JPS60261781A - Steering power controller of power steering device - Google Patents

Steering power controller of power steering device

Info

Publication number
JPS60261781A
JPS60261781A JP11888184A JP11888184A JPS60261781A JP S60261781 A JPS60261781 A JP S60261781A JP 11888184 A JP11888184 A JP 11888184A JP 11888184 A JP11888184 A JP 11888184A JP S60261781 A JPS60261781 A JP S60261781A
Authority
JP
Japan
Prior art keywords
reaction force
spool
steering
valve
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11888184A
Other languages
Japanese (ja)
Inventor
Susumu Honaga
進 穂永
Mikio Suzuki
幹夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Koki KK
Original Assignee
Toyoda Koki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Koki KK filed Critical Toyoda Koki KK
Priority to JP11888184A priority Critical patent/JPS60261781A/en
Publication of JPS60261781A publication Critical patent/JPS60261781A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)

Abstract

PURPOSE:To obtain optimum steering power by varying the timing at which a spool is changed over in response to the current which is to be applied to the solenoid of a solenoid control valve and varied depending open the input conditions such as car speed, and so on. CONSTITUTION:A solenoid control valve 100 includes a primary and a secondary valve body 101 and 102. A movable spool 105 and a controlling spool 106 are slidably engaged in the internal holes 103 and 104 which are made in said valve bodies, respectively. Pressure of fluid inside a supply passage 73 is to act on the movable spool 105 via a passage 81. That is, when pressure of the fluid is increased, the movable spool 105 cuts off the communication between a passage 75 and reaction chamber 54 to trap fluid inside the reaction chamber 54. A pushing rod 109 is stuck to one end part of the controlling spool 106. The pushing force is made getting greater and greater as a current in accordance with the input signals relating to car speed and so on is increasingly applied to the solenoid 113 and is therefore attracted more firmly to a yoke 115 to be controlled.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、反力機構を設けて車の走行速度等各種運転状
況に応じた最適な操舵力を運転者に感知させる動力舵取
装置の操舵力制御装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to a power steering system that is provided with a reaction force mechanism and allows the driver to sense the optimal steering force according to various driving conditions such as the traveling speed of the vehicle. The present invention relates to a steering force control device.

〈従来技術〉 従来、反力機構を備えた動力舵取装置では、反力機構の
反力室に流体を導入する手段として、舵取装置用ポンプ
からサーボ弁に通じる供給通路の途中に導入通路を接続
し、この導入通路を介して前記反力室内の可動ピストン
に流体圧を作用させるようにしている。
<Prior art> Conventionally, in a power steering device equipped with a reaction force mechanism, as a means for introducing fluid into the reaction force chamber of the reaction force mechanism, an introduction passage is provided in the middle of a supply passage leading from the steering device pump to the servo valve. is connected, and fluid pressure is applied to the movable piston in the reaction force chamber through this introduction passage.

〈発明が解決しようとする問題点〉 しかるに上記反力室に必要な反力を発生させるには導入
通路中に反力制御の弁を介挿し、さらにこの弁の他にそ
れぞれ異なるタイミングで動作する号−ホ弁と反力機構
とを流体的に分離する弁を介挿する必要があり、弁の数
が多くなるとともに回路構成を複雑化する欠点がなる。
<Problem to be solved by the invention> However, in order to generate the necessary reaction force in the reaction force chamber, a reaction force control valve is inserted in the introduction passage, and in addition to this valve, each valve operates at different timings. It is necessary to insert a valve for fluidly separating the No.-E valve and the reaction force mechanism, which has the disadvantage of increasing the number of valves and complicating the circuit configuration.

〈問題点を解決するための手段〉 本発明はかかる従来の欠点を除去するためになされたも
のであり、ポンプからサーボ弁に通じる供給通路と反力
機構の反力室との間を導入通路によって接続し、この導
入通路には前記サーボ弁の操舵に伴う供給通路内の流体
圧によって可動スプールが摺動して前記供給通路と反力
室との連通を制御するとともにこの可動スプールの切換
時期をソレノイドに印加される電流値によって制御する
電磁制御弁を介挿したことを構成上の特徴とするもので
ある。
<Means for Solving the Problems> The present invention has been made in order to eliminate such drawbacks of the conventional art. A movable spool slides on this introduction passage due to the fluid pressure in the supply passage caused by the steering of the servo valve, and controls the communication between the supply passage and the reaction force chamber, and also controls the switching timing of this movable spool. The structure is characterized by the insertion of an electromagnetic control valve that controls the current value applied to the solenoid.

