JPS6025580A - Pipeline cleaning treatment - Google Patents

Pipeline cleaning treatment

Info

Publication number
JPS6025580A
JPS6025580A JP58131871A JP13187183A JPS6025580A JP S6025580 A JPS6025580 A JP S6025580A JP 58131871 A JP58131871 A JP 58131871A JP 13187183 A JP13187183 A JP 13187183A JP S6025580 A JPS6025580 A JP S6025580A
Authority
JP
Japan
Prior art keywords
pressure
pipe
value
cleaning
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58131871A
Other languages
Japanese (ja)
Inventor
橋本 定司
井上 「のぼる」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP58131871A priority Critical patent/JPS6025580A/en
Publication of JPS6025580A publication Critical patent/JPS6025580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cleaning In General (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明は管路清浄処理方法に関し、特に、清浄処理す
る管路に圧力センサを設け、予め準備したコンピュータ
にこの圧力センナの検出姶を処理させながら、管路状態
を正確に確認しつつ適切な清浄処理を行ない清浄作業の
品質保障を行4′にうことができるようにした管路清浄
処理方法である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cleaning a pipeline, and in particular, a pressure sensor is provided in a pipeline to be cleaned, and a pre-prepared computer processes the detection of the pressure sensor while checking the status of the pipeline. This is a pipe cleaning method that allows the quality of cleaning work to be guaranteed by carrying out appropriate cleaning while accurately confirming the cleaning process.

従来、地中埋設管、露出管、或いは構造物内部配管等の
管路清浄作業において初期検査や中間検査は現場担当者
の勘と経験に頼るところが多かった。
Conventionally, initial and intermediate inspections in pipe cleaning work for underground pipes, exposed pipes, or pipes inside structures have often relied on the intuition and experience of the person in charge at the site.

即ち、事前調査においては現場担当者が管路の概況を見
てどのような清浄方式を行なうか決めていた。又、その
清浄工程における中間検査に際(ては、管路端部を覗き
見て清浄結果を判断するが如くであった。
In other words, during the preliminary survey, the person in charge at the site looked at the general condition of the pipeline and decided what kind of cleaning method to use. Also, during intermediate inspections in the cleaning process, the cleaning results were judged by looking at the end of the pipe.

このような現場担当者の勘と経験にのみ頼る管路清浄処
理方法では、場合によっては誤判断による清浄不良を免
れることが出来ず、HA浄作桑の品質保障をすることが
できない。
Such a pipe cleaning method that relies only on the intuition and experience of the person in charge on site cannot avoid cleaning defects due to misjudgment in some cases, and cannot guarantee the quality of HA-purified mulberry.

この発明は、従来技術の上記欠点を改善するもので、管
路状態を正確に確認しつつ適切な清浄処理を行ない清浄
作業の品質保障を行なうことができるようにすることを
目的とする。
The present invention is intended to improve the above-mentioned drawbacks of the prior art, and aims to make it possible to ensure the quality of cleaning work by performing appropriate cleaning treatment while accurately confirming the state of the pipe line.

この目的を達成するためのこの発明に係る管路清浄処理
方法の特徴とするところは、清浄処理する管路に圧力セ
ンサを設け、予め準備したコンピュータのメモリ内に工
程毎の圧力検査判断規準値を記憶して設けると共に、前
記圧力センサの測定値と前記圧力検査判断規準値とを順
次比較して管路状態の判断をする比較手段を設け、前記
比較手段の初期及び清浄中間管路状態表示を確認しつつ
管路清浄作業を行なうことである。
The characteristic of the pipe line cleaning method according to the present invention for achieving this purpose is that a pressure sensor is provided in the pipe line to be cleaned, and pressure inspection judgment reference values for each process are stored in the memory of a computer prepared in advance. and a comparison means for sequentially comparing the measured value of the pressure sensor and the pressure inspection judgment reference value to determine the state of the pipe, and displaying the initial and clean intermediate state of the pipe for the comparison means. It is important to carry out pipe cleaning work while checking the following.

