JPS60251932A - Catalyst for preparing formaldehyde by oxidation of methylal - Google Patents

Catalyst for preparing formaldehyde by oxidation of methylal

Info

Publication number
JPS60251932A
JPS60251932A JP59107442A JP10744284A JPS60251932A JP S60251932 A JPS60251932 A JP S60251932A JP 59107442 A JP59107442 A JP 59107442A JP 10744284 A JP10744284 A JP 10744284A JP S60251932 A JPS60251932 A JP S60251932A
Authority
JP
Japan
Prior art keywords
catalyst
methylal
oxidation
formaldehyde
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59107442A
Other languages
Japanese (ja)
Other versions
JPH0376179B2 (en
Inventor
Hideki Matsuda
英樹 松田
Masazumi Chono
丁野 昌純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59107442A priority Critical patent/JPS60251932A/en
Publication of JPS60251932A publication Critical patent/JPS60251932A/en
Publication of JPH0376179B2 publication Critical patent/JPH0376179B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To enhance the production activity of formaldehyde, by using 1 of Fe, 1.5-3.0 of Mo and 0.001-0.1 of total amount of an alkali metal, Bi, Cr, W, Co and Ni in a metal atomic ratio as effective components. CONSTITUTION:In a metal atomic ratio, an alkali metal, Bi, Cr, W, Co and Ni are mixed with 1 of Fe and 1.5-3.0 of Mo so as to adjust the total amount thereof to 0.001-0.1 and the formed precipitate is washed, dried and baked to obtain a catalyst for preparing formaldehyde by the oxidation of methylal. The supply substances of the aforementioned metals are not especially limited and any form such as chloride, nitrate or acetate may be used but ammonium salt is pref. as Mo and W supply substances and nitrate is pref. as supply substances of other metals. The temp. used in the oxidation of methylal using the obtained catalyst is usually 200-400 deg.C.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明はメチラール酸化反応によるホルムアルデヒド製
造用触媒に関するものである。さらに詳しくは、メチラ
ールを気相において酸素を含有するガスによって酸化す
ることによりホルムアルデヒドを得るための触媒に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a catalyst for producing formaldehyde by methylal oxidation reaction. More specifically, it relates to a catalyst for obtaining formaldehyde by oxidizing methylal in the gas phase with an oxygen-containing gas.

(従来の技術) 従来、ホルムアルデヒドの製造は、銀又は鉄−モリブデ
ン触媒の存在下にメタノールを酸化することにより行な
われている。しかしこの方法により得られるホルマリン
の濃度は量論的に反応したとしても、たかだか63重量
%である。それに対してメチラール酸化反応により得ら
れるホルマリンの濃度は量論的に反応すれば83重量%
であシ、メタノールの酸化に比べて生成ガス中の水の量
が非常に少ないという特徴を有する。メチラールの酸化
反応に有効な触媒としては銀、酸化銅及びモリブデンを
基本として、それに鉄、マンガン、マグネシウム、カド
ミウム、カルシウム等を加えた触媒が知られている。し
かしながらこれらの触媒では、−酸化炭素、ジメチルエ
ーテル及びギ酸メチルの副生が多く、高選択性でホルム
アルデヒドを得ることは困難であシ、酸化活性が低いた
め高温での運転を必要とする。本発明者らは、先に鉄、
モリブデン及びアルカリ金属、ビスマス、クロムタング
ステン、ニッケル、コノ々ルトから選ばれた1種又はそ
れ以上の金属元素を不動成分とする触媒が、上記の副生
成物が少なく高選択性を有することを見い出し特許出願
した(特開昭57−134432号公報)。
(Prior Art) Formaldehyde has traditionally been produced by oxidizing methanol in the presence of silver or iron-molybdenum catalysts. However, the concentration of formalin obtained by this method is at most 63% by weight even if the reaction is stoichiometric. On the other hand, the concentration of formalin obtained by methylal oxidation reaction is 83% by weight if the reaction is carried out stoichiometrically.
However, compared to methanol oxidation, the amount of water in the produced gas is very small. Catalysts based on silver, copper oxide, and molybdenum, to which iron, manganese, magnesium, cadmium, calcium, etc. are added are known as effective catalysts for the oxidation reaction of methylal. However, these catalysts produce many by-products of carbon oxide, dimethyl ether, and methyl formate, making it difficult to obtain formaldehyde with high selectivity, and requiring operation at high temperatures due to low oxidation activity. The inventors first discovered iron,
It has been discovered that a catalyst containing molybdenum and one or more metal elements selected from alkali metals, bismuth, chrome-tungsten, nickel, and conort as an immobile component has high selectivity with few by-products. A patent application was filed (Japanese Unexamined Patent Publication No. 134432/1983).