〈作用〉 本発明は上記のように構成されているため、サーボ弁の
操舵に伴う供給通路内の流体圧が上昇すると電磁制御弁
のスプールが摺動して導入通路ならびに反力室内に圧力
流体が封入される。この封入された圧力流体の流体圧が
反力室内の可動ピストンに作用し7て運転者に操舵反力
を感知させることができる。
<Operation> Since the present invention is configured as described above, when the fluid pressure in the supply passage increases due to the steering of the servo valve, the spool of the electromagnetic control valve slides and pressure fluid is released in the introduction passage and the reaction chamber. is included. The fluid pressure of the sealed pressure fluid acts on the movable piston in the reaction force chamber 7, allowing the driver to sense the steering reaction force.

また車速等の入力条件によって電磁制御弁のソレノイド
に印加する電流値を変化させるとスプールの切換時期が
かわる。これによって導入通路ならびに反力室に封入さ
れる圧力流体の流体圧が変化し、エンジン回転数にさら
に車An味したハンドルの重さに制御するこ七ができる
Furthermore, if the current value applied to the solenoid of the electromagnetic control valve is changed depending on input conditions such as vehicle speed, the switching timing of the spool changes. As a result, the fluid pressure of the pressure fluid sealed in the introduction passage and the reaction force chamber changes, and it is possible to control the engine rotation speed and the weight of the steering wheel, which is similar to that of a car.

〈実施例〉 以下本発明の実施例を図面に基づいて説明する。<Example> Embodiments of the present invention will be described below based on the drawings.

第1図に示すように本発明装置は、動力舵取装置10と
、この動力舵取装置10内に組込まれたサーボ弁30お
よび反力機構50に流体を供給する流体供給回路70と
、パワーシリンダ90よりなる。
As shown in FIG. 1, the device of the present invention includes a power steering device 10, a fluid supply circuit 70 that supplies fluid to a servo valve 30 and a reaction mechanism 50 incorporated in the power steering device 10, and a power steering device 10. It consists of a cylinder 90.

先ず動力舵取装置10の構成について説明すると、この
動力舵取装置10はハウジング本体11と、このハウシ
ング本体11に固着された弁ハウジング12とを有する
。これらハウジング本体1■及び弁ハウシング12には
一対の軸受13,14を介してピニオン軸21(出力軸
)が回転可能に軸支されており、このピニオン軸21に
はこれと交差する方向に摺動可能なランク軸22のラッ
ク歯22aが噛合している。このランク軸22はパワー
シリンダ90のピストン91と連結され、その両端は所
要の操舵リンク機構を介して操向車輪に連結されている
First, the configuration of the power steering device 10 will be described. The power steering device 10 includes a housing body 11 and a valve housing 12 fixed to the housing body 11. A pinion shaft 21 (output shaft) is rotatably supported on the housing main body 1 and the valve housing 12 via a pair of bearings 13 and 14, and a pinion shaft 21 is slidable in a direction crossing the pinion shaft 21. The rack teeth 22a of the movable rank shaft 22 are in mesh with each other. This rank shaft 22 is connected to a piston 91 of a power cylinder 90, and both ends thereof are connected to steering wheels via a required steering link mechanism.

弁ハウジング12の大円に収納されたサーボ弁30は、
操舵軸としての入力軸23と一体的に形成したロータリ
弁部材31と、このロークリ弁部材31の外周に同心的
かつ相対回転可能に嵌合したスリーブ弁部材32を主要
構成部材としている。
The servo valve 30 housed in the large circle of the valve housing 12 is
The main components are a rotary valve member 31 formed integrally with the input shaft 23 as a steering shaft, and a sleeve valve member 32 fitted to the outer circumference of the rotary valve member 31 concentrically and rotatably relative to each other.

