JPS60253164A - Electrode material - Google Patents

Electrode material

Info

Publication number
JPS60253164A
JPS60253164A JP59110461A JP11046184A JPS60253164A JP S60253164 A JPS60253164 A JP S60253164A JP 59110461 A JP59110461 A JP 59110461A JP 11046184 A JP11046184 A JP 11046184A JP S60253164 A JPS60253164 A JP S60253164A
Authority
JP
Japan
Prior art keywords
cloth
carbon
fabric
battery
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59110461A
Other languages
Japanese (ja)
Other versions
JPH0552034B2 (en
Inventor
Shokei Shimada
島田 将慶
Tetsuo Fukatsu
鉄夫 深津
Yasuhiro Iizuka
飯塚 康広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP59110461A priority Critical patent/JPS60253164A/en
Publication of JPS60253164A publication Critical patent/JPS60253164A/en
Publication of JPH0552034B2 publication Critical patent/JPH0552034B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE:To obtain an electrode material of Fe-Cr battery which suppresses generation of hydrogen at the negative terminal during the charging and enhances a total energy efficiency of battery by utilizing a carbon property material having a particular pseudo graphite fine crystal structure. CONSTITUTION:A carbon property material, which provides pseudo graphite fine crystal structure where the <002> plane interval obtained from the wide range X-ray analysis is 3.70Angstrom or less in average and orientation of graphite layer for fiber axis is 30 or more and provides a number of combined oxygen atoms at the carbon material surface which is 3% or more of the carbon stoms, is used as the electrode material. Fur example, a cloth obtained by spinning and clothing from the recovered cellulose fiber of 1.5 deniel is subjected to the ammonium chloride processing, followed by flame resistant processing under the nitrogen gas flow at 270 deg.C. Thereafter, a temperature rise rate per hour of 400 deg.C is iraised up to 850 deg.C. The cloth is held under such condition for 30min and thereafter is cooled in order to obtain a carbon fiber cloth in the thickness of 1.3mm.. The cloth is then subjected again to the heat processing of 1,600 deg.C in the inactive gas ambient and is cooled. Thereafter, the cloth is subjected to the heat processing for 13min at 850 deg.C under the inactive gas having partial pressure of oxygen of 200Torr and is then taken out from such processing. Thereby, a cloth H, where d002=3.67Angstrom , z>=50, O/C=10.2%, can be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は新規な電極材に関するものであり、さらに詳し
くは特定の結晶構造及び表面結合酸素量を有してなる炭
素質材料よりなる電極材に関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a novel electrode material, and more specifically to an electrode material made of a carbonaceous material having a specific crystal structure and surface-bound oxygen content. It is related to.

[従来技術との関係J 1973年のエネルギー危機以来エネルギー問題が広く
各層で認識される様になって来た。新しいエネルギー源
の開発と同時に発生したエネルギーを有効に利用するエ
ネルギーの変換、貯蔵、輸送、利用を含めたシステムの
開発も重要となって来ている。貯蔵を例にとれば、将来
電源構成で大きな比重を占めると予想されている原子力
1石炭。
[Relationship with Prior Art J Since the energy crisis of 1973, energy problems have become widely recognized by all walks of life. Along with the development of new energy sources, it is also becoming important to develop systems that effectively utilize the energy generated, including energy conversion, storage, transportation, and utilization. Taking storage as an example, nuclear power and coal are expected to account for a large proportion of the power source mix in the future.

火力等の大型発電では一定の出力を保って定常発電する
ことが高い効率を保つ上で必要であり、夜間の金利電力
を適切に貯蔵して昼間の需要増大時にこれを放出し、需
要の変動に対応させる(ロードレベリング)ことのでき
る電力貯蔵技術への要求が強くなって来ている。現在で
も主要発電設備の年間稼動率は60%を切っており、低
下が続いている。
In large-scale power generation such as thermal power generation, it is necessary to maintain a constant output and generate power at a high level in order to maintain high efficiency.It is necessary to appropriately store interest rate electricity at night and release it when demand increases during the day to reduce demand fluctuations. There is a growing demand for power storage technology that can accommodate (load leveling). Even now, the annual operating rate of major power generation facilities is below 60% and continues to decline.

電力貯蔵の方法には、実用化されてはいるが送電による
ロスがあり、立地に制約の加わって来ている揚水発電の
他に、ffr型2次電池、フライホイール、圧縮空気、
超電導等の各種の方法が検討されているが、新型電池に
よる電気化学操作が有力であり5ここ当分の間1輸送を
含めた解決システムとして1wA水発電に替る最も実現
性の高い方式と考えられている。又新型2次電池は、太
陽光、風力、波力等の自然エネルギーを利用した発電の
バックアップ装置、或いは電気自動車用電池としても期
待が寄せられている。上記目的に適用できる2次電池と
して、鉛蓄電池、ナトリウム−硫黄電池、リチウム−硫
化鉄電池、金属−ハロゲン電池、レドックスフロー形電
池等が現在開発されている。
In addition to pumped-storage power generation, which has been put into practical use but suffers from losses due to power transmission and is subject to restrictions on location, there are also FFR type secondary batteries, flywheels, compressed air,
Although various methods such as superconductivity are being considered, electrochemical operation using a new type of battery is the most promising method.5For the time being, it is considered to be the most feasible method to replace 1WA water power generation as a solution system including transportation. ing. The new type of secondary battery is also expected to be used as a backup device for power generation using natural energy such as sunlight, wind, and wave power, or as a battery for electric vehicles. Lead storage batteries, sodium-sulfur batteries, lithium-iron sulfide batteries, metal-halogen batteries, redox flow batteries, and the like are currently being developed as secondary batteries that can be applied to the above purpose.