(発明が解決しようとする問題点) 本発明者等は、メチラールの酸化によるホルムアルデヒ
ドの製造用触媒について、更に鋭意研究をiねた結果、
ホルムアルデヒドの生成活性が高い上に、その活性が安
定に維持される触媒を見い出し、本発明を完成するに到
った。すなわち、本発明は、メチラールの酸化によるホ
ルムアルデヒドの製造に際して、反応初期の活性が高い
ばかりでなく、長期に反応を行った場合にも、メチラー
ルの転化率及びホルムアルデヒドの選択率が共に制い触
媒を提供するものである。
(Problems to be Solved by the Invention) As a result of further intensive research into catalysts for producing formaldehyde by oxidation of methylal, the present inventors have found that:
The present invention was completed by discovering a catalyst that not only has a high formaldehyde production activity but also maintains that activity stably. That is, in the production of formaldehyde by oxidation of methylal, the present invention not only has a high activity at the initial stage of the reaction, but also has a catalyst that controls both the conversion rate of methylal and the selectivity of formaldehyde even when the reaction is carried out for a long period of time. This is what we provide.

発明の目的 (問題点を解決するだめの手段及び作用)本発明は、鉄
及びモリブデンに加えてアルカリ金属、ビスマス、クロ
ム、タングステン、コノZルト及びニッケルから選ばれ
た1褌またはそれ以上の金属元素を有効成分とし、これ
らの金属元素の割合が金属原子比で、鉄1に対しモリブ
デン1.5〜3.01アルカリ金属、ビスマス、クロム
、タングステン、コバルト及びニッケルの合計が0.0
01〜0.1であることを特徴とするメチラールの酸化
によるホルムアルデヒドの製造用触媒に関するものであ
る。触媒組成比が、金属原子比で鉄1に対しモリブデン
が3.0より大きい場合、ホルムアルデヒドの収率が低
くなる。(この傾向は、反応系中に水がよシ多童に存在
する場合には、より顕著になる。) また、金属原子比で鉄1に対しモリブデンが1.5より
小さい場合には、ホルムアルデヒドの選択率が低下する
だけでなく活性の経時低下があられれてくる。
Purpose of the Invention (Means and Effects for Solving the Problems) The present invention is directed to the use of one or more metals selected from iron and molybdenum, as well as alkali metals, bismuth, chromium, tungsten, co-metallic metals, and nickel. Elements are used as active ingredients, and the ratio of these metal elements is a metal atomic ratio of 1.5 to 3.01 molybdenum to 1 iron, and the total of alkali metals, bismuth, chromium, tungsten, cobalt and nickel is 0.0.
The present invention relates to a catalyst for producing formaldehyde by oxidizing methylal, characterized in that the oxidation ratio is 01 to 0.1. If the catalyst composition ratio is greater than 3.0 molybdenum to 1 iron in metal atomic ratio, the yield of formaldehyde will be low. (This tendency becomes more pronounced when there is a large amount of water in the reaction system.) Also, if the metal atomic ratio of molybdenum to iron is less than 1.5, formaldehyde Not only does the selectivity of the compound decrease, but also the activity decreases over time.

一方、触媒組成として、アルカリ金属、ビスマス、クロ
ム、タングステン、コノ々ルト及びニッケルの合計含量
が金属原子比で鉄1に対しo、ooiより小さい場合に
は、ホルムアルデヒドの選択率が低下するたけでなく、
活性の経時低下が顕著にあられれてくる。
On the other hand, if the total content of alkali metals, bismuth, chromium, tungsten, conalt, and nickel in the catalyst composition is smaller than o or ooi to 1 iron in terms of metal atomic ratio, the formaldehyde selectivity will simply decrease. Without,
There is a noticeable decrease in activity over time.

