JPS60259356A - Offset control system of c-axis original point in complex nc lathe - Google Patents

Offset control system of c-axis original point in complex nc lathe

Info

Publication number
JPS60259356A
JPS60259356A JP11411084A JP11411084A JPS60259356A JP S60259356 A JPS60259356 A JP S60259356A JP 11411084 A JP11411084 A JP 11411084A JP 11411084 A JP11411084 A JP 11411084A JP S60259356 A JPS60259356 A JP S60259356A
Authority
JP
Japan
Prior art keywords
axis
original point
memory
signal
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11411084A
Other languages
Japanese (ja)
Inventor
Hideaki Sofue
祖父江 秀秋
Kazunori Iwai
岩井 和紀
Shinsaku Yasuda
安田 新作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okuma Corp
Original Assignee
Okuma Tekkosho KK
Okuma Machinery Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okuma Tekkosho KK, Okuma Machinery Works Ltd filed Critical Okuma Tekkosho KK
Priority to JP11411084A priority Critical patent/JPS60259356A/en
Publication of JPS60259356A publication Critical patent/JPS60259356A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/401Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes
    • G05B19/4015Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for measuring, e.g. calibration and initialisation, measuring workpiece for machining purposes going to a reference at the beginning of machine cycle, e.g. for calibration

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To enable highly accurate combination of phase without making a zig by providing an operating circuit for determining the original point offset from C-axis measurement memory and C-axis command memory thereby automatically controlling C-axis original point offset. CONSTITUTION:Upon provision of ideal positional data PRA of the referential machining face from NC program 7, a function generator 9 will generate a function signal SG to drive C-axis motor 12. It is predicted that the actual measuring position is between the positions 2A, 4A to rotate in said interval while searching through cutting feed and upon contact of a touch sensor 6 against the position Ps on the referential machining face, a signal SS is provided to the circuit 9 thereby C-axis motor 12 will rotate reversely to perform such functional operation as to return to the starting position 1A while since the signal SS will cause opening of a gate 15, the C-axis positional data ST upon contact of the sensor 6 against the referential machining face is stored in a measurement memory 16 to output the data MA to the operating circuit 17 while to set the value MC operated for the ideal value MB into the memory value 18 thus to determine the C-axis original point offset value.

Description

【発明の詳細な説明】 (発明の技術分野) この発明は、穴明は位置精度を特に高精度に要求する被
加工物に対して、高精度な位相合せを行なうための複合
数値制御旋盤におけるC軸層点オフセット制御方式に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) This invention relates to a complex numerically controlled lathe for performing highly accurate phase alignment for workpieces that require particularly high position accuracy for drilling. This invention relates to a C-axis layer point offset control method.

(発明の技術的背景とその問題点) 近年、数値制御(以下、単にNCとする)旋盤において
主軸の軸制御機能をもち、一般的な旋盤だけでなく穴明
は加工、フライス加工を可能とする機能をも併せ持つ複
合旋盤が開発されてきている。更にコストと時間を考え
て精密治具の省略とか、人間の手を少しでも省くロボッ
ト化などが考えらている。この中でC軸付複合旋盤にお
いて、被加工物に対して高精度な穴明は位置精度が要求
される場合、被加工物をチャッキングする際に高精度の
位相合せが必要であり、このため従来の方法としては各
被加工物に応じたチャッキング用治具を作成するなどし
て対処していた。これは治具作成のための多大な費用発
生と併せ、被加工物のチャッキングに際し、冶具を使用
するために発生する時間によるロスは大きく、またロボ
ット化による自動チャッキングなどを意図する場合には
、その工程において太き障害となってしまうといった問
題点があった。
(Technical background of the invention and its problems) In recent years, numerically controlled (hereinafter simply referred to as NC) lathes have a spindle control function, making it possible to perform not only general lathes but also hole drilling and milling. Compound lathes have been developed that also have the function of Furthermore, considering cost and time, consideration is being given to eliminating precision jigs and using robots to eliminate as much human labor as possible. Among these, in a C-axis compound lathe, if positional accuracy is required for highly accurate hole drilling on the workpiece, high-precision phase alignment is required when chucking the workpiece. Therefore, conventional methods have been to create chucking jigs suitable for each workpiece. This incurs a large amount of cost to create jigs, and when chucking workpieces, there is a large amount of time lost due to the use of jigs, and when automatic chucking by robotization is intended. However, there was a problem in that it became a thick obstacle in the process.

