JPS60254745A - Manufacture of complementary type dielectric isolating substrate - Google Patents

Manufacture of complementary type dielectric isolating substrate

Info

Publication number
JPS60254745A
JPS60254745A JP59111311A JP11131184A JPS60254745A JP S60254745 A JPS60254745 A JP S60254745A JP 59111311 A JP59111311 A JP 59111311A JP 11131184 A JP11131184 A JP 11131184A JP S60254745 A JPS60254745 A JP S60254745A
Authority
JP
Japan
Prior art keywords
single crystal
type single
type
island
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59111311A
Other languages
Japanese (ja)
Inventor
Shigeru Shibata
柴田 滋
Koichi Togashi
富樫 孝市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP59111311A priority Critical patent/JPS60254745A/en
Publication of JPS60254745A publication Critical patent/JPS60254745A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/764Air gaps

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent the occurrence of the collapse of a shape in a region adjacent to an N type single crystal island among the corners of a P type single crystal island, by performing epitaxial growing with a mask for the N type single crystal island being extended in the inside, and effectively expanding a single crystal silicon region. CONSTITUTION:An N type single crystal substrate 1 is selectively masked by a silicon oxide film. Anisotropic etching is performed by alkali solution and an N type single crystal island 2 is formed. With a part in the vicinity of the island being made to remain by about 5mum, the N type single crystal island 2 is masked by a silicon oxide film 18. Then P type impurities are doped and epitaxial growing is performed. Thus a P type single crystal silicon layer 7 and a single crystal layer having many crystal defects called a transition region 8 are grown. A polycrystalline silicon layer 9 is deposited on the N type single island other than said layer and region. The polycrystalline silicon layer 9 becomes narrow to the inside of the N type single crystal island 2 by the length the mask 18 is extended to the inside of the N type single crystal island 2. The P type single crystal silicon layer 7 is expanded outward. Therefore, the occurrence of the collapse of the shape due to the etching speed when a P type single crystal island 11 is formed can be prevented in the part adjacent to the N type single crystal island 2 at the next process.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明は、P型またはN型の一伝導型の単結晶島と、前
記−伝導型と反対の伝導型の単結晶島とが互いに分離さ
れて多結晶シリコンにより支持された、相補型誘電体分
離基板の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention provides a method in which a single crystal island of one conductivity type of P type or N type and a single crystal island of a conductivity type opposite to the above-mentioned - conductivity type are separated from each other. The present invention relates to a method for manufacturing a complementary dielectrically isolated substrate supported by polycrystalline silicon.

口、従来の技術 このような相補型誘電体分離基板の従来の製造方法を、
第2図(a)〜(g)の断面図によシ説明する。
The conventional manufacturing method of such complementary dielectric isolation substrate is
This will be explained with reference to the sectional views shown in FIGS. 2(a) to 2(g).

まず第2図(a)のように1両方位(100)のN型単
結晶基板1を選択的にシリコン酸化膜でマスクし、アル
カリ溶液による異方性エツチングを行ないN型単結晶島
2を形成する。つぎに、同図(b)のように%N型単結
晶島2以外の領域をシリコン酸化膜3とシリコン窒化膜
4でマスクし、N型不純物をイオン注入して不純物濃度
の高いN型単結晶島埋込轡5を形成する。つぎに、同図
(C)のように、選択酸化を行ないN型単結晶島2を1
.5μm程度のシリコン酸化膜6でマスクし、シリコン
酸化膜3とシリコン窒化膜4を除去し、P型不純物をド
ープしたエピタキシ・・ル成長により、N型単結晶島2
の高さより厚く、P型単結晶シリコン層7及び遷移領域
8と呼ばれる結晶欠陥の多い単結晶シリコン層を成長さ
せ、多結晶シリコン層9を堆積させる。つぎに同図(d
)のように%P型単結晶シリコン層7をN型単結晶島2
と同程度の高さまで研削加工し、P型巣結晶島11をシ
リコン酸化膜1oでマスクしてアルカリ溶液による異方
性エツチングを行ない、P型巣結晶島11を形成する。
First, as shown in FIG. 2(a), an N-type single-crystal substrate 1 with 100 layers is selectively masked with a silicon oxide film, and anisotropic etching is performed using an alkaline solution to form N-type single-crystal islands 2. Form. Next, as shown in Figure (b), the area other than the N-type single crystal island 2 is masked with a silicon oxide film 3 and a silicon nitride film 4, and N-type impurity ions are implanted to form an N-type single crystal island with a high impurity concentration. A crystal island embedded 5 is formed. Next, as shown in the same figure (C), selective oxidation is performed to reduce the N type single crystal islands 2 to 1
.. Masked with a silicon oxide film 6 of approximately 5 μm, the silicon oxide film 3 and silicon nitride film 4 are removed, and N-type single crystal islands 2 are grown by epitaxial growth doped with P-type impurities.
A single crystal silicon layer thicker than the height of , and having many crystal defects called a P-type single crystal silicon layer 7 and a transition region 8 is grown, and a polycrystalline silicon layer 9 is deposited. Next, the same figure (d
), the P-type single-crystal silicon layer 7 is replaced by the N-type single-crystal island 2.
The P-type nested crystal islands 11 are masked with a silicon oxide film 1o and anisotropically etched with an alkaline solution to form the P-type nested crystal islands 11.