中でもレドックスフロー2次電池は1次の特徴をもち、
米国、日本で開発が急速に進められている。該電池では
、充放電時の電気化学的エネルギー変化を行なわせる流
通型電解槽と活物質であるレドックス水溶液を貯蔵する
タンクが完全に分離しているため、タンク容量を変更す
るだけで電力貯蔵量を変えることができること、従って
長時間。
Among them, redox flow secondary batteries have primary characteristics,
Development is progressing rapidly in the United States and Japan. In this battery, the flow-through electrolytic cell that changes electrochemical energy during charging and discharging and the tank that stores the redox aqueous solution that is the active material are completely separated, so the amount of electricity stored can be increased simply by changing the tank capacity. can be changed and therefore for a long time.

大容量の電力貯蔵に適していること、液流通型であるた
め電池出力を調整しやすいこと、電池停止時の自己放電
が殆んどなく、風力・太陽発電などの自然エネルギー発
電のバックアップに適していること等の秀れた特徴があ
る。
Suitable for large-capacity power storage, easy to adjust battery output because it is a liquid flow type, and almost no self-discharge when the battery is stopped, making it suitable for backing up natural energy power generation such as wind and solar power generation. It has excellent features such as:

しかし、該電池を実用化するためには、他の新型2次電
池と同様に、解決しなければならない問題点が内在して
いる。即ち、レドックスフロー2次電池の中でも現在最
も開発の進んでいるものは正極活物質として塩化鉄水溶
液、負極活物質として塩化クロム水溶液を用いる鉄−ク
ロムレドックスフロー2次電池(以下Fe−Cr[池と
略す)であり、U電池の電極材には耐薬品性があり、導
電性を有する通常の炭素繊維集合体が用いられている。
However, like other new types of secondary batteries, there are inherent problems that must be solved in order to put this battery into practical use. In other words, the one that is currently the most advanced in development among redox flow secondary batteries is the iron-chromium redox flow secondary battery (hereinafter referred to as Fe-Cr), which uses an aqueous iron chloride solution as the positive electrode active material and a chromium chloride aqueous solution as the negative electrode active material. ), and the electrode material of the U battery uses an ordinary carbon fiber aggregate that has chemical resistance and conductivity.

また該電池における解決すべき問題点は負極におけるク
ロムイオン(水溶液中ではクロロアコ錯体となっている
)の酸化還元反応である。正極での鉄イオンの酸化還元
反応は充放電時において反応速度が比較的速く副反応も
生起しないのでさほど問題ではないが鉄イオンに比べて
錯交換反応を含むクロム錆イオンの酸化還元反応が遅い
こと。
A problem to be solved in this battery is the redox reaction of chromium ions (which form a chloroaco complex in an aqueous solution) at the negative electrode. The redox reaction of iron ions at the positive electrode has a relatively fast reaction rate during charging and discharging, and side reactions do not occur, so it is not a big problem, but compared to iron ions, the redox reaction of chromium rust ions, including complex exchange reactions, is slower. thing.

つまり電池の電導度が低いこと、又充電時に水素が発生
し電池の電流効率が下がり易いこと等が特に挙げられる
問題点なのである。
In other words, the problems include the low conductivity of the battery, and the fact that hydrogen is generated during charging, which tends to reduce the current efficiency of the battery.

このように従来のFe−Cr電池には上述した如き問題
が内在するが、この様な点は電極材の選択とも大いに関
係する。即ち、充放電時の電気化学反応は決緊繊維表面
で進行するので、充電時の水素ガスの発生量を抑止し、
電流効率及び電導度(酸化還元反応の速さに関係)を高
め得る電極材の選定が重要となってくる。
As described above, conventional Fe--Cr batteries have inherent problems as described above, but these points are also closely related to the selection of electrode materials. In other words, since the electrochemical reaction during charging and discharging proceeds on the surface of the fiber, the amount of hydrogen gas generated during charging is suppressed,
It is important to select an electrode material that can increase current efficiency and conductivity (related to the speed of redox reaction).

「発明の目的J 本発明者らはかかる事情に鑑み電池のトータルエネルギ
ー効率を高め得るFe−Cr電池の電極材について鋭意
検討した結果1本発明に到達した。
Purpose of the Invention J In view of the above circumstances, the present inventors have intensively studied electrode materials for Fe--Cr batteries that can improve the total energy efficiency of the battery, and as a result, have arrived at the present invention.