ロークリ弁部材31は、これと一体の入力軸23に一体
連結しかつ他端をピニオン軸21に連結したトーション
バー24を介してピニオン軸21に可撓的に連結されて
いる。
The rotary valve member 31 is flexibly connected to the pinion shaft 21 via a torsion bar 24 which is integrally connected to the input shaft 23 and whose other end is connected to the pinion shaft 21 .

また、ロータリ弁部材31の外周には、周知のごとく軸
方向に伸びる複数のランド部と溝部とが等間隔にて形成
されており、同様にスリーブ弁部材32の内周にも、そ
の軸方向に延びる複数のランド部と溝部が等間隔に形成
されている。しかしてサーボ弁30が中立状態にあると
き供給ポート35より供給される圧力流体は、ランド部
両側の溝部に均等に分配されるとともに、排出流体は前
記操舵軸23とトーションバー24間の連通路25、操
舵軸23に形成された連通路39、低圧室38を介して
排出ポート36に排出される。この場合再分配ポー1−
33.34は低圧で等しい圧力となっているため、パワ
ーシリンダ90は作動されない。
Further, as is well known, a plurality of lands and grooves extending in the axial direction are formed at equal intervals on the outer periphery of the rotary valve member 31, and similarly, on the inner periphery of the sleeve valve member 32, a plurality of lands and grooves extending in the axial direction are formed. A plurality of lands and grooves are formed at equal intervals. Thus, when the servo valve 30 is in the neutral state, the pressure fluid supplied from the supply port 35 is evenly distributed to the grooves on both sides of the land portion, and the discharged fluid is discharged from the communication path between the steering shaft 23 and the torsion bar 24. 25, is discharged to the discharge port 36 via the communication passage 39 formed in the steering shaft 23 and the low pressure chamber 38. In this case, redistribution port 1-
Since pressures 33 and 34 are low and equal, the power cylinder 90 is not operated.

サーボ弁が中立状態から変位すれば、一方の溝部から分
配ポート33を介してパワーシリンダ90に圧力流体が
供給され、またパワーシリンダ90から排出された流体
は分配ポート34より他方の溝部に流入したのち、さら
に前記連通路25゜39、低圧室38を介して排出ポー
ト36に放出されるようになっている。
When the servo valve is displaced from the neutral state, pressure fluid is supplied from one groove to the power cylinder 90 via the distribution port 33, and fluid discharged from the power cylinder 90 flows into the other groove from the distribution port 34. Afterwards, it is further discharged to the discharge port 36 via the communication passage 25° 39 and the low pressure chamber 38.

前記ロークリ弁部材31とピニオン軸21との間に設け
られた反力機構50は可動ピストン51と、ホール52
を主要構成部材とし、この可動ピストン51は前記ピニ
オン軸21の内孔21a内に摺動可能にかつピン53に
て回止めして嵌合され、ピニオン軸21との間に反力室
54を形成している。この反力室54には導入ポート5
6より連通路58介して圧力流体が導入され、この反力
室54内↓こ導入される流体圧でもって可動ピストン5
1を摺動させるようになっている。またボ−ル52は第
2図に示すように前記可動ピストン51ならびに入力軸
23のフランジ部59間においで周方向に間隔を置いて
介挿され、それぞれ可動ピストン51に形成された円錐
穴51aおよび入力軸23に形成された円錐穴23aに
接触している。この接触圧は可動ピストン51に作用す
る流体圧に応して変動し、入力軸23を操舵する際、適
当な操作反力を付与するようになっている。
The reaction force mechanism 50 provided between the rotary valve member 31 and the pinion shaft 21 includes a movable piston 51 and a hole 52.
The movable piston 51 is fitted into the inner hole 21a of the pinion shaft 21 so as to be slidable and prevented from rotating by a pin 53, and has a reaction force chamber 54 between it and the pinion shaft 21. is forming. This reaction force chamber 54 has an introduction port 5.
Pressure fluid is introduced from 6 through the communication passage 58, and the fluid pressure introduced into the reaction force chamber 54 causes the movable piston 5 to move.
1 is designed to slide. The balls 52 are inserted between the movable piston 51 and the flange portion 59 of the input shaft 23 at intervals in the circumferential direction, as shown in FIG. and is in contact with a conical hole 23a formed in the input shaft 23. This contact pressure varies depending on the fluid pressure acting on the movable piston 51, and is adapted to apply an appropriate operational reaction force when the input shaft 23 is steered.

