JPS60260467A - High density sintered ferrite - Google Patents

High density sintered ferrite

Info

Publication number
JPS60260467A
JPS60260467A JP59113383A JP11338384A JPS60260467A JP S60260467 A JPS60260467 A JP S60260467A JP 59113383 A JP59113383 A JP 59113383A JP 11338384 A JP11338384 A JP 11338384A JP S60260467 A JPS60260467 A JP S60260467A
Authority
JP
Japan
Prior art keywords
density
ferrite
sintered body
added
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59113383A
Other languages
Japanese (ja)
Inventor
健 廣田
修 井上
三原 敏弘
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59113383A priority Critical patent/JPS60260467A/en
Publication of JPS60260467A publication Critical patent/JPS60260467A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電気および電子材料に用いられる高密度焼結フ
ェライトに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to high density sintered ferrites used in electrical and electronic materials.

従来例の構成とその問題点 従来、理論密度(理論的に可能な最大密度)に近い密度
を有する高密度焼結フェライトは、1300〜1400
℃の温度領域で加圧焼結や真空減圧焼結を採用すること
によシ製造されている。1300〜14oO℃で加圧−
緒する場合、例えばホットプレス焼結法では、加圧用パ
ンチとダイは高温での機械強度が要求され、使用する材
料や材質にも限定があや、複雑な形状を有する成形体を
焼結できず、また熱間静水圧プレス焼結法(HIP法)
では、焼結装置そのものも高温高圧に耐えるものが必要
であシ、それ故、焼結装置は高価になり、最終製品のコ
ストアップの原因となってい′た。さらに、真空減圧焼
結法においても、1300℃〜1400℃で焼結させる
ためには、この温度領域で真空減圧できる装置を作製す
ることが耐熱性の点からも容易でなかった。
Conventional structure and its problems Conventionally, high-density sintered ferrite having a density close to the theoretical density (theoretically possible maximum density) has a density of 1300 to 1400.
It is manufactured by employing pressure sintering or vacuum reduced pressure sintering in the temperature range of °C. Pressure at 1300~14oO℃-
For example, in the hot press sintering method, the pressurizing punch and die are required to have mechanical strength at high temperatures, and there are restrictions on the materials used, making it impossible to sinter compacts with complex shapes. , and hot isostatic press sintering method (HIP method)
In this case, the sintering equipment itself must be able to withstand high temperature and pressure, which makes the sintering equipment expensive and causes an increase in the cost of the final product. Furthermore, in the vacuum reduced pressure sintering method, in order to perform sintering at 1300° C. to 1400° C., it is not easy to produce an apparatus capable of reducing vacuum pressure in this temperature range, also from the viewpoint of heat resistance.

さらに)た、フェライトを高温で焼結させると、成分元
素の蒸発による組成ずれやそれに起因する特性劣化があ
るばか9でなく、電気炉に使用する電力代も高くなる事
もあp、いずれにしても従来の温度領域で焼結させると
経済性や歩留りの点で問題点が多かった。
Furthermore, if ferrite is sintered at high temperatures, not only will there be a compositional shift due to evaporation of the constituent elements and property deterioration due to this, but the electricity bill for the electric furnace will also increase. However, when sintering in the conventional temperature range, there were many problems in terms of economy and yield.

発明の目的 本発明は、上記従来の欠点を解消するもので、低焼結温
度、低コヌトでかつ高歩留シで理論密度の99係以上の
密度を達成することができる高密度焼結フェライトを提
供することを目的とする。
Object of the Invention The present invention solves the above-mentioned conventional drawbacks, and provides a high-density sintered ferrite that can achieve a density of 99 coefficients or more of the theoretical density at a low sintering temperature, a low concentration, and a high yield. The purpose is to provide

発明の構成 本発明は、上記目的を達成するために、0.0001〜
01重量憾の錫を他のフェライト構成成分に添加混合し
、この混合物を成形・焼成してなる高密度焼結フェライ
トを提供する。
Structure of the Invention In order to achieve the above object, the present invention provides
01 A high-density sintered ferrite is provided by adding and mixing a small amount of tin with other ferrite constituents, molding and firing the mixture.

実施例の説明 以下、本発明の実施例金添何図面を参照して説明する。Description of examples Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

実施例1 最終組成比が、52モル%Fe20B、32モtv4 
MnO。
Example 1 The final composition ratio was 52 mol% Fe20B, 32 motv4
MnO.