「発明の構成」 即ち、本発明は広角X線解析よりめた<OO2>面間隔
が平均3.70 A以下であり、また繊維軸に対する黒
鉛層の配向度が30以上の擬黒鉛微結晶構造を有し、か
つ炭材表面の結合酸素原子数が炭素原子数の少なくとも
3%である炭素質材料を電極材に用いるものである。
"Structure of the Invention" That is, the present invention provides a pseudographite microcrystalline structure in which the <OO2> plane spacing determined by wide-angle X-ray analysis is 3.70 A or less on average, and the degree of orientation of the graphite layer with respect to the fiber axis is 30 or more. A carbonaceous material having the following properties and the number of bonded oxygen atoms on the surface of the carbonaceous material is at least 3% of the number of carbon atoms is used for the electrode material.

このような電極材を用いることにより1電池の特性値で
ある電流効率及び電導度が改善されることになる。換言
すれば、上述の如く広角X線解析(解析方法は後述する
)よりめた<002>面間隔が平均3.70λ以下であ
り、またm離軸に対する黒鉛層の配向度が30以上の擬
黒鉛微結晶構造を有する炭素質材料を電極材に用いるこ
とにより。
By using such an electrode material, the current efficiency and conductivity, which are characteristic values of one battery, are improved. In other words, as described above, the <002> plane spacing determined by wide-angle X-ray analysis (the analysis method will be described later) is 3.70λ or less on average, and the degree of orientation of the graphite layer with respect to m off-axis is 30 or more. By using a carbonaceous material with a graphite microcrystalline structure as an electrode material.

充電時負極における水素発生量が抑止され、電流効率を
著しく高め得ることができた。<002>面間隔が3.
70人を超え、しかも繊維軸に対する黒鉛層の配向度が
30未満の結晶性を有する炭素質材料を用いる場合は充
電時負極における水素発生量が大きく、電流効率を高め
ることはできない。
The amount of hydrogen generated at the negative electrode during charging was suppressed, and the current efficiency could be significantly increased. <002> plane spacing is 3.
When using a carbonaceous material with crystallinity in which the number of people exceeds 70 and the degree of orientation of the graphite layer with respect to the fiber axis is less than 30, the amount of hydrogen generated at the negative electrode during charging is large and the current efficiency cannot be improved.

この様な結晶構造をもつ炭素質材料を製造するには配向
性の低い材料を無緊張下に炭化することが好ましい。高
配向材料t−原料としたり緊張状態あるいは延伸下で炭
化すれば繊維軸に対する黒船層が配向をうけ(つまり配
向度が30未満になり)上述の効果が奏され得ない。
In order to produce a carbonaceous material having such a crystal structure, it is preferable to carbonize a material with low orientation under no tension. If a highly oriented material is used as a t-raw material or is carbonized under tension or stretching, the black ship layer relative to the fiber axis will be oriented (that is, the degree of orientation will be less than 30), and the above-mentioned effects cannot be achieved.

一方、前述の如く炭材表面の結合酸素原子数の炭素原子
数に対する割合(−以下0/C比という。
On the other hand, as mentioned above, the ratio of the number of bonded oxygen atoms to the number of carbon atoms on the surface of the carbon material (-hereinafter referred to as 0/C ratio).

表面分析については後述のESCAによる)が3%以上
(好ましくは6〜16チ)の炭素質材料を電極材に用い
ることにより、電極反応速度、つまり電導度を著しく高
め得ることができた。かかる材料表面のO/C比が3%
未満の酸素濃度の低い炭素質材料を用いる場合は放電時
の電極反応速度が小さく、電導率を高めることはできな
い。
By using a carbonaceous material having a surface analysis (based on ESCA described later) of 3% or more (preferably 6 to 16 inches) as an electrode material, the electrode reaction rate, that is, the electrical conductivity, could be significantly increased. The O/C ratio on the surface of such material is 3%.
When using a carbonaceous material with a low oxygen concentration of less than 1, the electrode reaction rate during discharge is low and the conductivity cannot be increased.

このように表面酸y[子の濃度を高める炭素質材料を製
造するには前述した内部結晶構造をもつ炭素質材料を乾
式酸化処理することにより得られる。これは例えばI 
X 10’torr以上の酸素分圧を有する酸素雰囲気
下で重量収率にして65〜99チ、好ましくは80〜9
9%の範囲になる様に実施される。処理良度は通常40
0℃以上が好ましい。又処理時間は1秒〜60分間が望
ましい。
In order to produce a carbonaceous material that increases the concentration of surface acids, it is possible to produce a carbonaceous material having the above-mentioned internal crystal structure by subjecting it to dry oxidation treatment. For example, I
X 65 to 99 inches in weight yield under an oxygen atmosphere having an oxygen partial pressure of 10'torr or more, preferably 80 to 9
It is carried out so that it is within the range of 9%. Processing quality is usually 40
The temperature is preferably 0°C or higher. Further, the processing time is preferably 1 second to 60 minutes.