つぎに同図t6)のように、P型不純物をイオン注入し
て不純物濃度の高いP型単結晶島埋込層12を形成する
。つぎに同図(f)のように、N型及びP型の単結晶島
を2.5μm程度のシリコン酸化膜13でマスクし、エ
ピタキシャル成長によシ、多結晶シリコン層14を堆積
させる。つぎに同図(g)のように、同図(f)のAA
’まで多結晶シリコン層14を研削加工し、これを基準
として、N型単結晶島2とP型巣結晶島11を分離する
ようにBB/まで単結晶層を研削加工することによル、
相補型誘電体分離基板15を得ることができる。
Next, as shown at t6) in the figure, P-type impurity ions are implanted to form a P-type single crystal island buried layer 12 with a high impurity concentration. Next, as shown in FIG. 5F, the N-type and P-type single crystal islands are masked with a silicon oxide film 13 of about 2.5 μm, and a polycrystalline silicon layer 14 is deposited by epitaxial growth. Next, as shown in the same figure (g), the AA of the same figure (f)
By grinding the polycrystalline silicon layer 14 to ', and using this as a reference, grinding the single crystal layer to BB/ so as to separate the N-type single crystal island 2 and the P-type nested crystal island 11.
A complementary dielectric isolation substrate 15 can be obtained.

ハ1発明が解決しようとする問題点 上記の工程で単結晶島を作る時、エツチングの際、島の
四隅に発生する形状崩れを防ぐため、マスクパターンの
四隅に補償パターン(図示なし)を付けている。N型単
結晶島2では、補償パターンは単結晶層の上に位置する
が、P型巣結晶島11の場合、多結晶シリコン層9が遷
移領域8の方にくい込むため、補償パターンが多結晶シ
リコン層9と遷移領域8及び単結晶シリコン層7の上に
位置する。このような状態でエツチングを行なうと、多
結晶シリコンに対するエッチ速度と単結晶シリコンに対
するそれが異なるため、顕著な形状崩れがP型巣結晶島
の隅のうち、N型単結晶島に隣接した所に起きるという
欠点が生じる。
C1 Problems to be Solved by the Invention When forming single-crystal islands in the above process, compensation patterns (not shown) are attached to the four corners of the mask pattern in order to prevent deformation that occurs at the four corners of the islands during etching. ing. In the N-type single crystal island 2, the compensation pattern is located on the single crystal layer, but in the case of the P-type nested crystal island 11, the polycrystalline silicon layer 9 sinks into the transition region 8, so the compensation pattern is located on the polycrystalline layer. It is located on the silicon layer 9 , the transition region 8 and the single crystal silicon layer 7 . When etching is performed in such a state, the etch rate for polycrystalline silicon is different from that for single crystal silicon, so that the shape is noticeably distorted in the corners of the P-type nested crystal islands adjacent to the N-type single crystal islands. The disadvantage is that it occurs in

二0問題点を解決するためめ技術手段 本発明は、P型巣結晶島を形成する際、N型単結晶島の
上に作るマスクを、N型単結晶島の内側に狭め、エピタ
キシャル成長により作られる単結晶シリコン領域を実効
的に広げることによシ、上記欠点を解消し、N型単結晶
島とP型巣結晶島の形状を同程度に整えることができる
20 Technical Means for Solving Problems The present invention, when forming P-type nested crystal islands, narrows the mask formed on the N-type single-crystal islands inside the N-type single-crystal islands, and forms them by epitaxial growth. By effectively expanding the single-crystal silicon region, the above-mentioned drawbacks can be overcome and the shapes of the N-type single-crystal islands and the P-type nested crystal islands can be adjusted to the same degree.