(発明の目的) この発明の目的は、穴明は位置精度を要求する被加工物
に対して、位相合せ用治具を特に作成することなしに、
通常チャックでより高精度な位相合せを行なうことので
きる複合NO旋盤におけるC輛原点オフセット制御方式
を提供することにある。
(Objective of the Invention) The object of the present invention is to drill a hole in a workpiece that requires positional accuracy without the need to create a phasing jig.
An object of the present invention is to provide a C car origin offset control system for a compound NO lathe, which allows more accurate phase alignment with a normal chuck.

(発明の概要) この発明は、C軸を回転することにより被加工物の加工
基準面の位置をサーチするためにたとえば刃物台に取付
けられたセンサと、このセンサが上記被加工物の加工基
準面をサーチした計測位置を記憶するC軸針測値メモリ
と、上記゛被加工物の加工基準面の理想位置を示すC軸
指令値メモリと、上記C軸針測値メモリ及びC軸指令値
メモリからC軸原点オフセットを決定するC軸原点オフ
セット値演算回路とを設け、C軸の原点オフセット制御
を自動的に行なうようにしたものである。
(Summary of the Invention) The present invention includes a sensor attached to a tool post, for example, to search for the position of a machining reference surface of a workpiece by rotating a C-axis, and a A C-axis needle measurement value memory that stores the measurement position at which the surface was searched, a C-axis command value memory that indicates the ideal position of the machining reference surface of the workpiece, and the C-axis needle measurement value memory and the C-axis command value. A C-axis origin offset value calculation circuit for determining the C-axis origin offset from memory is provided, and the C-axis origin offset control is automatically performed.

(発明の実施例) 第1図はこの発明を適用fることができるC軸付複合旋
盤の一部を示すもので、被加工物3−゛はチャック1及
び爪2により固定されており、C軸は矢印Nの回転方向
に位置が制御されるようになっている。そして、今リブ
4を加工基準位置として被加工物3の周縁に設けられて
いる複数個の穴5を加工しようとしており、タッチセン
サ6は金属面に接触すると信号を出力するようになって
いる。
(Embodiment of the Invention) Fig. 1 shows a part of a C-axis compound lathe to which the present invention can be applied, in which a workpiece 3-' is fixed by a chuck 1 and a jaw 2; The position of the C-axis is controlled in the rotational direction of arrow N. Now, a plurality of holes 5 provided on the periphery of the workpiece 3 are being machined using the rib 4 as the machining reference position, and the touch sensor 6 is designed to output a signal when it comes into contact with a metal surface. .

また、第2図はこの発明方式を適用した装置の構成例を
示すもので、 NOプログラム7がらの指令データPR
Aは指令読取回路8に入力され、指令読取回路8からの
指令信号SAは関数発生回路9に入力され、この関数発
生回路9からはどのような関数でC軸を制御して加工基
準面をサーチするかという関数信号SGが出力されて、
この関数信号SGによってC軸ドライブ回路11を介し
てC軸モータ12が駆動されるようになっている。また
、C軸検出器13はC軸に機械的に連結されてその位置
を検出し、その位置データSFがC軸検出器データ読取
回路14に入力されて所定の匙式のデータSTに変換さ
れ、ゲー)15に入力されている。ここで、タッチセン
サ6が被加工物3の加工基準面に接触すると接触信号S
Sが出力されることによりゲート15を開き、接触した
ときのデータSTがC軸針測値メモリ1Bに記憶される
と共に、接触信号SSは関数発生回路9にも入力されて
関数信号SGの関数を変更するようになっている。また
、指令読取回路8から出力される他の指令信号SBはC
軸指令値メモリ10に記憶され、そのデータMBとC軸
針測値メモリ1Bに記憶されているデータHAとがC軸
原点オフセット値演算回路17に入力され、ここで原点
オフセット値が決定されてそのデータNGがC軸原点オ
フセット値メモリ18に記憶される。
In addition, Fig. 2 shows an example of the configuration of a device to which this invention method is applied.
A is input to the command reading circuit 8, and the command signal SA from the command reading circuit 8 is input to the function generating circuit 9.The function generating circuit 9 uses what function to control the C-axis to create the machining reference plane. A function signal SG indicating whether to search is output,
The C-axis motor 12 is driven by this function signal SG via the C-axis drive circuit 11. Further, the C-axis detector 13 is mechanically connected to the C-axis to detect its position, and the position data SF is input to the C-axis detector data reading circuit 14 and converted into predetermined spoon-type data ST. , game) 15. Here, when the touch sensor 6 contacts the machining reference surface of the workpiece 3, a contact signal S
When S is output, the gate 15 is opened, and the data ST at the time of contact is stored in the C-axis needle measurement value memory 1B, and the contact signal SS is also input to the function generation circuit 9 to generate a function of the function signal SG. is set to change. Further, the other command signal SB output from the command reading circuit 8 is C
The data MB stored in the axis command value memory 10 and the data HA stored in the C-axis needle measurement value memory 1B are input to the C-axis origin offset value calculation circuit 17, where the origin offset value is determined. The data NG is stored in the C-axis origin offset value memory 18.