低温(例えば200〜300℃)では処理する炭素質材
料の反応性が落゛ちるため酸化の効果が得られない。酸
化処理を湿式で行なうと層間化合物の生成、処理時の有
害ガスの発生等問題が多いのでさけるべきである。
At low temperatures (for example, 200 to 300°C), the reactivity of the carbonaceous material to be treated decreases, so that the oxidation effect cannot be obtained. Wet oxidation treatment should be avoided because it causes many problems such as the formation of intercalation compounds and the generation of harmful gases during treatment.

上述の如く乾式酸化処理を行なうことにより擬黒鉛微結
晶のC軸に垂直な面のエツジをより多く材料表面に露出
させることができ、かつこのエツジに電気化学反応に有
効な酸素原子を形成させることができる。この酸素原子
はカルボキシル基、フェノール性水酸基、カルボニル基
、キノン基。
By performing the dry oxidation treatment as described above, more edges of the plane perpendicular to the C axis of the pseudographite microcrystals can be exposed to the material surface, and oxygen atoms that are effective for electrochemical reactions are formed on these edges. be able to. This oxygen atom is a carboxyl group, phenolic hydroxyl group, carbonyl group, or quinone group.

ツクトン基、フリーラジカル的な酸化物として生成され
、これらの反応基が電極反応に大きく寄与し、以で電導
率(電圧効率)を高め得るものとなる。
These reactive groups are generated as free radical oxides, and these reactive groups greatly contribute to electrode reactions, thereby increasing electrical conductivity (voltage efficiency).

本発明に係る炭素質材料は炭素繊維、活性炭素繊維、活
性炭の集合体等特に制限を設けるものでないが好ましい
ものは炭素繊維よりなる布帛(織布、編地状布帛)不織
布ヒモ等或いはこれらの混成組織を挙げることができる
The carbonaceous material according to the present invention is not particularly limited to carbon fibers, activated carbon fibers, aggregates of activated carbon, etc., but preferred examples include carbon fiber fabrics (woven fabrics, knitted fabrics), nonwoven fabric strings, etc. Hybrid tissues can be mentioned.

なお、本発明において採用せる(OO2)面間隔(do
oxL繊維軸に対する黒鉛層の配向度(2)、電流効率
、電導度及びESCAによるO/C比は次の方法で測定
するものである。
In addition, the (OO2) surface spacing (do
The degree of orientation (2) of the graphite layer with respect to the oxL fiber axis, current efficiency, conductivity, and O/C ratio by ESCA are measured by the following methods.

■ <002)面間隔: doo2 炭素繊維織布をメノウ乳鉢で粉末化し、試料に対して約
5〜10重量−のX線標準用高純度シリコン粉末を内部
標準物質として加え混合し、試料セルにつめ’、 Cu
Ka線を線源とし、透過型ディフックトメ−ター法によ
って広角X4m回M曲線を計測する。
■ <002) Surface spacing: doo2 Carbon fiber woven fabric is powdered in an agate mortar, and about 5 to 10% by weight of high-purity silicon powder for X-ray standards is added to the sample as an internal standard substance, mixed, and placed in a sample cell. Tsume', Cu
Using Ka radiation as a radiation source, a wide-angle x4m M curve is measured by the transmission type diffooktometer method.

曲線の補正には、いわゆるローレンツ、偏光因子、吸収
因子、原子散乱因子等に関する補正は行なわず次の簡便
法を用いる。即ち<002>回折線に相当するピークの
ペースフィンを引き1ペースフインからの実質強度をプ
ロットし直して<OO2>補正強度曲線を得る。この曲
線、のピーク高さの3分の2の高さに引いた角度軸に平
行な!Ijtが値度曲線と交わる線分の中点をめ。
To correct the curve, the following simple method is used without making corrections regarding so-called Lorentz, polarization factors, absorption factors, atomic scattering factors, etc. That is, by subtracting the pace fin of the peak corresponding to the <002> diffraction line and replotting the real intensity from one pace fin, an <OO2> corrected intensity curve is obtained. This curve is parallel to the angular axis drawn at two-thirds of the peak height of the! Find the midpoint of the line segment where Ijt intersects the value curve.

中点の角度を内部標準で補正し、これを回折角02倍と
し* CuKαの波長λとから次式のBragg式によ
って<OO2>面間隔をめる。
The angle of the midpoint is corrected using an internal standard, and this is set to 02 times the diffraction angle.* From the wavelength λ of CuKα, the <OO2> plane spacing is determined by the following Bragg equation.