ホ、実施例 つぎに本発明を実施例により説明する。E, Example Next, the present invention will be explained by examples.

第1図(a)〜(d)は本発明の一実施例の製造工程順
の基板断面図である。まず、第1図(a)のように、面
方位(106)のN型単結晶基板1を選択的にシリコン
酸化膜でマスクし、アルカリ溶液による異方性エツチン
グを行ない、N型単結晶島2を形成し、その周辺を5μ
m程度残してN型単結晶島2をシリコン酸化膜18でマ
スクする。つぎに同図(b)のように%P型不純物をド
ープしたエピタキシャル成長により、N型単結晶島2の
高さよシ厚く、P型巣結晶シリコン鳩7及び遷移領域8
と呼ばれる結晶欠陥の多い単結晶層を成長させ、それ以
外□のN型単結晶島上に多結晶シリコン層9を堆積させ
る。従来技術による第2図(C)と比較して、第1図(
a)のマスクをN型単結晶島2の内側へ寄せた分だけ、
多結晶シリコン層9がN型単結晶島2の内側に狭まシ、
P型単結晶シリコン層7が外側へ広がり、遷移領域8も
N型単結晶島2の方へ移動する。従って、遷移領域を含
めたP型巣結晶シリコン領域は実効的に広がる。つぎに
第1図(C)ように、P型単結晶シリコン層7をN型単
結晶島2と同程度の高さまで研削加工し1選択的にシリ
コン酸化膜10でマスクし、アルカリ溶液による異方性
エツチングを行ない、P型巣結晶島11を形成する。
FIGS. 1(a) to 1(d) are sectional views of a substrate in the order of manufacturing steps according to an embodiment of the present invention. First, as shown in FIG. 1(a), an N-type single-crystal substrate 1 with a plane orientation (106) is selectively masked with a silicon oxide film, and anisotropic etching is performed using an alkaline solution to form N-type single-crystal islands. 2 and the surrounding area with 5μ
The N-type single crystal island 2 is masked with a silicon oxide film 18, leaving about m. Next, as shown in the same figure (b), by epitaxial growth doped with % P-type impurity, the height of the N-type single crystal island 2 is increased, and the P-type nest crystal silicon dove 7 and the transition region 8 are grown.
A single crystal layer with many crystal defects called . . . is grown, and a polycrystalline silicon layer 9 is deposited on the other □ N-type single crystal islands. In comparison with FIG. 2(C) according to the prior art, FIG.
By the amount that the mask in a) is brought closer to the inside of the N-type single crystal island 2,
The polycrystalline silicon layer 9 is narrowed inside the N-type single crystal island 2,
The P-type single-crystal silicon layer 7 spreads outward, and the transition region 8 also moves toward the N-type single-crystal island 2 . Therefore, the P-type nested crystalline silicon region including the transition region is effectively expanded. Next, as shown in FIG. 1C, the P-type single-crystal silicon layer 7 is ground to the same height as the N-type single-crystal island 2, selectively masked with a silicon oxide film 10, and treated with an alkaline solution. Directional etching is performed to form P-type nested crystal islands 11.

前記第1図(b)において、P型単結晶シリコン領域7
が実効的に広がったため、補償パターンはP型巣結晶シ
リコン領域の上に位置する。従って、エッチ速度に起因
する形状崩れがP型巣結晶島の隅のうち、特にN型単結
晶島2に隣接した所に発生することを防上できる。つぎ
に同図(d)のように、同図IC)のシリコン酸化膜1
8,10を除去した後、P型巣結晶島11をシリコン酸
化膜16.シリコン窒化膜17でマスクし、N型不純物
をイオン注入して不純物濃度の高いN型単結晶島埋込層
5を形成する。その後、選択酸化によ)N型単結晶島2
を1.5μm程度のシリコン酸化膜でマスクし、それ以
外のシリコン酸化膜16.シリコン窒化膜17を除去し
て、P型不純物をイオン注入して不純物濃度の高いP型
巣結晶島埋込層を形成すると、第2図(e)に示すと同
じ基板が得られる。さらに、従来技術と同様の方法によ
り、第2図(g)に示す相補型誘電体分離基板15を得
る。
In FIG. 1(b), the P-type single crystal silicon region 7
has effectively expanded, so that the compensation pattern is located above the P-type nest crystalline silicon region. Therefore, it is possible to prevent deformation caused by the etch rate from occurring in the corners of the P-type nested crystal islands, particularly in the areas adjacent to the N-type single crystal islands 2. Next, as shown in the same figure (d), the silicon oxide film 1 of the same figure IC)
8 and 10, the P-type nest crystal island 11 is covered with a silicon oxide film 16. Masked with a silicon nitride film 17, N-type impurity ions are implanted to form an N-type single crystal island buried layer 5 with a high impurity concentration. Then, by selective oxidation) N-type single crystal island 2
is masked with a silicon oxide film of approximately 1.5 μm, and the remaining silicon oxide film 16. When the silicon nitride film 17 is removed and a P-type impurity is ion-implanted to form a P-type nested crystal island buried layer with a high impurity concentration, the same substrate as shown in FIG. 2(e) is obtained. Furthermore, a complementary dielectric isolation substrate 15 shown in FIG. 2(g) is obtained by a method similar to that of the prior art.

