JPS60260393A - Optical processing of light-transmitting conductive film - Google Patents

Optical processing of light-transmitting conductive film

Info

Publication number
JPS60260393A
JPS60260393A JP59117539A JP11753984A JPS60260393A JP S60260393 A JPS60260393 A JP S60260393A JP 59117539 A JP59117539 A JP 59117539A JP 11753984 A JP11753984 A JP 11753984A JP S60260393 A JPS60260393 A JP S60260393A
Authority
JP
Japan
Prior art keywords
light
conductive film
wavelength
optical processing
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59117539A
Other languages
Japanese (ja)
Other versions
JPH0356557B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Susumu Nagayama
永山 進
Kenji Ito
健二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP59117539A priority Critical patent/JPS60260393A/en
Publication of JPS60260393A publication Critical patent/JPS60260393A/en
Publication of JPH0356557B2 publication Critical patent/JPH0356557B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/24Ablative recording, e.g. by burning marks; Spark recording

Abstract

PURPOSE:To enable parts of a light-transmitting conductive film to be selectively removed in minute patterns without damaging a base provided as a substrate, by irradiating the film with pulses of laser light with a wavelength of not larger than 400nm through a light-transmitting mask. CONSTITUTION:A body in which a film 5 of a non-sublimable metal or an organic resin not transmitting pulses of laser light with a wavelength of not larger than 400nm is selectively provided on synthetic quartz 4 is used as the light- transmitting mask. The mask is placed on the light-transmitting conductive film 2 provided on a glass base 1 and comprising tin oxide or indium oxide as a main constituent, and the film 2 is irradiated with pulses of laser light with a wavelength of not larger than 400nm through the mask. By this, the irradiated parts of the film 2 on the irradiated side 3 are pulverized, followed by ultrasonic cleaning to produce the minute patterns.

Description

【発明の詳細な説明】 r産業上の利用分野J 本発明は太陽電池、液晶表示パネル等に用いられる透光
性導電膜の光による選択加工法に関する。
DETAILED DESCRIPTION OF THE INVENTION r Industrial Field of Application J The present invention relates to a selective processing method using light for transparent conductive films used in solar cells, liquid crystal display panels, etc.

「従来技術」 透光性導電膜の光加工に関しては、レーザ加工技術とし
てYAGレーザ′光(波長1.05μ)が主として用い
られている。
"Prior Art" Regarding optical processing of transparent conductive films, YAG laser' light (wavelength: 1.05 μm) is mainly used as a laser processing technique.

この波長によるレーザ加工方法においては、その光学的
エネルギが1 、23eVであるため、透光性導電膜(
以下CTFという)である一般な3〜4eVの光学的エ
ネルギバンド巾を有する酸化スズ、酸化インジューム(
ITOを含む)に対して十分な光吸収性を有していない
。このためレーザ加工の際、Qスイッチパルス光は平均
0.5〜IW(光)150μ、焦点距離40nm、パル
ス周波数3KHz、パルス巾60n秒の場合)の強い光
エネルギを加えて加工しなければならない。その結果、
このレーザ光によりCTF −の加工は行い得るが、同
時にその下側に設けられた基板例えばガラス基板に対し
てマイクロクラックを発生させてしまった。
In the laser processing method using this wavelength, the optical energy is 1.23 eV, so the transparent conductive film (
Tin oxide and indium oxide (hereinafter referred to as CTF) have a general optical energy band width of 3 to 4 eV.
(including ITO). For this reason, during laser processing, it is necessary to apply strong optical energy to the Q-switch pulsed light (with an average of 0.5 to IW (light) 150 μ, focal length 40 nm, pulse frequency 3 KHz, pulse width 60 ns). . the result,
Although CTF- can be processed using this laser beam, microcracks are generated in the substrate provided below, for example, a glass substrate.

「発明の解決しようとする問題J このYAG レーザを用いた加工での下地基板の微小ク
ラックは、レーザ光の円周と類似の形状を有し、「鱗」
状に作られてしまった。
"Problem to be Solved by the Invention J" Microcracks in the base substrate produced by processing using this YAG laser have a shape similar to the circumference of the laser beam, and are called "scales".
It was made into a shape.