λ d 002に□ 2s inθ 281.5418人 08回折角 ■ 配向度:ZO 炭素繊維トウ又は糸の適量を単繊維が平行になる様に束
ね、ゴニオメータ−の回転平面と繊維軸方向が垂直にな
るように装着し、前記d 002ノ測定の場合と同様デ
ィフックトメ−ター法ICより<002>回折図形を測
定する。得られた回折図形より<OO2)回折ピーク角
を得る。次にこの角度に回数管を固定し試料を試料台平
面内で回転させ乍ら回折線強度を測定する。すなわち<
OO2>回折線が示す弧の回折強度を繊維軸方向と黒鉛
のC軸方向とのなす角(配向角)の関数として測定する
。各配向角の回折線強度は最高強度の値(配向角90’
)を100とする比回折強度に計算し直す。比回折強度
が50になる配向角と90.との差をもって配向度ZO
とする。
λ d 002 □ 2s in θ 281.5418 person 08 diffraction angle ■ Orientation degree: ZO An appropriate amount of carbon fiber tow or thread is bundled so that the single fibers are parallel, and the rotation plane of the goniometer is perpendicular to the fiber axis direction. The <002> diffraction pattern is measured using the Diffooktometer IC in the same manner as in the measurement of d002. From the obtained diffraction pattern, the diffraction peak angle <OO2) is obtained. Next, the tube is fixed at this angle and the diffraction line intensity is measured while rotating the sample within the plane of the sample stage. That is, <
OO2> The diffraction intensity of the arc indicated by the diffraction line is measured as a function of the angle (orientation angle) between the fiber axis direction and the graphite C-axis direction. The diffraction line intensity at each orientation angle is the highest intensity value (orientation angle 90'
) is recalculated to the specific diffraction intensity as 100. The orientation angle at which the specific diffraction intensity is 50 and 90. The degree of orientation ZO is the difference between
shall be.

Zが大きい程結晶子網平面は繊維軸に配向していない。The larger Z is, the less the crystallite network plane is oriented to the fiber axis.

■ セル電流効率 第1図に示す小型の流通型電解槽を作り、各種定電流密
度で充放電を繰り返し、電極性能のテストを行う。正極
には塩化第一鉄、塩化第二鉄濃度各IM/lの4N塩酸
酸性水溶液を用い。
■Cell current efficiency A small flow-through type electrolytic cell as shown in Figure 1 was made, and the electrode performance was tested by repeatedly charging and discharging at various constant current densities. For the positive electrode, a 4N acidic aqueous hydrochloric acid solution with ferrous chloride and ferric chloride concentrations of IM/l was used.

負極には塩化第ニクロム濃度I M/lの4N塩酸酸性
水溶液を用意した。
A 4N acidic aqueous solution of hydrochloric acid with a dichromic chloride concentration of IM/l was prepared for the negative electrode.

正極液量は負極液量に対して大過剰とし、負極特性を中
心に検討できるようにした。電極面積は10ctA、液
流量は毎分的5 mlである。電流密度は40mA/−
で行ったが、充電時と放電時は同じ値でテストを行った
。充電に始まり放電で終る1サイクルのテストにおいて
、充電に要した電気量をQI クーロン、0.2Vまで
の定電流放電及びこれに続< 0.8 Vでの定電位放
電で取り出した電気量を夫々Q2+Qsクーロンとし。
The amount of positive electrode liquid was set to be in large excess of the amount of negative electrode liquid, allowing the study to focus on the negative electrode characteristics. The electrode area was 10 ctA, and the liquid flow rate was 5 ml per minute. Current density is 40mA/-
The test was conducted with the same value during charging and discharging. In a one-cycle test that begins with charging and ends with discharging, the amount of electricity required for charging is QI coulombs, and the amount of electricity extracted by constant current discharge to 0.2 V and subsequent constant potential discharge to < 0.8 V is expressed as QI coulomb. Let each be Q2 + Qs coulombs.

次式で電流効率をめる0 充電時にCr3+からCr”十への還元以外の反応、例
えばH切還元等の副反応が起ると、取り出せる電気量が
減り、電流効率は減少する。
Calculate the current efficiency using the following formula: 0 When a reaction other than the reduction from Cr3+ to Cr''0 occurs during charging, for example, a side reaction such as H-cut reduction, the amount of electricity that can be taken out decreases, and the current efficiency decreases.

■ セル電導度 負極液中のCr”十をCr”十に完全に還元するのに必
要な理論電気量Qthに対して、放電途中までに取り出
した電気量の比を充電率とし1充電率が50%のときの
電流・電圧曲線の傾きから、セル抵抗(ΩctA)、及
びその逆数であるセル電導度(S備−りをめる。セル電
導度が大きい程電極でのイオンの酸化還元反応はすみや
かに起り、高電流密度での放電電位は高く、セルの電圧
効率が高く、秀れた[tfiであるとセ」断できる。
■ Cell conductivity One charge rate is defined as the ratio of the amount of electricity taken out in the middle of discharge to the theoretical amount of electricity Qth required to completely reduce Cr"0 to Cr"0 in the negative electrode liquid. From the slope of the current/voltage curve at 50%, determine the cell resistance (ΩctA) and its reciprocal, the cell conductivity (S). The discharge occurs quickly, the discharge potential is high at high current density, the voltage efficiency of the cell is high, and it can be determined that the cell has excellent TFI.

なお■、■でのテストは25℃近辺で行った。Note that the tests in ■ and ■ were conducted at around 25°C.

@ ESCAによる賦化の測定 ESCAあるいは、XPSと略称されているX線光電子
分光法によるO/C比の測定に用いた装置は高滓ESC
A 750で、解析にはESCAPAC760t−用い
た。
@ Measurement of enrichment using ESCA The equipment used to measure the O/C ratio using ESCA or X-ray photoelectron spectroscopy, abbreviated as XPS, is Takashi ESC.
A750, and ESCAPAC760t- was used for analysis.