尚、上記実施例では、面方位(100)を用いたが、他
の面方位、たとえば(111)でも構わないし、N型単
結晶基板の代わりにP型巣結晶基板を用いてもよい。
In the above embodiments, the plane orientation (100) is used, but other plane orientations, such as (111), may be used, and a P-type nested crystal substrate may be used instead of the N-type single crystal substrate.

マスクを内側へ寄せてエピタキクヤル成長を行ない、単
結晶シリコン領域を実効的に広げることにより、P型巣
結晶島の隅のうち、N型単結晶島に隣接した領域におけ
る形状崩れの発生を防ぐ効果がある。
By moving the mask inward to perform epitaxial growth and effectively expanding the single crystal silicon region, it is effective in preventing shape collapse in the region adjacent to the N type single crystal island among the corners of the P type nested crystal island. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図+8)〜(d)は本発明の一実施例の製造工程順
の基板断面図、第2図(a)〜(g)は従来の相補型誘
電体分離基板の製造工程順の基板断面図である。 1・・・・・・N型単結晶基板、2・・・・・・N型単
結晶島、3.6,10,13,16.18・・・・・・
シリコン酸化膜、4.17・・・・・・シリコン窒化膜
、5・・・・・・N型単結晶島埋込層、7・・・・・・
N型単結晶シリコン層、8・・・・・・遷杉領域、9.
14・・・・・・多結晶シリコン層、11・・・・・・
P型巣結晶シリコン島、12・・・・・・P型巣結晶島
埋込層、15・・・・・・相補型誘電体分離基板。 茅 l 図
Figures 1+8) to (d) are cross-sectional views of a substrate in the order of manufacturing steps according to an embodiment of the present invention, and Figures 2(a) to (g) are substrates in the order of manufacturing steps of a conventional complementary dielectric isolation substrate. FIG. 1... N-type single crystal substrate, 2... N-type single crystal island, 3.6, 10, 13, 16.18...
Silicon oxide film, 4.17...Silicon nitride film, 5...N-type single crystal island buried layer, 7...
N-type single crystal silicon layer, 8... Sensugi region, 9.
14... Polycrystalline silicon layer, 11...
P-type nested crystal silicon island, 12... P-type nested crystalline island buried layer, 15... Complementary type dielectric isolation substrate. Kaya l figure

Claims (1)