16モ)vtl)ZnOになるように、純度99.5%
のa−Fe205182.5 g 。
16mo) vtl) Purity 99.5% to become ZnO
of a-Fe205182.5 g.

純度912憾のMnCO388,7g 、純度998%
のZn028.7gを秤賦し、これにフェライト原料の
0.00001.0.0OO1。
MnCO388.7g with purity 912, purity 998%
28.7 g of Zn0 was weighed out, and 0.00001.0.0OO1 of the ferrite raw material was added to it.

0.001,0.01,0.1.i、0重を憾に相当す
るSnを添加させるべき試薬特級の5n02をそれぞれ
0.000033g、O,00033g。
0.001, 0.01, 0.1. i, 0.000033g and O,00033g of reagent special grade 5n02 to which Sn corresponding to 0 weight should be added, respectively.

0.0033g、0.033g 、 0.33g、3.
3gを添加した混合原料粉末と、無添加の原p粉末とを
、ステンレスホールミルて15時時間式混合することに
より作製した。これらの混合粉末を、N2ガス雰囲気中
で800℃にて2時間仮焼した。仮焼後、再度ステンレ
スボーフレミルで15時時間式粘砕した後、その沈澱物
t−130℃で10時間乾燥した。乾燥粉末に純水を1
2〜15憾加えてライカイ器にて造粒して粒度合そろえ
た後、1000〜2000Ky/c−の成形圧で造粒粉
末を成形し、寸法10X20X30mの直方形成形体を
作製した。これらの成形体音N2ガヌ雰囲気中で100
0℃にて6時間焼成し、焼結後の密度をアルキメデス法
によりII定した。その結果を第1図に示した。同図に
おいて、横軸はSnの添加量(重量憾)、縦軸は焼結密
度であり、理論密度5. 1 g/cdの百分率で示し
た。Snの添加量と焼結体におけるその含有屋の関係は
、焼結体をプラズマ分光分析する事によりSnの残存分
量をめたところ、添加量の90〜95憾が含有されてい
ることが確認された。第1図から分るように、Sn無添
加の焼結体では、理論密度の94憾程度の密度しか得ら
れず、かつ開気孔が多数存在していた。Sn添加量が増
加するに従って、あるレベルまでは焼結体の密度が大き
くなり、0.0001〜0.1重量憾の添加量の頭載で
は、理論密度の99憾以上の高密度焼結体が得られた。
0.0033g, 0.033g, 0.33g, 3.
The mixed raw material powder to which 3 g was added and the raw p powder with no additives were mixed in a stainless steel hole mill for 15 hours to produce the powder. These mixed powders were calcined at 800° C. for 2 hours in a N2 gas atmosphere. After calcining, the mixture was crushed again for 15 hours using a stainless steel Beaufres mill, and the precipitate was dried at t-130°C for 10 hours. Add 1 part pure water to the dry powder
After adding 2 to 15 m of the powder and granulating it in a Laikai machine to make the particle size uniform, the granulated powder was molded under a molding pressure of 1000 to 2000 Ky/c to produce a rectangular shaped body with dimensions of 10 x 20 x 30 m. These molded bodies sound N2 100 in the atmosphere
It was fired at 0° C. for 6 hours, and the density after sintering was determined by the Archimedes method. The results are shown in Figure 1. In the figure, the horizontal axis represents the amount of Sn added (weight), and the vertical axis represents the sintered density, which has a theoretical density of 5. Expressed as a percentage of 1 g/cd. Regarding the relationship between the amount of Sn added and its content in the sintered body, the residual amount of Sn was determined by plasma spectroscopic analysis of the sintered body, and it was confirmed that 90 to 95% of the added amount was contained. It was done. As can be seen from FIG. 1, in the sintered body without the addition of Sn, a density of only about 94 times the theoretical density was obtained, and a large number of open pores were present. As the amount of Sn added increases, the density of the sintered body increases up to a certain level, and with an additive amount of 0.0001 to 0.1 weight, a high-density sintered body with a theoretical density of 99 or more was gotten.

