates 20 and 20', the ferroelectric liquid crystal 2
3 is being held. Further, a sealing material 25 for sealing the ferroelectric liquid crystal 23 is provided around the substrates 20 and 20'.
is provided.

この様なセル構造の液晶素子の両側にはクロスニコル状
態の偏光子18と19′が配置され、観察者Aが入射光
I0よりの反射光I、によって表示状態を見ることがで
きる様に偏光子18′の背後に反射板18 (乱反射性
アルミニウムシート又は板)が設けられている。
Polarizers 18 and 19' in a crossed Nicol state are arranged on both sides of the liquid crystal element having such a cell structure, and the polarizers 18 and 19' are polarized so that the viewer A can see the display state by the reflected light I from the incident light I0. A reflective plate 18 (diffuse reflective aluminum sheet or plate) is provided behind the child 18'.

又、上記の各図においてソース電極、ドレイン電極とは
、ドレインからソースへ電流が流れる場合に限定した命
名である。FETの働きではソースがドレインとして働
く場合も可能である。
Further, in each of the above figures, the terms "source electrode" and "drain electrode" are used only when current flows from the drain to the source. In the function of an FET, it is also possible for the source to function as a drain.

[発明の効果] 上記の構造よりなる本発明の強誘電性液晶の駆動方法を
用いることにより、アクティブマトリックスに画素数の
多い大画面の表示及び高速度で鮮明な画像を表示するこ
とができる。
[Effects of the Invention] By using the method for driving a ferroelectric liquid crystal of the present invention having the above structure, it is possible to display a large screen with a large number of pixels in an active matrix and to display a clear image at high speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、本発明の方法に用いる強誘電性液
晶を模式的に表わす斜視図、第3図は本発明の方法に用
いるマトリックス電極の回路図、第4図は対応画素の番
地を示す説明図、第5図は対応画素の表示例を示す説明
図、第6図(a)及び(b)は走査電極及び表示電極に
印加する電気信号を表わす説明図、第7図は各画素への
書込み動作を表わす説明図、第8図(a)及び(b)は
アクティブマトリックス回路と画素配置の例を示す配線
図、第9図はTFTにおけるFETの構成を示す断面図
、第10図はTPTを用いた強誘電性液晶セルの断面図
、第11図はTPT基板の斜視図、第12図はTFT基
板の平面図、第13図はA−A ”線部分断面図び第1
4図はB−B ”部分断面図である。 1.1’;透明電極がコートされた基板2;液晶分子層 3;液晶分子 4;双極子モーメント(P↓) 4a;上向き双極子モーメント 4b;下向き双極子モーメント 5;第一の配向状態 5′;第二の配向状態 9;光遮蔽膜 10;n9層 11、ドレイン電極(ソース電極) 12;画素電極 13;絶縁層 14;基板 15;半導体直下の光遮蔽膜16;半導体
 17;ゲート配線部の透明電極18;反射板 111
.19′、偏光板20.20’;ガラス、プラスチ・ン
ク等の透明基板21、対向電極 22;絶縁膜 23;強誘電性液晶層 24;ゲート電極 25;シール材 26;薄膜半導体 27;ゲート配線 28;パネル基板 28;光遮断効果を有するゲート部 1′〜M′;走査電極 1−N、表示電極 L;共通電極 LC,液晶 FET、電界効果トランジスタ 子 出願人 キャノン株式会社 代理人 豊 1)善 雄 第2図 第3図 走 @ @ 極 第4図 第5図 灸 示 走 魚 @ 極 第6図 (q) 第7図
1 and 2 are perspective views schematically showing the ferroelectric liquid crystal used in the method of the present invention, FIG. 3 is a circuit diagram of the matrix electrode used in the method of the present invention, and FIG. 4 is a diagram of the corresponding pixel. FIG. 5 is an explanatory diagram showing a display example of corresponding pixels. FIGS. 6(a) and (b) are explanatory diagrams showing electrical signals applied to the scanning electrode and display electrode. FIG. 8(a) and 8(b) are wiring diagrams showing an example of an active matrix circuit and pixel arrangement. FIG. 9 is a cross-sectional view showing the configuration of FET in a TFT. Fig. 10 is a cross-sectional view of a ferroelectric liquid crystal cell using TPT, Fig. 11 is a perspective view of a TPT substrate, Fig. 12 is a plan view of a TFT substrate, and Fig. 13 is a partial cross-sectional view taken along the line A-A''. 1
Figure 4 is a partial sectional view along line B-B''. 1.1'; Substrate 2 coated with transparent electrode; Liquid crystal molecule layer 3; Liquid crystal molecule 4; Dipole moment (P↓) 4a; Upward dipole moment 4b ; Downward dipole moment 5; First orientation state 5'; Second orientation state 9; Light shielding film 10; N9 layer 11, drain electrode (source electrode) 12; Pixel electrode 13; Insulating layer 14; Substrate 15; Light shielding film 16 directly under the semiconductor; semiconductor 17; transparent electrode 18 in the gate wiring section; reflection plate 111