また、これらの金橋元累の合計が金属原子比で鉄1に対
し0.1より大きい場合は、ホルムアルデヒドの収率が
低くなる。
Furthermore, if the total metal atomic ratio of these metals is greater than 0.1 to 1 iron, the yield of formaldehyde will be low.

これらの触媒を用いた場合、300℃以下の温度におい
ても、メチラールからホルムアルデヒドの収率は90%
以上であり、選択率も95%以上である。また、−酸化
炭素、ジメチルエーテル、ギ酸メチルの生成は少ない。
When these catalysts are used, the yield of formaldehyde from methylal is 90% even at temperatures below 300°C.
This is the above, and the selectivity is also 95% or more. Furthermore, the production of -carbon oxide, dimethyl ether, and methyl formate is small.

モリブデンの飛散量が少なく安定性が増すことが示され
た。
It was shown that the amount of molybdenum scattered is small and the stability is increased.

本発明の触媒の好ましい例としては、鉄及びモリブデン
にクロムを含むもの、或はクロムとナトリウム、或はク
ロムとカリウムを含むものなどがある。
Preferred examples of the catalyst of the present invention include those containing chromium in addition to iron and molybdenum, or those containing chromium and sodium, or chromium and potassium.

本発明における触媒の調製は、通常、含浸法、共演法な
どで行われるが、その他の方法で行っても構わない。好
ましい触媒調製法の一例を示せば、鉄供給物質、モリブ
デン供給物質、アルカリ金属、クロム、ビスマス、タン
グステン、コノ々ルト、マたはニッケルから選ばれたI
Nまたはそれ以上の元素の供給物質を所定の原子比で混
合(〜、沈澱物を洗浄、乾燥、焼成を経て調製される。
The preparation of the catalyst in the present invention is usually carried out by an impregnation method, a co-oxidation method, etc., but other methods may also be used. In one preferred method of catalyst preparation, an iron donor, a molybdenum donor, an alkali metal, I selected from chromium, bismuth, tungsten, conort, aluminum, or nickel.
It is prepared by mixing supply materials containing N or more elements at a predetermined atomic ratio (~, washing the precipitate, drying, and calcination).

混合の割合は、原子比で鉄1に対してモリブデン0.5
〜3.0、アルカリ金属、クロム、ビスマス、タングス
テン、コノζルトまたはニッケルから選ばれた1種また
はそれ以上の元素の合計がo、oos〜0.2であるこ
とが好ましい。
The mixing ratio is 1 part iron to 0.5 part molybdenum in atomic ratio.
It is preferable that the sum of one or more elements selected from alkali metals, chromium, bismuth, tungsten, conort or nickel is o, oos - 0.2.

各金属の供給物質は、特に限定はなく、塩化物硝酸塩、
酢酸塩など、どの様な形でも良いが、モリブデン及びタ
ングステン供給物質としてはアンモニウム塩が、その他
の金属の供給物質としては、硝酸塩が好ましい。かかる
方法により調製された触媒は、組成が金属原子比で鉄1
に対してモリブデン1.5〜3.0であり、X線回折に
より結晶性の遊離の三酸化モリブデンの回折線はほとん
ど認められなかった。
There are no particular limitations on the materials to be supplied for each metal, including chloride, nitrate,
Any form such as acetate may be used, but ammonium salts are preferred as molybdenum and tungsten supply materials, and nitrates are preferred as other metal supply materials. The catalyst prepared by this method has a composition of 1 iron in terms of metal atomic ratio.
molybdenum was 1.5 to 3.0, and almost no diffraction line of crystalline free molybdenum trioxide was observed by X-ray diffraction.

本発明の触媒を使用するメチラールの酸化に際し用いら
れる温度は通常200℃から400℃の範囲である。2
00℃未満ではホルムアルデヒドの収率が低く実際的で
なく、400℃をこえる温度では一酸化炭素の副生が原
しく、ホルムアルデヒPの収率、選択率が低下するので
好寸しくない。
The temperatures used in the oxidation of methylal using the catalyst of the present invention are generally in the range of 200°C to 400°C. 2
If the temperature is lower than 00°C, the yield of formaldehyde will be low and it is not practical, and if the temperature exceeds 400°C, carbon monoxide will be produced as a by-product, and the yield and selectivity of formaldehyde P will decrease, which is not suitable.