以下、この発明について実施例を上げ、詳細に説明する
Hereinafter, the present invention will be described in detail using examples.

作業を開始するに際しては、先ず初期検査が行なわれる
。この初期検査には管路の漏れ検査、スケールによる閉
塞度検査が必要である。
Before starting work, an initial inspection is performed. This initial inspection requires a leak test of the pipeline and a blockage test using a scale.

漏れ検査は被清浄管路の端部を密閉し、封入流体圧の圧
力降下を見る。
For leak testing, the end of the pipeline to be cleaned is sealed and the pressure drop in the sealed fluid pressure is observed.

第1図は初期検査の概況を示し、スケールSCの付着し
た被清浄管路1の端部に圧力センサ−8を設け、空気管
5に設けたバルブ7を曲番ノることにより初期空気圧を
封入するものである。
FIG. 1 shows an overview of the initial inspection. A pressure sensor 8 is installed at the end of the pipe line 1 to be cleaned to which the scale SC is attached, and the initial air pressure is determined by turning the valve 7 installed on the air pipe 5. It is to be enclosed.

第2図はコンピュータ3の制御ブロック図を示ず。圧力
センサSからの電気信号は、規準圧力9と管径等条件1
1とから圧力検査の判断規準値を算出する締出手段13
からの信号と共に比較手段15で比較される。比較手段
15は圧力の時間的降下値を判断する降下値判断手段1
7を右する。
FIG. 2 does not show a control block diagram of the computer 3. The electrical signal from the pressure sensor S is based on the standard pressure 9 and conditions 1 such as the pipe diameter.
Exclusion means 13 for calculating a judgment criterion value for pressure testing from 1
The comparison means 15 compares the signal with the signal from the . Comparison means 15 is drop value determining means 1 for determining the temporal drop value of pressure.
Turn 7 to the right.

¥111手段17からの信号はCRT19へ送られる。The signal from the ¥111 means 17 is sent to the CRT 19.

その他の判定手段27.43及び補正手段41について
は後述する。補正手段41は、例えば初期圧力poの設
定変更等の制御をすることができるものである。
Other determination means 27, 43 and correction means 41 will be described later. The correction means 41 is capable of controlling, for example, changing the setting of the initial pressure po.

第3図は圧力降下を検査づる時の制御フローブヤートを
示す。ステップ101で検査が開始され、ステップ10
2で圧力センサの値を入力づる。ステップ103で予め
メモリ内に入力されている規準圧力値と比較して、適正
圧力で検査を行なうようにする。例えば圧力センサの初
期値そのものを規準として圧力降下程度を知ることがで
きる。当該測定値はCRT19のグラフにプロットして
おく(ステップ104)。この時の圧力値はメモリ内に
1次記憶しておくのが良い(ステップ105)。ステッ
プ106では圧力センサの測定値が規準値(例えば初期
値)より大幅に低い場合には直ちにステップ169に移
りCRTにその画表示する。
FIG. 3 shows the control flow diagram when testing pressure drop. The inspection is started in step 101, and step 10
2. Enter the pressure sensor value. In step 103, the test is performed at an appropriate pressure by comparing it with a standard pressure value previously input into the memory. For example, the degree of pressure drop can be determined using the initial value of the pressure sensor itself as a standard. The measured values are plotted on a graph on the CRT 19 (step 104). It is preferable to temporarily store the pressure value at this time in the memory (step 105). In step 106, if the measured value of the pressure sensor is significantly lower than the standard value (for example, the initial value), the process immediately moves to step 169 and displays the image on the CRT.

この場合、その圧力値はCRT上に表わされているので
どの程度の漏れが生じているのかは明白である。
In this case, since the pressure value is displayed on the CRT, it is clear how much leakage is occurring.

ステップ106で漏れは全く無いか、或いは余り大きく
ないと判断された場合にはステップ107に移る。ステ
ップ107で、例えば所定の検査時間が経ったか否かが
判断され、測定続行の場合にはステップ108に移る。
If it is determined in step 106 that there is no leakage at all or that it is not very large, the process moves to step 107. In step 107, it is determined whether or not, for example, a predetermined inspection time has elapsed, and if the measurement is to be continued, the process moves to step 108.