このような構成においてその動作を第3図を参照して説
明すると被加工物3はC軸位置に関してはそれ程精密さ
は考慮されずに、大体の位置にチャックlにチャッキン
グされており、加工基準面としての基準リブ4は理想的
な位置とは少しずれているのである。ここで、刃物台に
取付けられているタッチセンサ6を第1図に示すように
被加工物に近づけておき、ここから加工基準面をサーチ
開始するのであるが、NOプログラム7には既にその加
工基準面を仮定したプログラムが出来ており、その仮定
した位置、即ち理想位置に対し実際の位置をサーチして
計測し、その差をC軸原点オフセット値メモリ1Bにセ
ットすることにより、位相合せが完了することになる。
The operation in such a configuration will be explained with reference to FIG. 3. The workpiece 3 is chucked in the chuck l at the approximate position without considering the precision of the C-axis position, and the workpiece 3 is chucked in the chuck l at the approximate position, The reference rib 4 serving as a reference surface is slightly deviated from the ideal position. Here, the touch sensor 6 attached to the tool post is brought close to the workpiece as shown in Fig. 1, and the search for the machining reference plane is started from here, but the NO program 7 has already recorded the machining target surface. A program that assumes a reference plane has been created, and by searching and measuring the actual position relative to the assumed position, that is, the ideal position, and setting the difference in the C-axis origin offset value memory 1B, phase alignment can be performed. It will be completed.

ここにおいて、NGプログラム7から加工基準面の理想
位置データPRAが出力されると、関数発生回路9は関
数信号SGを発生して、第3図に示すような関数発生動
作によりC軸モータ12を駆動する。この作動は第3図
において、位置IAは今タッチセンサ6がサーチ開始さ
れる位置を示しており、サーチがここから開始される。
Here, when the ideal position data PRA of the machining reference plane is output from the NG program 7, the function generation circuit 9 generates the function signal SG, and the C-axis motor 12 is activated by the function generation operation as shown in FIG. drive This operation is shown in FIG. 3, where position IA indicates the position where the touch sensor 6 now starts searching, and the search starts from here.