なお、60は可動ピストン51に入力軸23方向の撥力
を付与するウェーブ状のスプリングである。
Note that 60 is a wave-shaped spring that applies repulsive force to the movable piston 51 in the direction of the input shaft 23 .

一方流体供給回路70は、自動車用エンジンによって駆
動される舵取装置用ポンプ71を有する。
On the other hand, the fluid supply circuit 70 includes a steering device pump 71 driven by an automobile engine.

この舵取装置用ポンプ71は第1、第2の供給通路72
.73を介して供給ポート35と接続され、また第1供
給通路72より分岐する導入通路75を介して導入ポー
1〜56と接続されている。そしてこの第1供給通路7
2と第2供給通路73との間に流量制御弁76が介挿さ
れ、また導入通路75には電磁制御弁100が接続され
ている。
This steering device pump 71 has first and second supply passages 72.
.. It is connected to the supply port 35 via 73, and is also connected to the introduction ports 1 to 56 via an introduction passage 75 branching from the first supply passage 72. And this first supply passage 7
A flow rate control valve 76 is interposed between the second supply passage 73 and the second supply passage 73, and an electromagnetic control valve 100 is connected to the introduction passage 75.

流量制御弁76は固定絞り74と、制御絞り77と、こ
の制御絞り77の前後の差圧により弁室78内を摺動す
るスプール79を有し、このスプール79の摺動によっ
てバイパス通路80の開度を調整して余剰流をバイパス
通路801.バイパスさせ、サーボ弁30−1の供給流
量を一定に制御するようになっている。
The flow rate control valve 76 has a fixed throttle 74, a control throttle 77, and a spool 79 that slides in the valve chamber 78 due to the pressure difference before and after the control throttle 77. The sliding of the spool 79 causes the bypass passage 80 to open. The opening degree is adjusted to divert excess flow to the bypass passage 801. By-passing the servo valve 30-1, the supply flow rate of the servo valve 30-1 is controlled to be constant.

電磁制御弁100は、第1、第2弁本体101゜102
を有し、この第1、第2弁本体101.102内の内孔
103.104にはそれぞれ可動スプール105ならび
に制御スプール106が摺動可能に嵌合されている。可
動スプール105にはその一端に第2供給通路73内の
流体圧が;m路81を介して作用するようになっており
、この流体圧の」二昇に伴い可動スプール105はスプ
リング107に抗して弁孔103内を摺動して導入通路
75と反力室54との連通を遮断し、反力室54内に流
体を封入するようになっている。
The electromagnetic control valve 100 has first and second valve bodies 101 and 102.
A movable spool 105 and a control spool 106 are slidably fitted into inner holes 103, 104 in the first and second valve bodies 101, 102, respectively. The fluid pressure in the second supply passage 73 acts on one end of the movable spool 105 via the m passage 81, and as this fluid pressure rises, the movable spool 105 resists the spring 107. It slides in the valve hole 103 to cut off communication between the introduction passage 75 and the reaction force chamber 54, and seals fluid in the reaction force chamber 54.

また制御スプール106の端部には押圧口・7ド109
が固着されている。この押圧ロッド1091は前記可動
スプール105に当接され、可動スプール105に押圧
力を付与するようになっている。
Also, at the end of the control spool 106 there is a pressing port/7 door 109.
is fixed. This pressing rod 1091 is brought into contact with the movable spool 105 and applies a pressing force to the movable spool 105.