漏れ測定は比較的長時間を要し、必ずしも連続した測定
は不要である。
Leakage measurements take a relatively long time and do not necessarily require continuous measurements.

従って、例えば10秒毎に測定を行なうべくステップ1
08で時間待ちをし、ステップ102に返るのである。
Therefore, for example, in order to take measurements every 10 seconds, step 1
At step 08, the process waits for a certain amount of time and returns to step 102.

所定時間経過しステップ107で終了時点を確認してス
テップ109に移る。ステップ109では測定終了の表
示を行ないステップ110で完了する。
After a predetermined period of time has elapsed, the end point is confirmed in step 107 and the process moves to step 109. At step 109, the completion of the measurement is displayed, and at step 110, the process is completed.

この実施例によれば漏れ検査は単に自動的に行なえるの
みならず、その内容はCRT上にグラフで表示すること
もでき、更に、その測定圧ノJ (+CIはメモリ内に
記憶させているので、所望にJ:り適宜記録紙等に取り
出づことができる。
According to this embodiment, the leakage test can not only be carried out automatically, but also its contents can be displayed in the form of a graph on the CRT. Therefore, it can be taken out onto recording paper or the like as desired.

次いで、初期検査では密閉度検査を行なう。Next, in the initial inspection, a tightness inspection is performed.

第4図は密閉度検査の概況を示し、一端にヘッダ23を
取り付け、このヘッダ23に圧力レン1)Sを設けると
共に空気或いは水等流体を送給づる配管25を接続して
いる。長さ史の被清浄管路σ〕他端は開放する。流体は
へラダ23側から開放端側へ流れ、圧力勾配を生ずる。
FIG. 4 shows an overview of the airtightness inspection, in which a header 23 is attached to one end, a pressure lens 1) S is provided on the header 23, and a pipe 25 for supplying fluid such as air or water is connected to the header 23. The length of the pipeline to be cleaned σ] The other end is open. The fluid flows from the spatula 23 side to the open end side, creating a pressure gradient.

開放端の圧力iよ大気圧paであり、圧力センサの測定
圧力をPとづる。
The pressure i at the open end is equal to the atmospheric pressure pa, and the pressure measured by the pressure sensor is denoted as P.

上記構成により、管路の閉塞度をめる一例を示す。An example of increasing the degree of blockage of the conduit with the above configuration will be shown.

管路に流体を通す場合、総損失Hをめる公式は、直管の
摩擦損失係数をλo1管の内径をdo。
When passing fluid through a pipe, the formula for calculating the total loss H is: λo1 is the friction loss coefficient of a straight pipe, and do is the inner diameter of the pipe.

直管の全長をuS継手類の損失をΣζ、管内の平均流速
をν、重力加速度をQとすると、Ho = <λO・u
/do+Σζ+1 ) )72 /2・q・・・■ となる。又、流りをQとすれば、 ・・・■ となる。
If the total length of the straight pipe is uS, the loss of the joints is Σζ, the average flow velocity in the pipe is ν, and the gravitational acceleration is Q, then Ho = <λO・u
/do+Σζ+1) )72 /2・q...■. Also, if the flow is Q, then...■.

ここに損失水頭は圧力差P−Paに相当する。Here, the head loss corresponds to the pressure difference P-Pa.

そこで、例えば流量を一定とし、被清rp管の摩擦損失
係数を220と仮定し、被清浄管の推定管径をd1損失
水頭を1−1とすれば、 となる。そこで、Σζ+1を無視すれば(d/do )
 ’ ”=2 ・ )lo /)l’5 −−−−・・
 −−−■よって、新管(内径do)の損失水頭Haを
公式■によってめ圧力勾配(P−F’a )を水頭圧に
模範づれば、rj1塞度Xは x=d/d’o = (2−1−1o /I−1>”と
してまる。
Therefore, for example, if the flow rate is constant, the friction loss coefficient of the RP pipe to be cleaned is assumed to be 220, and the estimated pipe diameter of the pipe to be cleaned is set to d1 loss head of 1-1, then the following equation is obtained. Therefore, if we ignore Σζ+1, (d/do)
'''=2 ・ )lo /)l'5 -----...
---■ Therefore, if the head loss Ha of the new pipe (inner diameter do) is expressed by the formula (■) and the pressure gradient (P-F'a) is modeled on the head pressure, rj1 blockage X is x = d/d'o = (2-1-1o /I-1>”).