更に、1〜5μ巾の微細パターンを多数同一平面に選択
的に形成させることかまった(不可能であった。さらに
照射後、加工部のCTF材料が十分に微粉末化していな
いため、CTFのエツチング溶液(弗化水素系溶液)に
よりエツチングを行わなければならなかった。
Furthermore, it was difficult (and impossible) to selectively form a large number of fine patterns with a width of 1 to 5 microns on the same plane.Furthermore, after irradiation, the CTF material in the processed area was not sufficiently pulverized. Etching had to be performed with an etching solution (hydrogen fluoride solution).

r問題を解決するための手段」 本発明は、上記の問題を解決するものであり、その照射
光として、400nm以下(エネルギ的には3、1eV
以上)の波長のパルスレーザを照射し、それをこの波長
を透光する石英好ましくは合成石英に非昇華性金属また
は有機被膜を選択的に形成したガラスマスクを透過して
照射することにより1〜5μ中の微細パターンをレジス
トを用いることなく選択加工することが可能となった。
The present invention solves the above problem, and uses irradiation light of 400 nm or less (in terms of energy, 3.1 eV).
By irradiating a pulsed laser with a wavelength of It has become possible to selectively process fine patterns within 5μ without using a resist.

「作用」 結果として下地のガラス板に対し何等の損傷なしにCT
Fの微細パターンの選択除去が可能となり、さらにアル
コール、アセトン等の洗浄液による超音波洗浄で十分と
なった。
``Action'' As a result, CT can be performed without any damage to the underlying glass plate.
It became possible to selectively remove fine patterns of F, and ultrasonic cleaning using a cleaning solution such as alcohol or acetone was sufficient.

「実施例1」 基板として厚さ1.1mmのガラス基板(1)を用いて
、この上面に弗素またはアンチモンが添加されている酸
化スズのCTF (2)を0.3 μの厚さに第1図(
A)に示す如く形成させた。
"Example 1" A glass substrate (1) with a thickness of 1.1 mm is used as a substrate, and a tin oxide CTF (2) doped with fluorine or antimony is coated on the upper surface to a thickness of 0.3 μm. Figure 1 (
It was formed as shown in A).

かかる被加工面を有する基板に対し、400nm以下の
波長の発光用のレーザ光源としてエキシマレーザ(Qu
estec Inc、製)を用いた。
For a substrate having such a surface to be processed, an excimer laser (Qu
estec Inc.) was used.

パルス光はKrFを用いた248nmとした。The pulsed light was 248 nm using KrF.

゛マスクは合成石英(4)にニッケル(5)を1500
人の厚さに選択的に形成したものを用いた。
゛Mask is made of synthetic quartz (4) with 1500 nickel (5)
A material selectively formed to the thickness of a human was used.

パルス巾2On秒、繰り返し周波数50Hz、平均出力
17W/16 X 20mmとした。これ以上の面積に
おいては、この大きさを繰り返し移動させつつ照射した
The pulse width was 2 On seconds, the repetition frequency was 50 Hz, and the average output was 17 W/16 x 20 mm. For areas larger than this, irradiation was performed while repeatedly moving this size.

するとこの酸化スズは1つのパルス光の照射で被照射面
(3)が完全に白濁化し、CTFが微粉末になった。こ
れをアセトン水溶液にて超音波洗浄(周波数29KHz
)を約1〜10分し、このCTFを除去した。下地のソ
ーダガラスはまったく損傷を受けていなかった。パター
ンとして3μ中のパターンをぬくことが可能であった。
When this tin oxide was irradiated with one pulsed light, the irradiated surface (3) completely became cloudy, and the CTF became a fine powder. This was ultrasonically cleaned with an acetone aqueous solution (frequency 29KHz).
) for about 1 to 10 minutes, and the CTF was removed. The underlying soda glass was completely undamaged. It was possible to cut out a pattern within 3μ.

「実施例2」 水素または弗素が添加された非単結晶半導体(主成分珪
素)(第1図(A)(1)上にITO(酸化スズが5重
量%添加された酸化インジュ−ム)(2)をioo。
"Example 2" ITO (indium oxide to which 5% by weight of tin oxide was added) ( 2) ioo.

人の厚さに電子ビーム蒸着法によって形成し被加工面と
した。
It was formed to a human thickness by electron beam evaporation and used as the surface to be processed.