しかしながら、01重員係以上のSnを添加すると、か
えって焼結体密度が99壬以下に減少することが認めら
れた。一方、電気・電子部品、特に磁気ヘッドに使用さ
れる高密度焼結フェライトでは、気孔が極めて少ない事
が要求され、実際上理論密度の99憾以上の高密度焼結
体が使用されている。それ故、99憾以上の高密度焼結
体を得るには、0.0001〜0.1重量幅のSnを添
加して得られた焼結体が好ましいことが明らかになった
。これらのMn−Znフェライト焼結体の透磁率を測定
すると、本発明による理論密度の99憾以上の高密度焼
結体では、周波数IKHzに対して5000〜6000
であり、Snを添加しない理論密度の94憾の焼結体で
は、500〜1000の透磁率しか得られなかった。な
お、Snを添加しない成形体では、1300〜1350
℃の温度18′(域で10〜20時間焼成することによ
り、理論密度の97傷程度の焼結体が得られたが、高温
で焼成したため、焼結体の結晶体の結晶粒子が成長し、
その平均結晶粒径は100〜200μmであった。これ
に対し、O.QOO1〜0.1重IIk%のSnを添加
した本発明の焼結体では、その平均結晶粒径が5〜10
)t mと非常に小さいものであった。これらのMn−
Znフェライト焼結体を磁気ヘッドに加工した時、平均
結晶粒径が100〜200μmものでは、結晶粒子の欠
けや割れが発生しやすいが、本発明による平均結晶粒径
が5〜16μm焼結体を加工した場合では、5〜10倍
の加工歩留シ向上がみとめられた。
However, it was found that when Sn was added in an amount of 0.01 mm or more, the density of the sintered body decreased to 99 mm or less. On the other hand, high-density sintered ferrite used in electrical and electronic components, especially magnetic heads, is required to have extremely few pores, and in practice, high-density sintered bodies with a theoretical density of 99 or higher are used. Therefore, in order to obtain a high-density sintered body of 99 or more, it has become clear that a sintered body obtained by adding Sn in a weight range of 0.0001 to 0.1 is preferable. When measuring the magnetic permeability of these Mn-Zn ferrite sintered bodies, the high-density sintered bodies according to the present invention with a theoretical density of 99 or higher have a magnetic permeability of 5000 to 6000 at a frequency of IKHz.
Therefore, in a sintered body with a theoretical density of 94 without adding Sn, a magnetic permeability of only 500 to 1000 was obtained. In addition, in a molded article without adding Sn, it is 1300 to 1350
By firing at a temperature of 18'°C for 10 to 20 hours, a sintered body with a theoretical density of about 97 scratches was obtained. ,
The average crystal grain size was 100 to 200 μm. On the other hand, O. In the sintered body of the present invention to which QOO1 to 0.1% Sn is added, the average crystal grain size is 5 to 10%.
)t m, which was very small. These Mn-
When a Zn ferrite sintered body is processed into a magnetic head, if the average crystal grain size is 100 to 200 μm, chipping or cracking of the crystal grains is likely to occur, but the sintered body of the present invention with an average crystal grain size of 5 to 16 μm When processed, the processing yield was improved by 5 to 10 times.

実施例2。Example 2.