上記計算式は一例にすぎず、この伯、管路の途中に2つ
の圧力センサを設けて、この圧力差から閉塞度Xをめる
ことも可能である。又、水流に限定されるものではなく
いずれの流体についても適宜な補正を行ないつつ適用で
きるものである。
The above calculation formula is only an example, and it is also possible to provide two pressure sensors in the middle of the conduit and determine the degree of occlusion X from the pressure difference. Further, the present invention is not limited to water flow, and can be applied to any fluid with appropriate correction.

被清浄管路の途中に2つの圧力センサを設け、この所定
距離を置いた2つの圧力レン1)の圧力勾配を新管理論
値と比較して閉塞度Xをめることも可能である。
It is also possible to determine the degree of occlusion X by installing two pressure sensors in the middle of the pipeline to be cleaned and comparing the pressure gradients of the two pressure lenses 1) spaced apart by a predetermined distance with the new management value.

第2図において、圧力センサSの測定kaは、規準圧力
Pa、管径り、管長叉等条件がら探足手段1aで算定さ
れた新管理論値と比較される。勾配判定手段27はこの
比較結果から閉塞度Xをめ、CRT19に表示する。
In FIG. 2, the measured value ka of the pressure sensor S is compared with the new control theory value calculated by the probe means 1a under conditions such as the standard pressure Pa, the pipe diameter, and the pipe length. The gradient determining means 27 determines the degree of occlusion X from this comparison result and displays it on the CRT 19.

第5図に圧力勾配を判断する制御フローチャートを示し
た。ステップ2C)1で開始され、ステップ202で圧
力値Pが読み込まれる。ステップ203で大気圧Pa1
管長髪、管径d等との関係から上記の如く閉塞度Xがめ
られる。構造物配管等において、管長愛、管径d等を決
定するのが困難場合には、実験値として比較規準値を定
めておき、この規準値と測定値を比較して閉穿度Xを定
めることも可能である。算出公式1′+予めROMメモ
リ内に収納しておけば良い。ステップ204では、この
閉塞度をCRT上に表示°リ−る。測定条件等の値はメ
モリ内に収納しておけば後で所望により出力できる事は
第3図で示した通りである。ステップ205では所定の
測定時間例えば15秒を終了したか否かを判断する。終
了していない場合にはステップ206で例えば3秒間待
ち、ステップ202に返る。ステップ202からステッ
プ2O5までの間を所定時間測定してステップ207で
終了及び閉塞度の平均値の表示をし、ステップ208で
測定完了する。
FIG. 5 shows a control flowchart for determining the pressure gradient. Starting in step 2C)1, a pressure value P is read in step 202. Atmospheric pressure Pa1 in step 203
The degree of occlusion X can be determined from the relationship with the length of the tube, the tube diameter d, etc. as described above. When it is difficult to determine the pipe length, pipe diameter d, etc. for structural piping, etc., set a standard value for comparison as an experimental value, and compare this standard value with the measured value to determine the degree of closure X. It is also possible. Calculation formula 1'+may be stored in the ROM memory in advance. In step 204, this degree of occlusion is displayed on the CRT. As shown in FIG. 3, values such as measurement conditions can be stored in the memory and output later as desired. In step 205, it is determined whether a predetermined measurement time, for example 15 seconds, has ended. If the process has not finished, wait for 3 seconds, for example, at step 206, and then return to step 202. The measurement is performed for a predetermined period of time from step 202 to step 2O5, and the measurement is completed in step 207 and the average value of the degree of occlusion is displayed, and the measurement is completed in step 208.