本発明の触媒を使用するメチラールの酪化に際し供給す
るメチラール:酸素の組成比(モル比)はt:O,S〜
1:3が好ましく、爆発範囲を避けるために、窒素等の
不活性ガスを共存させることが好ましい。
The composition ratio (molar ratio) of methylal to oxygen to be supplied during butylation of methylal using the catalyst of the present invention is t:O,S~
The ratio is preferably 1:3, and in order to avoid an explosive range, it is preferable to coexist with an inert gas such as nitrogen.

また、供給ガスの梁間速度(SV)は2000ないし5
0000 hr−1の範囲が好ましい。
In addition, the beam velocity (SV) of the supplied gas is between 2000 and 5.
A range of 0000 hr-1 is preferred.

本反応は常圧、加圧、減圧いずれによっても良い。次に
本発明を実施例によりさらに詳細に説明する。
This reaction may be carried out under normal pressure, increased pressure, or reduced pressure. Next, the present invention will be explained in more detail with reference to Examples.

実施例1 (NH4)sMo70z4・4H20265f/を水3
000 dに溶かした溶液と、Fe (NOs)s ・
9H20sos ? f水iooomlに溶かした溶液
と、0r(NO3)3 ・9 H2O10?を水i o
 Orrtlに溶かした溶液を混合し清拌した後、生成
ゲルを水3000mにて3回洗浄し、濾過後、100℃
で24時間乾燥し、400℃で4時間空気焼成して生成
物を得た。この生成物のモリブデン:鉄ニクロムの原子
比は2.7 : l : o、ozであった。この生成
物を錠剤成型して触媒として使用した。
Example 1 (NH4)sMo70z4・4H20265f/3 water
000 d solution and Fe (NOs)s ・
9H20sos? A solution dissolved in f water ioooml and 0r(NO3)3 ・9 H2O10? water io
After mixing and stirring the solution dissolved in Orrtl, the resulting gel was washed three times with 3000 m of water, filtered, and heated at 100°C.
The product was dried for 24 hours and air-calcined at 400° C. for 4 hours to obtain a product. The molybdenum:iron nichrome atomic ratio of this product was 2.7:1:o, oz. This product was tableted and used as a catalyst.

メチラールの酸化反応は、メチラール:N、:02モル
比2:30:3の混合ガスを石英ガラス製反応管中の触
媒層に8V 10000 hr ’反応温度290℃で
通過させて行なった。
The oxidation reaction of methylal was carried out by passing a mixed gas of methylal:N, :02 in a molar ratio of 2:30:3 through a catalyst layer in a quartz glass reaction tube at 8V 10,000 hr' at a reaction temperature of 290°C.

その結果、メチラールの転化率は100%、ホルムアル
デヒドへの選択率は98%であった。その際、−酸化炭
素1%、ジメチルエーテル1%が副生した。100時間
後におけるメチラールの転化率は98%であった。
As a result, the conversion rate of methylal was 100%, and the selectivity to formaldehyde was 98%. At that time, 1% of -carbon oxide and 1% of dimethyl ether were produced as by-products. The conversion rate of methylal after 100 hours was 98%.

実施例2 実施例1において0r(NO3)349H1010Si
’ (7)代わシに0r(NO3)3・9H2010?
及びKNO32,5S’を用いる他は全く同様に触媒を
調製し反応に供した。 j1実施例3 実施例1においてOr (NO3)3 ・9 H2O1
0Y (7)代わりに0r(NO3)s ・9H201
0?及びNaNO32?を用いる他は全く同様に触媒を
調製し反応に供した。
Example 2 In Example 1, 0r(NO3)349H1010Si
'(7) 0r(NO3)3・9H2010 instead?
A catalyst was prepared in exactly the same manner except that KNO32,5S' was used and subjected to the reaction. j1 Example 3 In Example 1, Or (NO3)3 ・9 H2O1
0Y (7) Instead 0r(NO3)s ・9H201
0? and NaNO32? A catalyst was prepared and subjected to the reaction in exactly the same manner except that .