各試料を5gg径に打ち抜き、導電性ペーストにより加
熱式試料台に貼り付は分析に供し九。
Each sample was punched out to a diameter of 5 gg and pasted onto a heated sample stand using conductive paste for analysis.

測定前に試料を120℃に加熱し、3時間以上真空脱気
した。線源にはMfKσ線(1253,6eV)を用い
、装置内真空度は10” torrとした。
Before measurement, the sample was heated to 120° C. and vacuum degassed for 3 hours or more. MfKσ rays (1253, 6 eV) were used as the radiation source, and the vacuum level inside the apparatus was 10” torr.

測定はC1s + O1sピークに対して行ない、各ピ
ークをESCAPAC760(J、H,5cofiel
dによる補正法に基づく)を用い補正解析し、各ピーク
面積をめる。得られた面積はC1sについては1.00
 、 Olsに対しては2.85の相対強度を乗じたも
のであり、その面積から直接表面(酸素/脚素)W、子
数比をチで算出する。
The measurement was performed on the C1s + O1s peak, and each peak was
(based on the correction method by d) to calculate the area of each peak. The obtained area is 1.00 for C1s
, Ols is multiplied by the relative intensity of 2.85, and the surface (oxygen/leg element) W and child number ratio are calculated directly from the area.

「発明の効果」 この様な本発明に係る電極材は充電時の水素ガスの発生
量を抑止し電流効率及び電導度を著しく高め得るもので
あり、実用性に富むものである。
"Effects of the Invention" The electrode material according to the present invention can suppress the amount of hydrogen gas generated during charging and significantly increase current efficiency and conductivity, and is highly practical.

「実施例」 以下本発明を比較例、実施例によって説明するが1本発
明はこれらの例に限定されるものではない。
"Examples" The present invention will be explained below using comparative examples and examples, but the present invention is not limited to these examples.

比較例1゜ 1.5デニールの再生セルロース繊維を紡績・製布して
作った布帛に塩化アンモニウム処理を施し、270℃の
窒業気流中で耐炎化処理を行った後。
Comparative Example 1 A fabric made by spinning and making 1.5 denier regenerated cellulose fibers was treated with ammonium chloride, and then flame-resistant treated in a nitrogen gas stream at 270°C.

毎時400℃の外温速度で850℃までもたらし、30
分保持した後冷却して1g、さ1,3+111の炭素繊
維布帛Aを得た。布帛Aを不活性ガス中で1350℃の
再熱処理を1時間行ない、炉を冷却して布帛Bを得た。
Bringing temperature up to 850°C at an external temperature rate of 400°C per hour, 30
After holding the mixture for a few minutes, it was cooled to obtain 1 g of carbon fiber fabric A with a size of 1,3+111. Fabric A was reheated at 1350° C. for 1 hour in an inert gas, and the furnace was cooled to obtain Fabric B.

布帛Bのd 002は3.7 a A又Z≧SO。d002 of fabric B is 3.7aA or Z≧SO.

0/C÷2.8であった。It was 0/C÷2.8.

布帛Bの電極特性は電流効率は84%、セル電導度は0
.12 S、m−2であった。充電初期より負極におい
て水素ガスの発生が見られた。
The electrode characteristics of fabric B are that the current efficiency is 84% and the cell conductivity is 0.
.. 12 S, m-2. Hydrogen gas was observed to be generated at the negative electrode from the early stage of charging.

又布帛Bを酸素分圧200 torrの不活性ガス中で
温度800℃、10分間の処理を行ない、布帛Cを得た
。布帛CはBに較べdo02+ Zは殆んど変化しなか
ったが、0/cは9.0%に増加した。布帛Cの電流効
率は87%、セル電導度は0.205c!n−2であっ
た。又布帛CのBET表面積は53m’/fであった。
Further, Fabric B was treated in an inert gas with an oxygen partial pressure of 200 torr at a temperature of 800° C. for 10 minutes to obtain Fabric C. Fabric C had almost no change in do02+Z compared to B, but 0/c increased to 9.0%. The current efficiency of Fabric C is 87% and the cell conductivity is 0.205c! It was n-2. The BET surface area of Fabric C was 53 m'/f.

比較例2゜ 平均重合度620のビスコースレーヨンt−製造した。Comparative example 2゜ A viscose rayon t-shirt with an average degree of polymerization of 620 was produced.

デニールは1.5.残留伸度は5,1チであった。これ
を比較例1と同じ組織の布帛KL、塩化アンモニウム処
17N!全施し、布帛の縦・横共に荷重をかけ、270
℃の窒業雰囲気炉中で耐炎化処理を施し冷却して布帛T
を得た。布帛Tの一部を不活性ガス中で1200℃、3
0分の再熱処理を施し炉中で冷却した後+200tor
rの酸素分圧をもつ不活性ガス中で11分の処理を行な
い炉より取り出して布帛Bと同程度の坪量をもつ布帛り
を得た。
The denier is 1.5. The residual elongation was 5.1 inches. This was fabric KL with the same structure as Comparative Example 1, treated with ammonium chloride 17N! Fully applied, load applied both vertically and horizontally to the fabric, 270
The fabric T is subjected to flameproofing treatment and cooled in a nitrogen atmosphere furnace at ℃.
I got it. A part of the fabric T was heated at 1200°C in an inert gas for 3
+200 tor after 0 minute reheat treatment and cooling in the furnace
The fabric was treated for 11 minutes in an inert gas having an oxygen partial pressure of r and then taken out from the furnace to obtain a fabric having a basis weight similar to Fabric B.