よってCRT上には各種の条件と共に閉塞度が表示され
、この閉塞度を考慮して次の作業を検問する。
Therefore, the degree of occlusion is displayed together with various conditions on the CRT, and the next task is checked in consideration of this degree of occlusion.

被清浄管路の閉塞度が明確どなれば、次いr、浄管方式
を決定づる。浄管方式には、大きく分t−夕で化学的方
式と機械的方式とがある。更に化学的方式は薬液清浄法
と併用法に分けられ、機械的方式は直接研磨法と高圧ジ
ェット法、更にリントブラスト法等の方法がある。一般
に、どの方式を採用するかは被清浄管路の初期検査の後
で決定するべきものである。この発明においては、既に
閉塞度Xも明らかとなっているのでより適切な浄管り式
を摘出することが可能である。
Once the degree of occlusion of the pipeline to be cleaned is clear, the cleaning method is then determined. There are two main types of purification methods: chemical methods and mechanical methods. Furthermore, chemical methods are divided into chemical cleaning methods and combination methods, and mechanical methods include direct polishing methods, high-pressure jet methods, and lint blasting methods. Generally, the decision on which method to use should be made after an initial inspection of the line to be cleaned. In this invention, since the degree of occlusion X has already been determined, it is possible to extract a more appropriate method for cleaning the canal.

閉塞度が算定された結果、閉塞度が小さい場合には直ち
に粒子の小さな高圧ジェット法で行ない、閉塞度の大き
い場合には薬液清浄法を行ってから後でサンドジェット
法を適用する等の判断をすることができ、研磨材の粒子
径、噴射圧力の調整を適切に行なうことができる。
As a result of calculating the degree of occlusion, if the degree of occlusion is small, a high-pressure jet method with small particles should be used immediately, and if the degree of occlusion is large, a chemical cleaning method is performed and then the sand jet method is applied later. The particle size of the abrasive and the injection pressure can be adjusted appropriately.

機械的方法として高圧ジェット法が適切であると判断さ
れた場合の例を掲げて、以下冷管作業について説明する
Cold pipe work will be described below, using an example where the high-pressure jet method is determined to be appropriate as a mechanical method.

第6図には冷管作業の概況を示した。コンプレッサ29
からの高圧空気は2本の配管31.33から送られ、配
管31からの高圧空気はヘッダ23に、配管33からの
高圧空気は研磨材タンク35に接続される。研磨材タン
ク35には砂、或いは樹脂等研磨材が収納されており、
高圧空気を混入して配管37を介してヘッダ23に研磨
材を送給する。被清浄管路1のヘッダ23には、適宜本
数の被清浄管路が接続されるのであるが、本例では被清
浄管路は1本の場合について示している。
Figure 6 shows an overview of the cold pipe work. compressor 29
The high pressure air from the pipe 31 is sent from two pipes 31 and 33, and the high pressure air from the pipe 31 is connected to the header 23, and the high pressure air from the pipe 33 is connected to the abrasive tank 35. The abrasive tank 35 stores an abrasive such as sand or resin.
The abrasive material is fed to the header 23 via the pipe 37 with high pressure air mixed therein. Although an appropriate number of pipes to be cleaned are connected to the header 23 of the pipe to be cleaned 1, this example shows the case where there is only one pipe to be cleaned.

ヘッダ23には圧力センサSが設けられている。The header 23 is provided with a pressure sensor S.

長さfL+の被清浄管路の末端には集塵機39が設けら
れ、冷管流体の集塵を行なっている。圧力センサSの出
力はコンピュータ3に入力しコンピュータ3にはC’R
T19が接続され、適宜の表示を行なっている。
A dust collector 39 is provided at the end of the pipe line to be cleaned having a length fL+, and collects dust from the cold pipe fluid. The output of the pressure sensor S is input to the computer 3, and the computer 3 receives C'R.
T19 is connected to perform appropriate display.

コンピュータ3には適宜キーボードを備える。The computer 3 is appropriately equipped with a keyboard.