そして、理想位置3Aに対して実際の計測位置はほぼ位
置2^と4Aの間にあるであろうと推測し、サーチ開始
位置IAから2AまではC軸モータは早送りで回転し1
位置2^から4Aまでは切削送りでサーチしながら回転
するというような関数発生動作をする。こうして、C軸
モータ12が回転してサーチを行なって行き、タッチセ
ンサ6が加工基準面の位置PSに接触すると、タッチセ
ンサ6は接触信号SSを関数発生回路9に入力すること
により、C軸モータ12は逆回転してサーチ開始位置I
Aに戻るような関数動作をする。これと共に接触信号S
Sはゲート15を開くから、タッチセンサ6が加工基準
面に接触したときのC軸位置データSTはC軸針測値メ
モリ16に記憶され、計測値データHAを出力する。一
方、C軸指令値メモリ】Oには加工基準面の理想位置デ
ータが記憶されており、その理想位置データMBと前述
の計測値データHAがC輌原点オフセット値演算回路1
7に入力され、理想値に対してのオフセット値を演算し
て得られたオフセットデータ肛をC軸原点オフセットメ
モリ値18にセットすることにより、加工基準面を基準
としたC軸原点オフセット値が決定されたことになる。
Then, it is estimated that the actual measurement position will be approximately between positions 2^ and 4A with respect to the ideal position 3A, and the C-axis motor rotates in rapid traverse from the search start position IA to 2A.
From positions 2^ to 4A, a function generation operation is performed in which the cutting feed rotates while searching. In this way, the C-axis motor 12 rotates and searches, and when the touch sensor 6 comes into contact with the position PS of the machining reference surface, the touch sensor 6 inputs the contact signal SS to the function generation circuit 9, thereby controlling the C-axis. The motor 12 rotates in the opposite direction to the search start position I.
Performs a functional operation that returns to A. Along with this, the contact signal S
Since S opens the gate 15, the C-axis position data ST when the touch sensor 6 contacts the processing reference surface is stored in the C-axis needle measurement value memory 16, and the measurement value data HA is output. On the other hand, the ideal position data of the machining reference plane is stored in the C-axis command value memory]O, and the ideal position data MB and the above-mentioned measurement value data HA are stored in the C-axis origin offset value calculation circuit 1.
7, and set the offset data obtained by calculating the offset value with respect to the ideal value to the C-axis origin offset memory value 18, the C-axis origin offset value based on the machining reference plane can be set. It has been decided.

以上のように、被加工物の1つの基準面を基準としてC
軸を制御させるようにしたので、どのようにチャフキン
グされようとも高精度の位相合せを行なうことが可能と
なった。ここで、タッチセンサ6としては金属部分に接
触すると電気信号が出力されるものとして説明したが、
この他光によって加工基準面をサーチする方法などによ
っても、同様な効果を上げることができる。
As described above, C
Since the axis is controlled, it is possible to perform highly accurate phase alignment no matter how chaffing occurs. Here, the touch sensor 6 has been described as one that outputs an electric signal when it comes into contact with a metal part.
Similar effects can also be achieved by a method of searching for a processing reference surface using light.

(発明の効果) 以−ヒのようにこの発明によれば、被加工物をラフな精
度でチャフキングしても、高精度な位相合せがなされた
と同じ結果となるので、位相合せ用治其の作成が不要と
なる他、ロボットによる自動チャッキングが可能となる
ため、極めてトータルコストの面ですぐれた複合NG旋
盤を提供できる。
(Effects of the Invention) As described below, according to the present invention, even if the workpiece is chaffed with rough accuracy, the result is the same as that of highly accurate phase matching. In addition to eliminating the need to create a lathe, automatic chucking by a robot becomes possible, making it possible to provide a composite NG lathe with extremely low total costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は被加工物がチャー7キングされた図、第2図は
この発明方式を実現するためのブロック図、第3図はC
軸モータがサーチする動きを示す図である。 l・・・チャック、2・・・爪、3・・・被加工物、4
・・・基準リブ、5・・・穴、6・・・タッチセンサ、
7・・・Ncプログラム、8・・・指令読取回路、9・
・・関数発生回路、lO・・・C軸指令値メモリ、11
・・・C軸ドライブ回路、12・・・C#Iモータ、1
3・・・C軸検出器、14・・・C軸検出器データ読取
回路、15・・・ゲート、1B・・・C軸針測値メモリ
、17・・・C軸原点オフセット値演算回路、18・・
・C@原点オフセット値メモ藝 f 図
Figure 1 is a diagram of the workpiece being charred, Figure 2 is a block diagram for realizing the method of this invention, and Figure 3 is a diagram of the C
It is a figure which shows the movement which a shaft motor searches. l... Chuck, 2... Jaw, 3... Workpiece, 4
...Reference rib, 5...hole, 6...touch sensor,
7...Nc program, 8...Command reading circuit, 9.
...Function generation circuit, lO...C-axis command value memory, 11
...C axis drive circuit, 12...C#I motor, 1
3...C-axis detector, 14...C-axis detector data reading circuit, 15...gate, 1B...C-axis needle measurement value memory, 17...C-axis origin offset value calculation circuit, 18...
・C@Origin offset value memo f Figure