平均粒径が01μmで最終組成比が、52モ/L/ %
 Fe205勇,32モt& 4 Mn0, 16モ/
I/4ZnOの共沈Mn−Zn フェライト原料をFe
SO4 、MnSO4 、 ZnSO4の混合溶液に、
水酸化ナトリウムを添加し、中和沈澱させることにより
作製した。この共沈フェライト原料粉末に、Sn添加量
が0.00001〜10重量係になるようにSn02を
に加し、ステンレスホールミル 合し、その後、混合粉末(5130°Cで10時間乾燥
した,、実施例1と同様に乾燥粉末を成形し、900°
Cで6時間N2ガス雰囲中にて焼成し、焼結後、その密
度を測定したところ、Sn添加社が0.0001〜01
重2=sの焼結体では、理論密度の99.5壬の密度で
あった。このことから、共沈フェライト原料の場合、よ
り低い焼結温度でより大きい焼結密度全達成できること
が分る。なお、Sni加量が0.00001 3it%
および1.0mft%焼結体では、その密度はそれぞれ
98係および98.2CI)で、99係を若干下回って
いた。比較のために、Snを添加しない試料も作製し、
同一条件にて焼成した。得られた焼結体は、理論密度の
95係であシ、99憾以上の密度を有する焼結体は13
00℃で10時間以上焼成することによシ得られた。磁
気特性は、Snを0.0001〜0.1重量係添加した
ものでは、周波数IKHrで、透磁率が5000〜60
00であり、理論密度の95憾の焼結体では、透磁率が
500〜1000であった。
The average particle size is 01μm and the final composition ratio is 52Mo/L/%.
Fe205 Yu, 32 moto & 4 Mn0, 16 mo/
Co-precipitation of I/4ZnO Mn-Zn ferrite raw material with Fe
In a mixed solution of SO4, MnSO4, and ZnSO4,
It was produced by adding sodium hydroxide and performing neutralization and precipitation. Sn02 was added to this coprecipitated ferrite raw material powder so that the amount of Sn added was 0.00001 to 10% by weight, and the mixture was milled in a stainless steel hole.Then, the mixed powder was dried at 5130°C for 10 hours. The dry powder was molded in the same manner as in Example 1, and heated at 900°.
When the density was measured after sintering at C for 6 hours in an N2 gas atmosphere, the Sn addition company was 0.0001 to 0.01
In the case of a sintered body having a weight of 2=s, the density was 99.5 mm, which is the theoretical density. This shows that in the case of the coprecipitated ferrite raw material, a higher sintered density can be achieved at a lower sintering temperature. In addition, Sni addition is 0.00001 3it%
The densities of the sintered body and the 1.0 mft% sintered body were 98 coefficient and 98.2 CI), respectively, which were slightly lower than 99 coefficient. For comparison, we also prepared a sample without adding Sn.
It was fired under the same conditions. The obtained sintered body has a theoretical density of 95, and a sintered body with a density of 99 or higher has a theoretical density of 13.
It was obtained by firing at 00°C for 10 hours or more. Regarding the magnetic properties, when Sn is added by weight of 0.0001 to 0.1, the permeability is 5000 to 60 at the frequency IKHr.
00, and a sintered body with a theoretical density of 95 had a magnetic permeability of 500 to 1000.

以上のいずれの実施例においても、Snの添加量は、0
.0001重量幅からの01i量係の範囲内であれば、
充分焼結助剤としての効果を現わすことが本発明者によ
って認められた。0,1重量係以上添加すると、第2相
としてSnの酸化物が結晶粒界に析出し、密度が低下す
る。よって、Snの添加量は0.0001〜0.10]
il’lの範囲にあることが望ましい。
In any of the above examples, the amount of Sn added was 0.
.. If it is within the range of 01i quantity from 0001 weight width,
The inventors of the present invention have found that it is sufficiently effective as a sintering aid. If it is added in a weight ratio of 0.1 or more, Sn oxide will precipitate as a second phase at grain boundaries, resulting in a decrease in density. Therefore, the amount of Sn added is 0.0001 to 0.10]
It is desirable that it be in the range of il'l.

このSnの添加方法は、シュウ酸塩、ヨウ化物、酸化塩
、塩化物、フッ化物、酸化物等の形態で添加すればよい
が、出来るだけ焼結後に陰イオンが残留しないシュウ酸
塩、酢酸塩、酸化物が好ましい。
Sn may be added in the form of oxalate, iodide, oxide salt, chloride, fluoride, oxide, etc., but Sn may be added in the form of oxalate, iodide, oxide salt, chloride, fluoride, oxide, etc. Salts and oxides are preferred.

本発明のSn添加によシ、従来密度焼結に必要であった
1300〜1400℃の焼成温度が一般に800〜11
006Cぐらいまで低下するが、高密度焼結体が得られ
る焼成温度は、使用する原料の純度、粒径、形状、仮焼
条件、成形条件等によシ若干変化する。
Due to the Sn addition of the present invention, the firing temperature of 1,300 to 1,400 °C, which was conventionally required for density sintering, is generally 800 to 11 °C.
However, the firing temperature at which a high-density sintered body is obtained varies slightly depending on the purity, particle size, shape, calcination conditions, molding conditions, etc. of the raw materials used.

上記2つの実施例では、Mn −Znフェライトについ
てのみ説明したが、本発明はNi−Znフェライト等の
他のフェライトにも同様に適用できるものである。
In the above two embodiments, only Mn-Zn ferrite was explained, but the present invention can be similarly applied to other ferrites such as Ni-Zn ferrite.