.. 19', polarizing plate 20, 20'; transparent substrate 21 such as glass or plastic ink, counter electrode 22; insulating film 23; ferroelectric liquid crystal layer 24; gate electrode 25; sealing material 26; thin film semiconductor 27; gate wiring 28; Panel substrate 28; Gate portions 1' to M' having a light blocking effect; Scanning electrodes 1-N, display electrodes L; Common electrode LC, liquid crystal FET, field effect transistor Applicant: Canon Co., Ltd. Agent Yutaka 1) Yoshio Figure 2 Figure 3 Running @ @ Figure 4 Figure 5 Moxibustion Showing Fish @ Figure 6 (q) Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1) FETのゲート以外の端子である第一端子と接
続した画素電極を該FETに対応して複数設けた第一基
板と該画素電極に対向する対向電極を設けた第二基板を
有し、前記画素電極と対向電極の間に電界に対して双安
定状態を有する強誘電性液晶を挟持した構造の液晶素子
の駆動法であって、前記FETのゲートがゲートオン状
態となる信号印加と回期させてFETのゲート以外の端
子である第一端子と第二端子の間で電界を形成すること
によって、第一の配向状態に強誘電性液晶の配列を制御
する第一位相と、前記第一端子と第二端子の間で形成し
た電界と逆極性の電界を第一端子と第二端子の間で形成
することによって、第二の配向状態に強誘電性液晶の配
列を制御する第二位相を有し、前記対向電極に表示信号
を印加するとともに各画素に対応しているFET端子の
うち、ソースもしくはドレインを共通端子に接続してゲ
ートに走査信号を印加する時分割駆動であることを特徴
とする液晶素子の駆動法。
(1) A first substrate having a plurality of pixel electrodes connected to the first terminal, which is a terminal other than the gate of the FET, corresponding to the FET, and a second substrate having a counter electrode facing the pixel electrode. , a method for driving a liquid crystal element having a structure in which a ferroelectric liquid crystal having a bistable state with respect to an electric field is sandwiched between the pixel electrode and the counter electrode, the method comprising applying a signal and turning the gate of the FET into a gate-on state. a first phase in which the alignment of the ferroelectric liquid crystal is controlled to a first alignment state by forming an electric field between a first terminal and a second terminal, which are terminals other than the gate of the FET; A second method that controls the alignment of the ferroelectric liquid crystal in a second alignment state by forming an electric field between the first terminal and the second terminal with a polarity opposite to the electric field formed between the first terminal and the second terminal. It is time-division driving in which a display signal is applied to the opposing electrode, and the source or drain of the FET terminals corresponding to each pixel is connected to a common terminal and a scanning signal is applied to the gate. A method for driving a liquid crystal element characterized by:
(2)走査信号線に所定の走査信号を印加するとともに
、表示信号線に表示画像信号を印加することによって、
第一の配向状態に共づく表示状態と、第二の配向状態に
共づ〈表示状態を同時に書き込むことを特徴とする特許
請求の範囲第1項記載の液晶素子の駆動法。
(2) By applying a predetermined scanning signal to the scanning signal line and applying a display image signal to the display signal line,
A method for driving a liquid crystal element according to claim 1, characterized in that a display state associated with the first orientation state and a display state associated with the second orientation state are simultaneously written.
JP59118186A 1984-04-28 1984-06-11 Driving method of liquid-crystal element Pending JPS60262136A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59118186A JPS60262136A (en) 1984-06-11 1984-06-11 Driving method of liquid-crystal element
US06/724,828 US4697887A (en) 1984-04-28 1985-04-18 Liquid crystal device and method for driving the same using ferroelectric liquid crystal and FET's
FR8506484A FR2563649B1 (en) 1984-04-28 1985-04-29 LIQUID CRYSTAL DEVICE AND CORRESPONDING ATTACK METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59118186A JPS60262136A (en) 1984-06-11 1984-06-11 Driving method of liquid-crystal element