Claims (1)

【特許請求の範囲】[Claims] C軸回りに回転することにより被加工物の加工基準面の
位置をサーチするためのセンサと、前記センサが前記被
加工物の加工基準面をサーチした計測位置を記憶するC
軸針測値メモリと、前記被加工物の加工基準面の理想位
置を示すC軸指令値メモリと、前記C軸針測値メモリー
及び前記C軸指令値メモリからC軸原点オフセットを決
定するC軸原点オフセット値演算回路とを具え、前記C
軸の原点オフセット制御を自動的に行なうようにしたこ
とを特徴とする複合NG旋盤におけるC軸層点オフセッ
ト制御方式。
A sensor for searching the position of the machining reference surface of the workpiece by rotating around the C axis, and a C that stores the measurement position at which the sensor searches for the machining reference surface of the workpiece.
a C-axis needle measurement value memory, a C-axis command value memory indicating the ideal position of the machining reference surface of the workpiece, and a C-axis origin offset determined from the C-axis needle measurement value memory and the C-axis command value memory. and an axis origin offset value calculation circuit,
A C-axis laminar point offset control method for a compound NG lathe, characterized in that axis origin offset control is automatically performed.
JP11411084A 1984-06-04 1984-06-04 Offset control system of c-axis original point in complex nc lathe Pending JPS60259356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11411084A JPS60259356A (en) 1984-06-04 1984-06-04 Offset control system of c-axis original point in complex nc lathe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11411084A JPS60259356A (en) 1984-06-04 1984-06-04 Offset control system of c-axis original point in complex nc lathe

Publications (1)

Publication Number Publication Date
JPS60259356A true JPS60259356A (en) 1985-12-21

Family

ID=14629374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11411084A Pending JPS60259356A (en) 1984-06-04 1984-06-04 Offset control system of c-axis original point in complex nc lathe

Country Status (1)

Country Link
JP (1) JPS60259356A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561511A (en) * 1991-09-03 1993-03-12 Murata Mach Ltd Phase matching method for work hole position of lathe

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566265U (en) * 1979-06-29 1981-01-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS566265U (en) * 1979-06-29 1981-01-20

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0561511A (en) * 1991-09-03 1993-03-12 Murata Mach Ltd Phase matching method for work hole position of lathe

Similar Documents

Publication Publication Date Title
US4281385A (en) Control system for a machine tool
CN102027426B (en) Method for numerical control and numerical control machine
JPH0238342B2 (en)
JPH0351548B2 (en)
JP2002224936A (en) Tool presetter and method for calculation of tool offset data
US6742422B1 (en) Numerically controlled lathe and method of cutting workpiece on the numerically controlled lathe
JPS5816983B2 (en) Automatic centering device
JP6881725B2 (en) Work processing method, spindle angle correction device and compound lathe
JPS6328541A (en) Setting of original point of work or the like on machine tool
JPS60259356A (en) Offset control system of c-axis original point in complex nc lathe
JP4271272B2 (en) Work machining method on lathe
JPH04256550A (en) Detection device for tip of cutting tool
JP2919754B2 (en) Backlash measurement and correction device for spherical or circular surface machining
JPS60180749A (en) Correction controlling method for machining reference point in numerically controlled lathe
JP2518173Y2 (en) Phase determination mechanism during loading
JPS632651A (en) Automatic detecting method for eccentric position of eccentric shaft
JPS6254653A (en) Phase alignment method
JPH03111148A (en) Machine tool
JPH03161248A (en) Indexing control device for tool rest of nc lathe
JPH0641088B2 (en) Machine tool work centering method
JPH0635082B2 (en) Cutting control method for numerically controlled lathe
JPH06246589A (en) Noncircular workpiece error correcting method by in-machine measurement
JP3361119B2 (en) Small diameter drilling method in lathe
JPH056847B2 (en)
JPS63318201A (en) Machining method for curved surface