ディスプレイ装置たるCRT19は]ンピコータ3から
の出力を得て数値表示、グラフ表示、着帽その他の所望
の表示を行なえるようにしている。
A CRT 19 serving as a display device receives the output from the pump coater 3 and is capable of displaying numerical values, graphs, hats, and other desired displays.

CRT19の右側に示す表示39a 〜39eは、現在
行なわれている作業状況を表示し、又、着帽等の表示を
行なうものである。
Displays 39a to 39e shown on the right side of the CRT 19 display the status of the work currently being carried out, and also indicate whether a person is wearing a hat or the like.

第6図に示した冷管作業中においては中間検査を行なう
ことができる。そして、冷管作業中における閉塞度の変
化を知ることにより、圧送空気の圧力を調整する等の補
正を行なうこともできる。
Intermediate inspections can be carried out during the cold pipe work shown in FIG. By knowing the change in the degree of blockage during cold pipe work, it is also possible to make corrections such as adjusting the pressure of the pumped air.

第2図ブロック図において補正手段41はこの補正を行
なうものである。又、その他、判定手段43ではコンプ
レッサ29、各配管での圧力、研磨材送出m等設定値の
管理を行ない、適宜の補正を行なうことを可能とするも
のである。
In the block diagram of FIG. 2, a correction means 41 performs this correction. In addition, the determining means 43 manages the set values of the compressor 29, the pressure in each pipe, the abrasive delivery m, etc., and makes it possible to make appropriate corrections.

なお、第6図においては空気圧式のものを示したけれど
も、窒素ガス、或いは水、その他の流体を使ったものに
ついても同様である。又、薬液清浄法等による場合には
所定時間冷管を行った後中間時点で閉塞度検査を行なっ
て行けば良い。
Although a pneumatic type is shown in FIG. 6, the same applies to a type using nitrogen gas, water, or other fluids. Furthermore, in the case of using a chemical cleaning method or the like, a degree of occlusion test may be performed at an intermediate point after the cold tube has been cooled for a predetermined period of time.

新管理論値或いは実験値と比べて適宜な冷管作業を行な
った後被清浄管路のコーティング作業を行なう。コーデ
ィング終了後最終検査を行なう。
After performing appropriate cold pipe work by comparing with the new control theory value or experimental value, the pipe line to be cleaned is coated. After the coding is completed, a final inspection will be performed.

最終検査においては、上記作業工程毎の圧力降下値、管
路の閉塞等ど合わせてコーティング終了後の圧力降下値
、管路閉塞度とを連記した作業記録を容易に得ることが
できることは明白である。
It is clear that in the final inspection, it is possible to easily obtain a work record that includes the pressure drop value for each work step, the degree of blockage of the pipe line, etc., as well as the pressure drop value after coating and the degree of blockage of the pipe line. be.

又、各工程毎の圧力降下値、管路閉塞度等を記録した上
記作業記録はグラフ表示することができるので、極めて
説得力のある正確なデータを呈示することが可能となる
Moreover, since the work record, which records the pressure drop value, degree of pipe blockage, etc. for each process, can be displayed in a graph, it is possible to present extremely convincing and accurate data.