【特許請求の範囲】[Claims] P型またはN型の一伝導型の単結晶半導体基板をシリコ
ン酸化膜で選択的にマスクし、アルカリ溶液を用いた異
方性エツチングにより一伝導型の単結晶島を形成し、こ
の単結晶島の表面のうちの周辺を除いた残りの部分をシ
リコン酸化膜でマスクし、前記−伝導型と反対の伝導型
の不純物をドープしたエピタキシャル成長により、前記
−伝導型単結晶島の高さよりも厚く該−伝導型単結晶島
の方に広がった反対伝導型の単結晶領域を前記基板の斜
出表面上に成長させると共に、前記マスクしたー伝導型
単結晶島の上に多結晶シリコンを堆積させ、つぎに、前
記反対伝導型の単結晶領域を前記−伝導型単結晶島と同
程度の高さまで研削加工し、つぎに、シリコン酸化膜で
マスクし、アルカリ溶液を用いた異方性エツチングによ
り反対伝導型の単結晶島を作シ、それから、前記−伝導
型および反対板溝型の単結晶島の上のシリコン酸化膜を
除去し、つぎに選択イオン注入により、前記−伝導型お
よび反対伝導型単結晶島にそれぞれ島自身と同じ伝導型
の高濃度の埋込層を形成し、さらにエピタキシャル成長
により、前記−伝導型および反対伝導型の単結晶島の上
に厚いシリコン酸化膜を介して多結晶シリコンを堆積さ
せた後、この多結晶シリコン層を研削加工して前記−伝
導型および反対伝導型単結晶島を互いに分離することを
特徴とする相補型誘電体分離基板の製造方法。
A P-type or N-type monoconductive single crystal semiconductor substrate is selectively masked with a silicon oxide film, and monoconductive single crystal islands are formed by anisotropic etching using an alkaline solution. The remaining part of the surface except for the periphery is masked with a silicon oxide film, and by epitaxial growth doped with an impurity of a conductivity type opposite to the -conductivity type, the silicon oxide film is formed to be thicker than the height of the -conductivity type single crystal island. - growing single-crystalline regions of opposite conductivity extending towards the conductivity-type single-crystal islands on the diagonal surface of the substrate, and depositing polycrystalline silicon on the masked conductivity-type single-crystal islands; Next, the opposite conductivity type single crystal region is ground to the same height as the − conductivity type single crystal island, and then masked with a silicon oxide film and anisotropically etched using an alkaline solution to reverse the etching process. A conduction type single crystal island is created, and then the silicon oxide film on the -conduction type and opposite plate groove type single crystal islands is removed, and then selective ion implantation is performed to form the -conduction type and opposite conduction type single crystal islands. A highly concentrated buried layer of the same conductivity type as the island itself is formed on each single crystal island, and then a polycrystalline layer is formed on the single crystal islands of the -conductivity type and the opposite conductivity type via a thick silicon oxide film by epitaxial growth. A method for manufacturing a complementary dielectric isolation substrate, characterized in that after silicon is deposited, the polycrystalline silicon layer is ground to separate the - conduction type and opposite conduction type single crystal islands from each other.
JP59111311A 1984-05-31 1984-05-31 Manufacture of complementary type dielectric isolating substrate Pending JPS60254745A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59111311A JPS60254745A (en) 1984-05-31 1984-05-31 Manufacture of complementary type dielectric isolating substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59111311A JPS60254745A (en) 1984-05-31 1984-05-31 Manufacture of complementary type dielectric isolating substrate

Publications (1)

Publication Number Publication Date
JPS60254745A true JPS60254745A (en) 1985-12-16

Family

ID=14558007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59111311A Pending JPS60254745A (en) 1984-05-31 1984-05-31 Manufacture of complementary type dielectric isolating substrate

Country Status (1)

Country Link
JP (1) JPS60254745A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422299A (en) * 1989-09-11 1995-06-06 Purdue Research Foundation Method of forming single crystalline electrical isolated wells

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422299A (en) * 1989-09-11 1995-06-06 Purdue Research Foundation Method of forming single crystalline electrical isolated wells

Similar Documents

Publication Publication Date Title
US5152857A (en) Method for preparing a substrate for semiconductor devices
JPH0338857A (en) Method of manufacturing semiconductor device and semiconductor isolating structure
US3911559A (en) Method of dielectric isolation to provide backside collector contact and scribing yield
US3997378A (en) Method of manufacturing a semiconductor device utilizing monocrystalline-polycrystalline growth
KR100353174B1 (en) Method for fabrication of silicon on insulator substrates
US4635344A (en) Method of low encroachment oxide isolation of a semiconductor device
JPS60254745A (en) Manufacture of complementary type dielectric isolating substrate
JPS6273667A (en) Manufacturing semiconductor element
JPS60254746A (en) Manufacture of complementary type dielectric isolating substrate
JPS61228649A (en) Manufacture of complementary type dielectric isolating substrate
JPS6244853B2 (en)
JP3157595B2 (en) Dielectric separation substrate
JPS60124837A (en) Manufacture of complementary dielectric isolation substrate
JPS60752A (en) Manufacture of semiconductor device
JPS59165435A (en) Manufacture of semiconductor device
JPH0421343B2 (en)
JPS63107040A (en) Manufacture of semiconductor device
JPS6122465B2 (en)
JPH01241158A (en) Manufacture of semiconductor integrated circuit
JPS61285754A (en) Manufacture of semiconductor device
JPS60164333A (en) Manufacture of dielectric isolated substrate
JPH01238033A (en) Dielectric isolation type semiconductor substrate and its manufacture
JPS60101944A (en) Manufacture of substrate insulated and isolated with dielectric material
JPS60147130A (en) Manufacture of dielectric isolated substrate
JPS61184844A (en) Manufacture of complementary type dielectric isolating substrate