Publications (1)

Publication Number Publication Date
JPS60262136A true JPS60262136A (en) 1985-12-25

Family

ID=14730275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59118186A Pending JPS60262136A (en) 1984-04-28 1984-06-11 Driving method of liquid-crystal element

Country Status (1)

Country Link
JP (1) JPS60262136A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235815A (en) * 1985-04-03 1986-10-21 ザ ゼネラル エレクトリツク カンパニー,ピーエルシー Liquid crystal display
JPS63124034A (en) * 1986-11-13 1988-05-27 Nec Corp Thin film transistor substrate and its manufacture
US4770501A (en) * 1985-03-07 1988-09-13 Canon Kabushiki Kaisha Optical modulation device and method of driving the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230121A (en) * 1984-04-28 1985-11-15 Canon Inc Driving method of liquid crystal element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230121A (en) * 1984-04-28 1985-11-15 Canon Inc Driving method of liquid crystal element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4770501A (en) * 1985-03-07 1988-09-13 Canon Kabushiki Kaisha Optical modulation device and method of driving the same
JPS61235815A (en) * 1985-04-03 1986-10-21 ザ ゼネラル エレクトリツク カンパニー,ピーエルシー Liquid crystal display
JPS63124034A (en) * 1986-11-13 1988-05-27 Nec Corp Thin film transistor substrate and its manufacture
JPH0544010B2 (en) * 1986-11-13 1993-07-05 Nippon Electric Co

Similar Documents

Publication Publication Date Title
US4973135A (en) Active matrix display panel having plural stripe-shaped counter electrodes and method of driving the same
US5227900A (en) Method of driving ferroelectric liquid crystal element
US4697887A (en) Liquid crystal device and method for driving the same using ferroelectric liquid crystal and FET&#39;s
US4747671A (en) Ferroelectric optical modulation device and driving method therefor wherein electrode has delaying function
JP2001209063A (en) Liquid crystal display device and its displaying method
US4770501A (en) Optical modulation device and method of driving the same
KR930010578A (en) Liquid crystal element and its driving method
EP0448032B1 (en) Method of driving ferroelectric liquid crystal element and ferroelectric liquid crystal display
JPS60262133A (en) Driving method of liquid-crystal element
JPS614021A (en) Driving method of liquid crystal element
JPS60262136A (en) Driving method of liquid-crystal element
JPS60230121A (en) Driving method of liquid crystal element
JPS614026A (en) Driving method of liquid crystal element
JPH028814A (en) Liquid crystal device
JPS60262134A (en) Driving method of liquid-crystal element
JPS60203920A (en) Driving method of liquid crystal optical element
JPS619623A (en) Driving method of liquid crystal element
JPS60262135A (en) Driving method of liquid-crystal element
JPS617829A (en) Driving method of liquid-crystal element
JPS619624A (en) Driving method of liquid crystal element
JPS60262137A (en) Driving method of liquid-crystal element
JPS617828A (en) Driving method of liquid-crystal element
JPS614022A (en) Driving method of liquid crystal element
JPS63316024A (en) Optical modulating element
JPH0453292B2 (en)