さらにこの面上に第1図(B)に示す如く、マスクを合
成石英にポリイミドの有機樹脂(5)を選択的に形成し
てマスクを配設した。このマスクと基板とは1〜10μ
の間隔をあけた。さらにここを真空下(真空度10− 
’ torr以下)として400nm以下の波長のパル
ス光を加えた。波長は351nm(XeF)とした。パ
ルス巾2On秒、平均出力20W/16 X 20mm
”とした。すると被加工面のITOは昇華し下地の半導
体は損傷することなく微細パターンを形成せしめ残った
170間を絶縁化することができた。
Furthermore, as shown in FIG. 1(B), a mask was provided on this surface by selectively forming a polyimide organic resin (5) on synthetic quartz. This mask and substrate are 1 to 10μ
spaced apart. Furthermore, this is under vacuum (degree of vacuum 10-
'torr or less), pulsed light with a wavelength of 400 nm or less was applied. The wavelength was 351 nm (XeF). Pulse width 2On seconds, average output 20W/16 x 20mm
Then, the ITO on the surface to be processed sublimated, forming a fine pattern without damaging the underlying semiconductor, and insulating the remaining 170 mm.

かかるパターンは液晶表示装置における電極形成にきわ
めて好都合であった。
Such a pattern is extremely convenient for forming electrodes in liquid crystal display devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の作製方法を示す。 特許出願人 ! 3 竿 (A) (bン 0 FIG. 1 shows the manufacturing method of the present invention. patent applicant ! 3 Pole (A) (b-n 0

Claims (1)

【特許請求の範囲】 1、基板上の透光性導電膜の一主面に選択的に400n
m以下の波長の光を透過させない被膜の形成された透光
性マスクを通して前記4’OOnm以下の波長のパルス
レーザ光を照射して前記導電膜を選択的に除去すること
を特徴とした透光性導電膜の光加工方法。 2、特許請求の範囲第1項において、透光性導電膜は1
μ以下の厚さを有する酸化スズまたは酸化インジューム
を主成分としたことを特徴とした透光性導電膜の光加工
方法。 3、特許請求の範囲第1項において、400nm以下の
波長のレーザ光はエキシマレーザが用いられたことを特
徴とした透光性導電膜の光加工方法。 4、特許請求の範囲第1項において、パルス光の照射の
後、洗浄溶液にて超音波洗浄を行うことを特徴とした透
光性導電膜の光加工方法。 5、特許請求の範囲第1項において、透光性マスクは石
英ガラスに非昇華性金属または有機樹脂膜が透光しない
領域に設けられていることを特徴とする透光性導電膜の
光加工方法。
[Claims] 1. 400 nm selectively applied to one main surface of the transparent conductive film on the substrate
A light-transmitting device characterized in that the conductive film is selectively removed by irradiating the pulsed laser beam with a wavelength of 4'OOnm or less through a light-transmitting mask formed with a film that does not transmit light with a wavelength of 4'OOnm or less. Optical processing method for conductive films. 2. In claim 1, the transparent conductive film is 1
1. A method for optical processing of a translucent conductive film, characterized in that the main component is tin oxide or indium oxide having a thickness of μ or less. 3. The optical processing method for a transparent conductive film according to claim 1, wherein an excimer laser is used as the laser beam having a wavelength of 400 nm or less. 4. The optical processing method for a transparent conductive film according to claim 1, characterized in that after irradiation with pulsed light, ultrasonic cleaning is performed using a cleaning solution. 5. The optical processing of a transparent conductive film according to claim 1, characterized in that the transparent mask is provided on quartz glass with a non-sublimable metal or organic resin film in an area where no light is transmitted. Method.
JP59117539A 1984-06-08 1984-06-08 Optical processing of light-transmitting conductive film Granted JPS60260393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59117539A JPS60260393A (en) 1984-06-08 1984-06-08 Optical processing of light-transmitting conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59117539A JPS60260393A (en) 1984-06-08 1984-06-08 Optical processing of light-transmitting conductive film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP4193006A Division JPH05196949A (en) 1992-06-26 1992-06-26 Photoprocessing method for fine pattern

Publications (2)

Publication Number Publication Date
JPS60260393A true JPS60260393A (en) 1985-12-23
JPH0356557B2 JPH0356557B2 (en) 1991-08-28

Family

ID=14714295

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59117539A Granted JPS60260393A (en) 1984-06-08 1984-06-08 Optical processing of light-transmitting conductive film