上記説明から明らかなように、この発明は、清浄処IN
!する管路に圧力センサを設け、予め準備したコンピュ
ータのメモリ内に工程毎の圧力検査判断規準値を記憶し
て設けると共に、前記圧力センサの測定値と前記圧力検
査判断規準値とを順次比較して管路状態の判断をする比
較手段を設け、前記比較手段の初期及び中間管路状態表
示をJ11f認しつつ管路清浄作業を行なうことにした
ので、管路状態を正確に確認しつつ適切な清浄処理を行
ない、清浄作業の品質保障を行なうことができる。又、
管路状態に応じて適切な冷管方式を選択することができ
るので管路を損傷させることもなく、又、無駄なく適切
作業を行なえるので清浄作業を短縮することもできる。
As is clear from the above description, the present invention
! A pressure sensor is installed in the pipeline to be used, and the pressure inspection judgment standard value for each process is stored and provided in the memory of a computer prepared in advance, and the measured value of the pressure sensor and the pressure inspection judgment standard value are sequentially compared. We decided to install a comparison means to judge the condition of the pipeline by checking the initial and intermediate condition indications of the comparison means and perform the pipeline cleaning work while checking the initial and intermediate condition indications of the comparison means. It is possible to carry out thorough cleaning treatment and guarantee the quality of cleaning work. or,
Since an appropriate cold pipe method can be selected depending on the condition of the pipe, the pipe is not damaged, and the cleaning work can be shortened because the work can be carried out without waste.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示すもので、第1図は圧力降
下値を測定するための配置説明図、第2図はコンピュー
タの制御ブロック図、第3図は圧力降下値を計測するフ
ローヂト−1〜、第4図は管路の閉塞度を計測するため
の配置説明図、 第5図は圧力勾配を測定し、管路の閉塞度を粋出するた
めの70−ヂャート、 第6図は、高圧ジェット方式による冷管作業を説明する
配l!説明図。
The drawings show an embodiment of the present invention. FIG. 1 is an explanatory diagram of the arrangement for measuring the pressure drop value, FIG. 2 is a computer control block diagram, and FIG. 3 is a flowchart for measuring the pressure drop value. 1 to 4 are explanatory diagrams of the arrangement for measuring the degree of occlusion of the pipeline, Figure 5 is a 70-diagram for measuring the pressure gradient and determining the degree of occlusion of the pipeline, and Figure 6 is , an explanation of cold pipe work using the high-pressure jet method! Explanatory diagram.

Claims (3)

【特許請求の範囲】[Claims] (1) 清浄処理する管路に圧力センサを設け、予め準
備したコンピュータのメモリ内に工程毎の圧力検査判断
規準値を記憶して設けると共に、前記圧力センサの測定
値と前記圧力検査判断規準値とを順次比較して管路状態
の判断をする比較手段を設け、前記比較手段の管路の初
期及び清浄中間状態表示を確認しつつ管路清浄作業を行
なうことを特徴とする管路清浄処理方法。
(1) A pressure sensor is installed in the pipeline to be cleaned, and a pressure inspection judgment standard value for each process is stored and provided in the memory of a computer prepared in advance, and the measured value of the pressure sensor and the pressure inspection judgment standard value are stored. A pipe cleaning process characterized in that a comparison means is provided to judge the state of the pipe by sequentially comparing the results with the above, and the pipe cleaning work is performed while checking the initial and intermediate cleaning state display of the pipe by the comparison means. Method.
(2) 前記圧力検査判断規準値が、端部密封管路の圧
力降下基準値を含むものであることを特徴とする特許請
求の範囲第1項に記載した管路清浄処理方法。
(2) The pipe line cleaning method according to claim 1, wherein the pressure test judgment reference value includes a pressure drop reference value of the end-sealed pipe line.
(3) 前記圧力検査判断規準値が、管内通過流体の圧
力勾配基準値を含むものであることを特徴とする特許請
求の範囲第1項に記載した管路清浄処理方法。
(3) The pipe line cleaning method according to claim 1, wherein the pressure test judgment reference value includes a pressure gradient reference value of the fluid passing through the pipe.
JP58131871A 1983-07-21 1983-07-21 Pipeline cleaning treatment Pending JPS6025580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58131871A JPS6025580A (en) 1983-07-21 1983-07-21 Pipeline cleaning treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131871A JPS6025580A (en) 1983-07-21 1983-07-21 Pipeline cleaning treatment

Publications (1)

Publication Number Publication Date
JPS6025580A true JPS6025580A (en) 1985-02-08

Family

ID=15068081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131871A Pending JPS6025580A (en) 1983-07-21 1983-07-21 Pipeline cleaning treatment

Country Status (1)