実施例4 実施例1においてCr(NO3)s ・9H201OS
’の代わシにB i (NOり3・5H2012Fを用
いる他は全く同様に触媒を調製し反応に供した。
Example 4 In Example 1, Cr(NO3)s 9H201OS
A catalyst was prepared in exactly the same manner except that B i (NO 3.5H2012F was used instead of ') and subjected to the reaction.

実施例5 実施例1において0r(Not)s −9Hz010 
yの代わシに(NH4)xoW+zOn ・5HzO6
tを用いる他は全く同様に触媒を調製し反応に供した。
Example 5 0r(Not)s -9Hz010 in Example 1
In place of y (NH4)xoW+zOn ・5HzO6
A catalyst was prepared and subjected to the reaction in exactly the same manner except that t was used.

実施例6 実施例1においてCr(NO3)3 ・9H2010f
’の代わシに00(NO3)2 ・6H207,3t 
ヲ用イル他1d、全< Pl 様に触媒を調製し反応に
供した。
Example 6 Cr(NO3)3 ・9H2010f in Example 1
' instead of 00 (NO3)2 ・6H207,3t
A catalyst was prepared and subjected to the reaction.

実施例7 実施例1においてOr (NO3)3 ・9H2010
?の代わシにN i (NOs)2・6H207,3F
を用いる他は全く同様に触媒を調製し反応に供した。
Example 7 In Example 1, Or (NO3)3 ・9H2010
? Instead of Ni (NOs) 2・6H207,3F
A catalyst was prepared and subjected to the reaction in exactly the same manner except that .

比較例1 (NH4)6MO7024・4H20895Yを使う他
は実施例1と同じ転化率を借るには330℃の温度が必
要であった。
Comparative Example 1 A temperature of 330°C was required to obtain the same conversion as in Example 1, except that (NH4)6MO7024.4H20895Y was used.

比較例2 Or (NO3)3 ・9 H2Oを用いない他は、実
施例1と全く同じ方法で触媒を調製し反応に供した。こ
の触媒を用いて実施例1と同じ条件でメチラールの酸化
反応を行なった。その結果、メチラールの転化率は99
%であったが100時間後の転化率は90%に低下した
Comparative Example 2 Or (NO3)3 .9 A catalyst was prepared and subjected to reaction in exactly the same manner as in Example 1, except that H2O was not used. Using this catalyst, methylal oxidation reaction was carried out under the same conditions as in Example 1. As a result, the conversion rate of methylal was 99
%, but the conversion rate decreased to 90% after 100 hours.

実施例8 実施例1において0r(NO3)3・9H20の代わシ
にKNo、 5.0 ?を用いる他は全く同様に触媒を
調製し反応に供した。
Example 8 In Example 1, instead of 0r(NO3)3.9H20, KNo, 5.0? A catalyst was prepared and subjected to the reaction in exactly the same manner except that .

実施例9 実施例1において0r(NO3)3・9H2oの代わり
にNaNO34,01を用いる他は全く同様に触媒を調
製し、反応に供した。
Example 9 A catalyst was prepared in exactly the same manner as in Example 1 except that NaNO34,01 was used instead of Or(NO3)3.9H2o, and subjected to reaction.

実施例1〜9及び比較例1.2の結果を表に示す。The results of Examples 1 to 9 and Comparative Example 1.2 are shown in the table.

発明の効果 以上述べた様に、本発明の触媒はメチラールの酸化によ
シホルムアルデヒドを製造する場合に、反応初期はもち
ろん、長期反応においても、メチラールの転化率及びホ
ルムアルデヒドの選択率の高い活性な触媒であって工業
上極めて有用な触媒である。
Effects of the Invention As mentioned above, the catalyst of the present invention is an active catalyst with high methylal conversion and formaldehyde selectivity not only at the initial stage of the reaction but also during long-term reactions when producing cyformaldehyde by oxidizing methylal. It is a catalyst that is extremely useful industrially.