この押圧力は制御スプール106がスプリング111.
112にて中央に位置決めされている状態では少なく、
その後車速等の入力信号に応じた電流がソレノイド11
3に印加されてヨーク115に向って吸引制御されるに
従い次第に大きくなるようになっている。この押圧力の
増加は、可動スプール105の右方への摺動開始時期を
遅くし、それだけ第1供給通路72と反力室54との連
通時間を長くし、その結果高い流体圧の流体を反力室5
4内に封入することになる。
This pressing force is applied to the control spool 106 by the spring 111.
In the state where it is centered at 112, it is less
After that, a current is applied to the solenoid 11 according to an input signal such as vehicle speed.
3 and as the suction is controlled toward the yoke 115, the magnitude gradually increases. This increase in pressing force delays the timing at which the movable spool 105 starts sliding to the right, thereby prolonging the communication time between the first supply passage 72 and the reaction force chamber 54, and as a result, the fluid with high fluid pressure is Reaction force chamber 5
It will be enclosed in 4.

次に上記構成の動力舵取装置に於ける操舵力の制御につ
いて説明する。
Next, control of the steering force in the power steering device configured as described above will be explained.

自動車用エンジンを起動すると同時に舵取装置用ポンプ
71が駆動される。この舵取装置用ポンプ71より吐出
される圧力流体は第1供給通路72より固定絞り74、
制御絞り77、第2供給通路73、供給ポート35を介
してサーボ弁30に供給される。このとき第1供給通路
72内には、固定絞り74、制御絞り77の作用によっ
てエンジン回転数Nに比例した流体圧PINが発生し、
この流体圧PINが導入通路75、導入ポート5Gを介
して反力室54に作用する。
At the same time as starting the automobile engine, the steering device pump 71 is driven. The pressure fluid discharged from the steering device pump 71 is supplied to the first supply passage 72 through a fixed throttle 74,
It is supplied to the servo valve 30 via the control throttle 77, the second supply passage 73, and the supply port 35. At this time, a fluid pressure PIN proportional to the engine speed N is generated in the first supply passage 72 by the action of the fixed throttle 74 and the control throttle 77.
This fluid pressure PIN acts on the reaction force chamber 54 via the introduction passage 75 and the introduction port 5G.

例えば低速走行時(エンジン低回転時)には、第3図に
示すように反力室54には低い流体圧が導入されるため
、入力軸23に対するボール52の接触圧が小さく、第
4rEJAに示すように小さな操舵力TMでもってビニ
オン軸21と入力軸23との間に相対的すべりを生じて
操舵圧Psを上昇させることができ、パワーシリンダ9
0のアシストで軽快にハンドルを操舵することができる
For example, when running at low speed (low engine rotation), low fluid pressure is introduced into the reaction force chamber 54 as shown in FIG. As shown, a small steering force TM can cause relative slip between the pinion shaft 21 and the input shaft 23 to increase the steering pressure Ps, and the power cylinder 9
With 0 assist, you can easily steer the steering wheel.

その後、高速走行(エンジン高回転)になると、第3図
に示すように反力室54には高い流体圧PINが導入さ
れるため、入力軸23に対するポール52の接触圧が大
きくなり、第4図Bに示すように大きな操舵力TMを加
えないと操舵圧P6が上昇しなくなり、これによって中
立位置においてハンドルが重くなり、操舵の安定性がも
たらされる。
After that, when running at high speed (high engine speed), a high fluid pressure PIN is introduced into the reaction force chamber 54 as shown in FIG. As shown in FIG. B, unless a large steering force TM is applied, the steering pressure P6 will not increase, and as a result, the steering wheel becomes heavy in the neutral position, resulting in stable steering.