Country Link
JP (1) JPS6025580A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533827U (en) * 1991-09-30 1993-05-07 新東ダストコレクタ株式会社 Equipment for treating exhaust gas containing acid gas
US9188984B2 (en) 1999-06-04 2015-11-17 Deka Products Limited Partnership Control of a personal transporter based on user position
US9545963B2 (en) 2002-07-12 2017-01-17 DEKA Products Limited Partnership LLP Control of a transporter based on attitude

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714198A (en) * 1980-06-30 1982-01-25 Hitachi Ltd Continuous cleaning equipment for heat exchanger of tube type

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714198A (en) * 1980-06-30 1982-01-25 Hitachi Ltd Continuous cleaning equipment for heat exchanger of tube type

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533827U (en) * 1991-09-30 1993-05-07 新東ダストコレクタ株式会社 Equipment for treating exhaust gas containing acid gas
US9188984B2 (en) 1999-06-04 2015-11-17 Deka Products Limited Partnership Control of a personal transporter based on user position
US9411336B2 (en) 1999-06-04 2016-08-09 Deka Products Limited Partnership Control of a personal transporter based on user position
US9442491B2 (en) 1999-06-04 2016-09-13 Deka Products Limited Partnership Control of a personal transporter based on user position
US9442492B2 (en) 1999-06-04 2016-09-13 Deka Products Limited Partnership Control of a personal transporter based on user position
US9545963B2 (en) 2002-07-12 2017-01-17 DEKA Products Limited Partnership LLP Control of a transporter based on attitude
US9400502B2 (en) 2004-09-13 2016-07-26 Deka Products Limited Partnership Control of a personal transporter based on user position
US9411339B2 (en) 2004-09-13 2016-08-09 Deka Products Limited Partnership Control of a personal transporter based on user position
US9429955B2 (en) 2004-09-13 2016-08-30 Deka Products Limited Partnership Control of a personal transporter based on user position
US9442486B2 (en) 2004-09-13 2016-09-13 Deka Products Limited Partnership Control of a personal transporter based on user position
US9459627B2 (en) 2004-09-13 2016-10-04 Deka Products Limited Partership Control of a personal transporter based on user position
US9529365B2 (en) 2004-09-13 2016-12-27 Deka Products Limited Partnership Control of a personal transporter based on user position

Similar Documents

Publication Publication Date Title
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
US4608857A (en) Method for checking pipes or pipe networks for leaks
US5369984A (en) Method and apparatus for testing of tank integrity of vehicle fuel systems
US20110029259A1 (en) Method for generating a diagnostic from a deviation of a flow meter parameter
JP2006349180A (en) Method and system for evaluating air-tightness of high pressure fuel gas storing device
CN113227642B (en) Method for detecting leaks in a gas network under pressure or vacuum and gas network
US4763518A (en) Method for measuring net internal volume of a receptacle containing an unknown volume of residual liquid
JPS6025580A (en) Pipeline cleaning treatment
US7222549B2 (en) Systems and methods for determining the location of a pig in a pipeline
CN109489741A (en) Fluid flow areal survey device and method
JP2002039905A (en) Apparatus and method for testing leakage resistance of piping
JP5749377B1 (en) Flow rate measuring method and flow rate measuring device
JP4281001B2 (en) Gas leak inspection device
CN207540930U (en) Liquid-propellant rocket engine gel viscosity field calibration measuring system
CN207540929U (en) Liquid-propellant rocket engine gel viscosity field calibration loading device
US11733123B1 (en) System and method for leak detection by flow matching
JPH1114493A (en) Method and device for airtightness test of gas piping
CN105841983B (en) A kind of closestool finished product test method
JPH02236134A (en) Integrity evaluation for tube or container
JP3798252B2 (en) Gas pipe leak inspection method and leak inspection apparatus
CN107741385A (en) Liquid-propellant rocket engine gel viscosity field calibration measuring system and method
JPS6046320B2 (en) How to detect the location of pipeline blockage
CN111537137B (en) Static pressure measurement method for dust-containing gas pipeline
JPS61249562A (en) Method and apparatus for detecting clogging of nozzle
JPH08261860A (en) Method and apparatus for detection of leak of gas