発明の効果 本発明のSn添加による低温焼結フェライトは、焼成温
度の低下による20〜30係の省電力および焼成周辺装
置の調熱性の低下による装置の低価格化等のコスト低減
効果と、平均結晶粒径の微小化によるフェライトの機械
特性の改善効果がある。
Effects of the Invention The low-temperature sintered ferrite with the addition of Sn of the present invention has cost reduction effects such as power saving of 20 to 30 times due to lower firing temperature and lower cost of equipment due to lower heat control of firing peripheral equipment, and average This has the effect of improving the mechanical properties of ferrite by reducing the crystal grain size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は焼結フェライトにムけるSn添加量と焼結体密
度との関9Aヲ示すグラフである。 代理人 祿 本 義1 弘
FIG. 1 is a graph showing the relationship 9A between the amount of Sn added to sintered ferrite and the density of the sintered body. Agent Yoshimoto Hiroshi

Claims (1)

【特許請求の範囲】 1、 0.0001〜0.1重量憾の錫を他のフェライ
ト構成成分に添加混合し、この混合物を、成形・焼成。 してなる高密度焼結フェライト。
[Claims] 1. 0.0001 to 0.1 weight of tin is added and mixed with other ferrite constituents, and this mixture is molded and fired. High-density sintered ferrite.
JP59113383A 1984-06-01 1984-06-01 High density sintered ferrite Pending JPS60260467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59113383A JPS60260467A (en) 1984-06-01 1984-06-01 High density sintered ferrite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59113383A JPS60260467A (en) 1984-06-01 1984-06-01 High density sintered ferrite

Publications (1)

Publication Number Publication Date
JPS60260467A true JPS60260467A (en) 1985-12-23

Family

ID=14610907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59113383A Pending JPS60260467A (en) 1984-06-01 1984-06-01 High density sintered ferrite

Country Status (1)

Country Link
JP (1) JPS60260467A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141611A (en) * 1989-10-27 1991-06-17 Tokin Corp Fineparticle organization mn-zn ferrite material and its manufacture
JPH0442902A (en) * 1990-06-06 1992-02-13 Kitagawa Ind Co Ltd Ferrite molding and its manufacture
CN105272197A (en) * 2015-10-21 2016-01-27 北京科技大学 Synthesis method of hercynite powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03141611A (en) * 1989-10-27 1991-06-17 Tokin Corp Fineparticle organization mn-zn ferrite material and its manufacture
JPH0442902A (en) * 1990-06-06 1992-02-13 Kitagawa Ind Co Ltd Ferrite molding and its manufacture
JP3142858B2 (en) * 1990-06-06 2001-03-07 北川工業株式会社 Ferrite molded product and its manufacturing method
CN105272197A (en) * 2015-10-21 2016-01-27 北京科技大学 Synthesis method of hercynite powder

Similar Documents

Publication Publication Date Title
EP2141136B1 (en) Ni-zn-cu ferrite powder, green sheet and method of making a sintered ni-zn-cu ferrite body
CN103964828B (en) A kind of high-performance permanent magnetic ferrite material and preparation method thereof
EP1101736B1 (en) Mn-Zn ferrite and production thereof
US4440713A (en) Process for making fine magnetic ferrite powder and dense ferrite blocks
EP0105375B1 (en) Oxide-containing magnetic material capable of being sintered at low temperatures
JPS60260467A (en) High density sintered ferrite
JP2021141151A (en) Ferrite powder for bond magnet and production method thereof
US5387356A (en) Process of producing calcined materials for ferrite magnet
JPS5841727A (en) Manufacture of fine ferrite powder
JP2708160B2 (en) Ferrite manufacturing method
JPS6217841B2 (en)
CN106396658B (en) A kind of method that solid phase reaction prepares spinel type ferrite material precursor
JPH0696930A (en) Transformer using microcrystalline ferrite
US3461072A (en) Ferrimagnetic material for use at frequencies higher than 50 mc./sec. having reduced loss factor and higher quality factor
US4892672A (en) Process for controlling ferrous iron content in manganese zinc ferrite
JPH05190315A (en) Polycrystal mn-zn ferrite
Micheli Preparation of lithium ferrites by coprecipitation
JPH01172256A (en) Raw power for producing easy-to-sinter lead
JP2762531B2 (en) Ferrite magnetic body and method of manufacturing the same
CN112585706B (en) Ferrite powder for bonded magnet and method for producing same
JP2706975B2 (en) Method for producing Mn-Zn ferrite material
JPS63296319A (en) Manufacture of soft magnetic oxide material
JPH03141611A (en) Fineparticle organization mn-zn ferrite material and its manufacture
JP2627637B2 (en) Oxide magnetic material
JPS623070A (en) Manufacture of high density ferrite sintered body