また、低速あるいは高速走行にかかわらず、ハンドルが
中立位置より外れて操舵されると同時に第2供給通路7
3内の流体圧Pが上昇し、この流体圧Pが電磁制御弁1
00の可動スプール105に作用する。一方この電磁制
御弁100のソレノイド113には車速に比例した電流
が印加されており、これによって制御スプール106に
対するヨーク115の吸引力が変化し、可動スプール1
05に対する押圧力Fが制御されている。従ってこの可
動スプール105に押圧力F以上の流体圧Pが作用する
と、この可動スプール105は押圧ロッド109の押付
力Fに打勝って右方に移動し、導入通路75と反力室5
4との連通を遮断する。
In addition, regardless of whether the vehicle is running at low speed or high speed, when the steering wheel is steered away from the neutral position, the second supply passage 7
3 increases, and this fluid pressure P causes the electromagnetic control valve 1 to increase.
It acts on the movable spool 105 of 00. On the other hand, a current proportional to the vehicle speed is applied to the solenoid 113 of this electromagnetic control valve 100, which changes the attraction force of the yoke 115 to the control spool 106, and the movable spool 1
The pressing force F with respect to 05 is controlled. Therefore, when a fluid pressure P greater than the pressing force F acts on the movable spool 105, the movable spool 105 overcomes the pressing force F of the pressing rod 109 and moves to the right, leading to the introduction passage 75 and the reaction force chamber 5.
Cut off communication with 4.

かかる押圧力Fは、低速走行時において第6図に示すよ
うにソレノイド113への印加電流Iが小さくなって押
付力Fが小さく設定され、また高速走行時には印加電流
Iが大きくなって押付力Fが大きく設定されているため
、可動スプール】05の切換時期が早くなったり、遅く
なったりする。
This pressing force F is set to a small value when the current I applied to the solenoid 113 decreases as shown in FIG. Since is set large, the switching timing of the movable spool 05 may be early or late.

しかるにサーボ弁30を操舵して第2供給通路73内の
流体圧Pが上昇すると、これに伴って反力室54内の流
体圧PINも上昇するが、前記したように電磁制御弁1
00の切換のタイミングか制御されることにより反力室
54に封入される流体の封入圧は第5図に示すように印
加電流Iずなわち車速によってそれぞれ異る流体圧PI
Nに保持される。このようにハンドルを中立位置を外れ
で操舵したとき、反力室54内には車速に比例して増加
する流体圧PINが発生して入力軸24に対するポール
52の接触圧が制御されるため、エンジン回転数にさら
に車速を加味した操舵反力をドライバーに感知させるこ
とができる。
However, when the fluid pressure P in the second supply passage 73 increases by steering the servo valve 30, the fluid pressure PIN in the reaction force chamber 54 also increases.
By controlling the switching timing of 00, the sealing pressure of the fluid sealed in the reaction force chamber 54 changes depending on the applied current I, that is, the fluid pressure PI, which varies depending on the vehicle speed, as shown in FIG.
It is held at N. When the steering wheel is steered away from the neutral position in this way, a fluid pressure PIN is generated in the reaction force chamber 54 that increases in proportion to the vehicle speed, and the contact pressure of the pole 52 with respect to the input shaft 24 is controlled. The driver can sense the steering reaction force that takes into account the engine speed and vehicle speed.

かかる可動スプール105の切換えによって反力室54
内には流体が封入されるがこの流体は、その後可動ピス
トン60の嵌合部等から徐々に洩れて行くため、可動ピ
ストン60の押圧力によってハンドルが重くなりすぎる
ことはない。
By switching the movable spool 105, the reaction force chamber 54
Although fluid is sealed inside, this fluid gradually leaks from the fitting portion of the movable piston 60, etc., so that the handle does not become too heavy due to the pressing force of the movable piston 60.

なお、上記実施例では、第1供給通路72、第2供給通
路73の途中にて制御絞り74を介挿し(て第1供給通
路72中にエンジン回転数Nに比例した流体圧PINを
発生させ、この流体圧PrNを導入通路75を介して反
力室54に導入するようにしているが、これに限定され
るものではなく、第7図に示すように第2供給通路73
内に発生ずる流体圧を導入通路175を介して反力室5
4に導入ずにようにしてもよい。この実施例の場合、た
固定絞り74が不用となり、その分流路抵抗が減少し、
エンジン負荷を減少させることができる。
In the above embodiment, a control throttle 74 is inserted between the first supply passage 72 and the second supply passage 73 (by which a fluid pressure PIN proportional to the engine rotation speed N is generated in the first supply passage 72). Although this fluid pressure PrN is introduced into the reaction force chamber 54 via the introduction passage 75, the invention is not limited to this, and as shown in FIG.
The fluid pressure generated within the reaction force chamber 5 is introduced into the reaction force chamber 5 through the introduction passage 175.
4 may be omitted. In the case of this embodiment, the fixed throttle 74 is not required, and the flow path resistance is reduced accordingly.
Engine load can be reduced.