Country Status (1)

Country Link
JP (1) JPS60260393A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196949A (en) * 1992-06-26 1993-08-06 Semiconductor Energy Lab Co Ltd Photoprocessing method for fine pattern
WO1997011589A1 (en) * 1995-09-21 1997-03-27 Fa. Lpkf Cad/Cam Systeme Gmbh Coating for the structured production of conductors on the surface of electrically insulating substrates
US6149988A (en) * 1986-09-26 2000-11-21 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US6261856B1 (en) 1987-09-16 2001-07-17 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US6404476B1 (en) 1989-09-01 2002-06-11 Semiconductor Energy Laboratory Co., Ltd. Device having an improved connective structure between two electrodes
JP2015004840A (en) * 2013-06-21 2015-01-08 スタンレー電気株式会社 Electric apparatus having transparent electrode and manufacturing method of the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113141A (en) * 1979-02-24 1980-09-01 Fujitsu Ltd Photo recording medium
JPS5670984A (en) * 1979-11-15 1981-06-13 Toppan Printing Co Ltd Laser engraving method and mask sheet used therefor
JPS5672445A (en) * 1979-11-19 1981-06-16 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of photomask
JPS5763291A (en) * 1980-10-03 1982-04-16 Tdk Corp Optical recording medium

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113141A (en) * 1979-02-24 1980-09-01 Fujitsu Ltd Photo recording medium
JPS5670984A (en) * 1979-11-15 1981-06-13 Toppan Printing Co Ltd Laser engraving method and mask sheet used therefor
JPS5672445A (en) * 1979-11-19 1981-06-16 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of photomask
JPS5763291A (en) * 1980-10-03 1982-04-16 Tdk Corp Optical recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6149988A (en) * 1986-09-26 2000-11-21 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US6261856B1 (en) 1987-09-16 2001-07-17 Semiconductor Energy Laboratory Co., Ltd. Method and system of laser processing
US6404476B1 (en) 1989-09-01 2002-06-11 Semiconductor Energy Laboratory Co., Ltd. Device having an improved connective structure between two electrodes
US6956635B2 (en) 1989-09-01 2005-10-18 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal device and manufacturing method therefor
JPH05196949A (en) * 1992-06-26 1993-08-06 Semiconductor Energy Lab Co Ltd Photoprocessing method for fine pattern
WO1997011589A1 (en) * 1995-09-21 1997-03-27 Fa. Lpkf Cad/Cam Systeme Gmbh Coating for the structured production of conductors on the surface of electrically insulating substrates
JP2015004840A (en) * 2013-06-21 2015-01-08 スタンレー電気株式会社 Electric apparatus having transparent electrode and manufacturing method of the same

Also Published As

Publication number Publication date
JPH0356557B2 (en) 1991-08-28

Similar Documents

Publication Publication Date Title
JPS6384789A (en) Light working method
US8598051B2 (en) Femtosecond laser-induced formation of submicrometer spikes on a semiconductor substrate
EP0324550B1 (en) Thin film pattern structure
TWI424479B (en) Method for patterning crystalline indium tin oxide by using femtosecond laser
JPH01245993A (en) Thin film working device
JPS6189636A (en) Optical processing
JPS60260393A (en) Optical processing of light-transmitting conductive film
EP0322258A2 (en) Method for producing thin film patterns on substrates
JPS63215390A (en) Light machining method
JPS60260392A (en) Optical processing of light-transmitting conductive film
JPH05196949A (en) Photoprocessing method for fine pattern
JP2616767B2 (en) Light treatment method
JPH02317A (en) Thin film working method
JP2706716B2 (en) Film processing apparatus and film processing method
JP2003133283A (en) Method for patterning circuit board
JP2808220B2 (en) Light irradiation device
JPS6384073A (en) Optical processing method of translucent conductive film
JP3797703B2 (en) Laser processing method for glass substrate
JPH0626207B2 (en) Light processing method
JP3374889B2 (en) Thin film processing method
JPH0652727B2 (en) Light processing method
CN110921613B (en) Laser mask etching method and system for controlling plasma by electromagnetic field
EP4159357A1 (en) Method of and apparatus for cutting a substrate or preparing a substrate for cleaving
JP2683687B2 (en) Light processing method
JPH01258413A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term