布帛りの炭材特性はdooz= 3.71人、 O/C
= 9.5チ、Z = 256であった。!、電極特性
電流効率85チ、セ/l/電導度け0.145crn−
2であった。
The carbon properties of the fabric are dooz = 3.71 people, O/C
= 9.5chi, Z = 256. ! , electrode characteristics current efficiency 85 cm, cell/l/conductivity 0.145 crn-
It was 2.

比較例3゜ 比較例2で得た布帛Tの1部を不活性ガス中で1600
℃の再熱処理を施し、炉中で冷却して布帛Et−得た。
Comparative Example 3 A part of the fabric T obtained in Comparative Example 2 was heated to 1600°C in an inert gas.
The fabric was subjected to reheat treatment at .degree. C. and cooled in a furnace to obtain a fabric Et-.

布帛Eの一部t−200torrの酸素分圧をもつ不活
性ガス中で850℃、14分の処理を行い炉より取り出
して布帛Fを得た。布帛E、 Fのd 002は3.6
6人、Zは21’であった。O/Cは布帛Eでは2,3
チ、布帛Fでは10.0チであった。
A part of fabric E was treated in an inert gas having an oxygen partial pressure of t-200 torr at 850° C. for 14 minutes and taken out from the furnace to obtain fabric F. d002 of fabrics E and F is 3.6
There were 6 people, and Z was 21'. O/C is 2,3 for fabric E
In fabric F, it was 10.0 chi.

又電極特性t111!1つたと、ころ布帛Eでは電流効
率85%、を導度0.18Sr”でl)、布帛F −t
’[E流動率85%、![導度0.215(7)−2で
あった。
In addition, the electrode characteristics t111!1, current efficiency is 85% for roller fabric E, and conductivity is 0.18Sr''l), fabric F - t
'[E flow rate 85%,! [The conductivity was 0.215(7)-2.

比較例4゜ 布帛Aの一部を不活性ガス中で1600℃の再熱処理を
施し、冷却して布帛Gを得た。布帛GKついての炭材特
性はdoo2= 3.68人、 O/C= 2.5 *
Comparative Example 4 A part of Fabric A was reheated at 1600° C. in an inert gas and cooled to obtain Fabric G. The carbon properties of the fabric GK are doo2 = 3.68 people, O/C = 2.5 *
.

Z≧50・であった。電極特性は電流効率90チ。Z≧50. The electrode characteristics are current efficiency of 90chi.

セル電導度0.145個−2となった。布帛GのBET
表面積は1ゴ/y以下であった。
The cell conductivity was 0.145 cells-2. BET on fabric G
The surface area was less than 1 go/y.

実施例1゜ 布帛Gの一部を酸素分圧200 torrの不活性ガス
中で温度850℃、13分間の熱処理を行ない、取出し
て冷却し+ doo2= 3.67人、2≧50.0/
C= 10.2%の布帛Hを得た。このものの電極特性
は電流効率96%、電導度0.5O8(7)−2と極め
て秀ねでいた。
Example 1 A part of fabric G was heat-treated in an inert gas with an oxygen partial pressure of 200 torr at a temperature of 850°C for 13 minutes, and then taken out and cooled.
Fabric H with C=10.2% was obtained. The electrode properties of this product were extremely excellent, with a current efficiency of 96% and an electrical conductivity of 0.5O8(7)-2.

なお、布帛HのBET表面積は65d/fであった。Note that the BET surface area of Fabric H was 65 d/f.

比較例5゜ 布帛Gの一部を酸素分圧6.5 X I 0−ator
rの不活性ガス中で3時間熱処理を施し冷却して布帛I
を得た。布帛1のdoo2* ZけHと変らなかったが
Comparative Example 5 A part of fabric G was exposed to oxygen partial pressure 6.5 X I 0-ator
Fabric I was heat treated in an inert gas of r for 3 hours and cooled.
I got it. Cloth 1 doo 2* It was no different from ZkeH.