また上記実施例では、反力機構50として軸方向に可動
する可動ピストン51を使用しているが、これに限定さ
れるものではなく、径方向に摺動する可動ピストンにて
反力を付与するようにしてもよい。
Further, in the above embodiment, the movable piston 51 that moves in the axial direction is used as the reaction force mechanism 50, but the invention is not limited to this, and the reaction force can be applied by a movable piston that slides in the radial direction. You can do it like this.

〈発明の効果〉 以上述べたように本発明においては、ポンプからサーボ
弁に通しる供給通路と反力機構の反力室との間を導入通
路によって接続し、この導入通路には前記サーボ弁の操
舵に伴う供給通路内の流体圧によって可動スプールが摺
動して前記供給通路と反力室との連通を制御するととも
にこの可動スプールの切換時期をソレノイドに印加され
る電流値によって制御する電磁制御弁を介挿した構成で
あるため、1個の電磁制御弁によって反力室に発生する
発生圧を最適に制御することができ、その結果ドライバ
ーに車速あるいはエンジン回転数に応じた操舵反力を感
知させることができる利点を有する。
<Effects of the Invention> As described above, in the present invention, the supply passage from the pump to the servo valve and the reaction chamber of the reaction force mechanism are connected by an introduction passage, and the servo valve is connected to the introduction passage. The movable spool slides due to the fluid pressure in the supply passage accompanying the steering of the solenoid, and controls the communication between the supply passage and the reaction force chamber, and the switching timing of the movable spool is controlled by the current value applied to the solenoid. Since the configuration includes a control valve, it is possible to optimally control the pressure generated in the reaction force chamber with a single electromagnetic control valve, and as a result, the driver is provided with a steering reaction force that corresponds to the vehicle speed or engine rotation speed. It has the advantage that it can be sensed.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すもので、第1図は本発明の
動力舵取装置ならびにこの動力舵取装置に圧力流体を供
給する流体供給回路を示す図、第2図は第1図のn−n
線断面図、第3図はエンジン回転数と反力室に作用する
流体圧との関係を示す図、第4図はハンドル操舵トルク
と操舵圧との関係を示す図、第5図はソレノイドへの印
加電流と反力室内に発生する流体圧との関係を示す図、
第6図はソレノイドへの印加電流と押付ロッドの押付力
との関係を示す図、第7図は本発明の他の実施例を示す
流体供給回路を示す図である。 23・・・入力軸、30・・・サーボ弁1,31・・・
ロータリ弁部材、32・・・スリーブ弁部材、50・・
・反力機構、51・・・可動ピストン、54・・・反力
室、71・・・舵取装置用ポンプ、75・・・導入通路
、100・・・電磁制御弁。 特許出願人 巽田工機株式会社
The drawings show an embodiment of the present invention, and FIG. 1 is a diagram showing a power steering device of the present invention and a fluid supply circuit that supplies pressure fluid to the power steering device, and FIG. 2 is a diagram showing an embodiment of the present invention. n-n
Line sectional view, Figure 3 is a diagram showing the relationship between engine speed and fluid pressure acting on the reaction force chamber, Figure 4 is a diagram showing the relationship between steering wheel steering torque and steering pressure, and Figure 5 is a diagram showing the relationship between the solenoid. A diagram showing the relationship between the applied current and the fluid pressure generated in the reaction force chamber,
FIG. 6 is a diagram showing the relationship between the current applied to the solenoid and the pressing force of the pressing rod, and FIG. 7 is a diagram showing a fluid supply circuit showing another embodiment of the present invention. 23...Input shaft, 30...Servo valve 1, 31...
Rotary valve member, 32... Sleeve valve member, 50...
- Reaction force mechanism, 51... Movable piston, 54... Reaction force chamber, 71... Steering device pump, 75... Introduction passage, 100... Solenoid control valve. Patent applicant: Tatsumida Koki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (J)一対の弁部材の相対回転によりポンプからパワー
シリンダへ圧力流体を分配制御する号−ボ弁と、反力室
に供給される流体圧によって操舵反力を発生させる反力
機構とを有する動力舵取装置において、前記ポンプから
サーボ弁に通じる供給通路と前記反力機構の反力室との
間を導入通路によって接続し、この導入通路には前記サ
ーボ弁の操舵に伴う供給通路内の流体圧によって可動ス
プールが摺動して前記供給通路と反力室との連通を制御
するとともにこの可動スプールの切換時期をソレノイド
に印加される電流値によって制御する電磁制御弁を介挿
したことを特徴とする動力舵取装置の操舵力制御装置。
(J) It has a valve that controls the distribution of pressure fluid from the pump to the power cylinder by the relative rotation of a pair of valve members, and a reaction force mechanism that generates a steering reaction force by the fluid pressure supplied to the reaction force chamber. In the power steering device, a supply passage leading from the pump to the servo valve and a reaction force chamber of the reaction force mechanism are connected by an introduction passage, and the introduction passage is connected to the supply passage leading from the pump to the servo valve. The movable spool is slid by fluid pressure to control communication between the supply passage and the reaction chamber, and an electromagnetic control valve is inserted to control switching timing of the movable spool by a current value applied to a solenoid. A steering force control device for a power steering device featuring features.
JP11888184A 1984-06-08 1984-06-08 Steering power controller of power steering device Pending JPS60261781A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11888184A JPS60261781A (en) 1984-06-08 1984-06-08 Steering power controller of power steering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11888184A JPS60261781A (en) 1984-06-08 1984-06-08 Steering power controller of power steering device