特許出願人 旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 鉄及びモリブデンに加えてアルカリ金属、ビスマス、ク
ロム、タングステン、コノモルト、ニッケルから選ばれ
た1種またはそれ以上の金属元素を有効成分とし、これ
らの金属元素の含有割合が金lI4原子比で鉄1に対し
、モリブデン1.5〜3.0、アルカリ金属、ビスマス
、クロム、タングステン、コバルト、ニッケルの合計が
0.001〜0.1であることを特徴とするメチラール
の酸化によるホルムアルデヒド製造用触媒
In addition to iron and molybdenum, the active ingredient is one or more metal elements selected from alkali metals, bismuth, chromium, tungsten, conomolt, and nickel, and the content ratio of these metal elements is gold lI4 atomic ratio iron 1 A catalyst for formaldehyde production by oxidation of methylal, characterized in that the total of molybdenum is 1.5 to 3.0, alkali metals, bismuth, chromium, tungsten, cobalt, and nickel is 0.001 to 0.1.
JP59107442A 1984-05-29 1984-05-29 Catalyst for preparing formaldehyde by oxidation of methylal Granted JPS60251932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59107442A JPS60251932A (en) 1984-05-29 1984-05-29 Catalyst for preparing formaldehyde by oxidation of methylal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59107442A JPS60251932A (en) 1984-05-29 1984-05-29 Catalyst for preparing formaldehyde by oxidation of methylal

Publications (2)

Publication Number Publication Date
JPS60251932A true JPS60251932A (en) 1985-12-12
JPH0376179B2 JPH0376179B2 (en) 1991-12-04

Family

ID=14459252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59107442A Granted JPS60251932A (en) 1984-05-29 1984-05-29 Catalyst for preparing formaldehyde by oxidation of methylal

Country Status (1)

Country Link
JP (1) JPS60251932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327343A2 (en) * 1988-02-03 1989-08-09 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing formaldehyde and derivatives thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134432A (en) * 1981-02-13 1982-08-19 Asahi Chem Ind Co Ltd Production of formaldehyde

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134432A (en) * 1981-02-13 1982-08-19 Asahi Chem Ind Co Ltd Production of formaldehyde

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0327343A2 (en) * 1988-02-03 1989-08-09 Asahi Kasei Kogyo Kabushiki Kaisha Process for producing formaldehyde and derivatives thereof

Also Published As

Publication number Publication date
JPH0376179B2 (en) 1991-12-04

Similar Documents

Publication Publication Date Title
JP3142549B2 (en) Iron / antimony / molybdenum-containing oxide catalyst composition and method for producing the same
US4118419A (en) Catalytic process for the preparation of an unsaturated carboxylic acid
EP0446644B1 (en) Process for preparing a catalyst, the catalyst and its use
JPH0550489B2 (en)
JPS63122642A (en) Production of methacrolein and methacrylic acid
JPH03109943A (en) Preparation of catalyst for production of methacrolein and methacylic acid
JPS59204164A (en) Production of unsaturated nitrile
US3845120A (en) Production of acrylic acid by oxidation of acrolein
JP4081824B2 (en) Acrylic acid production method
JP2720215B2 (en) Preparation of catalyst for methacrylic acid production
CZ290055B6 (en) Oxidation catalyst containing vanadium and phosphorus mixed oxides and process of its preparation
JPH0210695B2 (en)
JPS61234943A (en) Catalyst for producing conjugated diolefin
JPH05177141A (en) Preparation of methacrylic acid
JPS60251932A (en) Catalyst for preparing formaldehyde by oxidation of methylal
JP2520279B2 (en) Method for producing acrylonitrile
JP2614089B2 (en) Acrolein production method
JPS6210495B2 (en)
JPH04208239A (en) Production of acrolein and acrylic acid
JPS5824419B2 (en) Fuhouwa Carbon Sanno Seizouhouhou
US3968165A (en) Process for producing acrolein and acrylic acid
JP2747941B2 (en) Method for producing acrolein and acrylic acid
JPS5910332B2 (en) Method for producing methacrolein and methacrylic acid
JPH10218831A (en) Reduction in propinic acid in mixed gas of acrylic acid
JPH04321642A (en) Production of acrylic acid