0/Cは2.7チであった。セル電導度は0.15 S
α−2七布帛Gと変らなかった・
0/C was 2.7chi. Cell conductivity is 0.15 S
It was no different from α-2 Seven Fabric G.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るt極材の電流効率を測定する説明
図である。 1121
FIG. 1 is an explanatory diagram for measuring the current efficiency of the t-electrode material according to the present invention. 1121

Claims (1)

【特許請求の範囲】[Claims] 広角X@解析よりめた(00−2)面間隔が平均3.7
0λ以下であり、また繊維軸に対する黒鉛層の配向度が
30以上の擬黒鉛微結晶構造を有し、かつ脚材表面の結
合酸素原子数が炭素原子数の少なくとも3%である炭素
質材料よりなる電極材。
Wide-angle
0λ or less, and has a pseudographite microcrystalline structure in which the degree of orientation of the graphite layer with respect to the fiber axis is 30 or more, and the number of bonded oxygen atoms on the surface of the leg material is at least 3% of the number of carbon atoms. electrode material.
JP59110461A 1984-05-29 1984-05-29 Electrode material Granted JPS60253164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59110461A JPS60253164A (en) 1984-05-29 1984-05-29 Electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59110461A JPS60253164A (en) 1984-05-29 1984-05-29 Electrode material

Publications (2)

Publication Number Publication Date
JPS60253164A true JPS60253164A (en) 1985-12-13
JPH0552034B2 JPH0552034B2 (en) 1993-08-04

Family

ID=14536296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59110461A Granted JPS60253164A (en) 1984-05-29 1984-05-29 Electrode material

Country Status (1)

Country Link
JP (1) JPS60253164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7975400B2 (en) * 2002-12-20 2011-07-12 Bsh Bosch Und Siemens Hausgeraete Gmbh Device for determining the conductance of laundry, dryers and method for preventing deposits on electrodes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101776A (en) * 1982-11-30 1984-06-12 Toyobo Co Ltd Electrode material
JPS59119680A (en) * 1982-12-27 1984-07-10 Toyobo Co Ltd Electrode for flow type electrolytic cell
JPS6413191A (en) * 1988-06-03 1989-01-18 Namuko Kk Image display device for sample
JPS6413192A (en) * 1987-07-06 1989-01-18 Sumitomo Chemical Co El panel segment driving circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59101776A (en) * 1982-11-30 1984-06-12 Toyobo Co Ltd Electrode material
JPS59119680A (en) * 1982-12-27 1984-07-10 Toyobo Co Ltd Electrode for flow type electrolytic cell
JPS6413192A (en) * 1987-07-06 1989-01-18 Sumitomo Chemical Co El panel segment driving circuit
JPS6413191A (en) * 1988-06-03 1989-01-18 Namuko Kk Image display device for sample

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7975400B2 (en) * 2002-12-20 2011-07-12 Bsh Bosch Und Siemens Hausgeraete Gmbh Device for determining the conductance of laundry, dryers and method for preventing deposits on electrodes

Also Published As

Publication number Publication date
JPH0552034B2 (en) 1993-08-04

Similar Documents

Publication Publication Date Title
JPS59119680A (en) Electrode for flow type electrolytic cell
CN105932234A (en) Doped porous carbon spheres used for negative electrode material of sodium ion battery and preparation method for doped porous carbon spheres
CN110931784B (en) Iron-based sodium-ion battery positive electrode material and preparation method thereof
CN102569797A (en) Novel phosphate based composite cathode material, its preparation method and application thereof
CN108899482B (en) Aluminum ion battery and positive electrode material thereof
JP2955938B2 (en) Carbon-based electrode materials for electrolytic cells
Jiang et al. A novel CoO hierarchical morphologies on carbon nanofiber for improved reversibility as binder-free anodes in lithium/sodium ion batteries
LU500866B1 (en) CATHODE MATERIAL Mo-VS4/N-GNTS OF MAGNESIUM-ION BATTERY AND USE THEREOF
CN109148843B (en) Boron-doped negative electrode material with good high-temperature performance and solid-phase preparation method thereof
Wang et al. Facile synthesis of boron-doped porous carbon as anode for lithium–ion batteries with excellent electrochemical performance
Jiang et al. Benefits of vanadium doping in Na3MnTi (PO4) 3/C as a potential candidate for sodium-ion batteries
Inamoto et al. Effects of pre-lithiation on the electrochemical properties of graphene-like graphite
Yu et al. Porous activity of biomass-activated carbon enhanced by nitrogen-dopant towards high-performance lithium ion hybrid battery-supercapacitor
CN113571682A (en) Bismuth/carbon composite material and preparation method and application thereof
JPS59101776A (en) Electrode material
CN117790757A (en) Preparation method of pine pollen derived carbon loaded nano sodium vanadium phosphate and application of pine pollen derived carbon loaded nano sodium vanadium phosphate in sodium ion battery
CN116741975A (en) Double-carbon-layer heterogeneous composite positive electrode material, preparation method thereof and sodium ion battery
JPS60232669A (en) Electrode material for electrolytic bath
CN116565174A (en) Silicon-carbon composite material, preparation method, silicon-based negative electrode and lithium ion battery
JPS60253164A (en) Electrode material
JPS60253163A (en) Laminated electrolytic cell
JPH0711963B2 (en) Carbon-based electrode material for flow-through electrolyzer
Guo et al. Enhancing the Li+ Diffusion in Li3VO4 by Coupling with Reduced Graphene Oxide for Lithium-Ion Batteries
CN105958043A (en) Ti&lt;4+&gt; and Cr&lt;3+&gt;-doped iron trifluoride composite material and preparation method therefor, and lithium ion battery
Yazami et al. The carbon-lithium negative electrode for lithium-ion batteries in polymer electrolyte

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term