Publications (1)

Publication Number Publication Date
JPS60261781A true JPS60261781A (en) 1985-12-25

Family

ID=14747439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11888184A Pending JPS60261781A (en) 1984-06-08 1984-06-08 Steering power controller of power steering device

Country Status (1)

Country Link
JP (1) JPS60261781A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391977U (en) * 1986-12-05 1988-06-14

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387433A (en) * 1977-01-07 1978-08-01 Nissan Motor Co Ltd Apparatus for controlling steering force of power steering system
JPS541536A (en) * 1977-06-06 1979-01-08 Jidosha Kiki Co Ltd Steering force controller of power steering device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5387433A (en) * 1977-01-07 1978-08-01 Nissan Motor Co Ltd Apparatus for controlling steering force of power steering system
JPS541536A (en) * 1977-06-06 1979-01-08 Jidosha Kiki Co Ltd Steering force controller of power steering device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6391977U (en) * 1986-12-05 1988-06-14

Similar Documents

Publication Publication Date Title
JPH0256274B2 (en)
JPH0645343B2 (en) Steering force control device for power steering device
JPS60261781A (en) Steering power controller of power steering device
EP0672574A1 (en) Power steering system
JPS60226369A (en) Steering-force controller for power steering apparatus
JPH0124664B2 (en)
JPS61202976A (en) Steering force control device of power steering device
JPS60226368A (en) Steering-force controller for power steering apparatus
JPS60240569A (en) Steering force controller for power steering gear
JPH036546Y2 (en)
JPS62139755A (en) Steering force control device for power steering apparatus
JPS62113647A (en) Power steering device
JPS60203583A (en) Controlling device for steering power of power-operated steering device
JP2712351B2 (en) Rear wheel steering device
JPS6127771A (en) Rear-wheel steering gear
JPH01172064A (en) Four-wheel steering device
JPS638073A (en) Steering force controlling unit of power steering device
JPS61191472A (en) Steering force controlling device of power steering gear
JP2531790Y2 (en) Power steering device
JP2517006Y2 (en) Steering force control device for power steering device
JPH0628378Y2 (en) Steering force control device for power steering device
JPH0624301Y2 (en) Steering force control device for power steering device
JPH0619426Y2 (en) Steering force control device for power steering device
JPH0615335B2 (en) Power steering device
JPH0113665Y2 (en)