JPS60251179A - Method of bonding ceramic member and metal member - Google Patents

Method of bonding ceramic member and metal member

Info

Publication number
JPS60251179A
JPS60251179A JP10372884A JP10372884A JPS60251179A JP S60251179 A JPS60251179 A JP S60251179A JP 10372884 A JP10372884 A JP 10372884A JP 10372884 A JP10372884 A JP 10372884A JP S60251179 A JPS60251179 A JP S60251179A
Authority
JP
Japan
Prior art keywords
metal
ceramic
joint
pipe
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10372884A
Other languages
Japanese (ja)
Inventor
深谷 保博
章三 平井
哲雄 市来崎
岡崎 洋一郎
光雄 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP10372884A priority Critical patent/JPS60251179A/en
Publication of JPS60251179A publication Critical patent/JPS60251179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔本発明の技術分野〕 本発明は、セラミック部材と金属部材との接合方法に関
する。特に、本発明は、ターボチャージャ、ガスタービ
ン、掘削ドリル等に用いられるセラミック製回転体と金
属製シャフトとの接合に好適なセラミック部材と金属部
材との接合方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of joining a ceramic member and a metal member. In particular, the present invention relates to a method for joining a ceramic member and a metal member, which is suitable for joining a ceramic rotating body and a metal shaft used in turbochargers, gas turbines, drilling drills, and the like.

〔背景技術〕[Background technology]

ターボチャージャ、ガスタービン、ドリル等に用いられ
る回転体は高温、高速回転(ターボチャージャ、ガスタ
ービン等)、摩耗回転(ドリル等)といった過酷な使用
条件にさらされるため、従来はM1基耐熱合金(ターボ
チャージャ、ガスタービン等)や工具鋼(ドリル等)な
どが使用されてき九。
Rotating bodies used in turbochargers, gas turbines, drills, etc. are exposed to harsh operating conditions such as high temperatures, high speed rotation (turbochargers, gas turbines, etc.), and rotational wear (drills, etc.). Turbochargers, gas turbines, etc.) and tool steels (drills, etc.) have been used.

しかし、最近、811N4. SiO尋の高強度のセラ
ミックが開発され、耐熱性、耐摩耗性等の向上による高
性能化や寿命の延長を狙って、上記回転体に使用する動
きが活発になって来た。
However, recently, 811N4. High-strength ceramics made of SiO2 have been developed, and their use in the above-mentioned rotating bodies has become active with the aim of improving performance and extending life by improving heat resistance, wear resistance, etc.

一方、回転体に接続されるシャフトは回転時に繰返しの
曲げ応力が働くために脆性材料であるセラミックは使用
できず、炭素鋼等の金属材料が使用されるが、その結果
、セラミック製の回転体と金属製のシャフトを強固に接
合する必要が生じてきた。
On the other hand, the shaft that is connected to the rotating body cannot be made of ceramic, which is a brittle material because of the repeated bending stress that occurs during rotation, and metal materials such as carbon steel are used. It has become necessary to firmly join the metal shaft to the metal shaft.

しかし、従来から電気部品等に用いられてきたセラミッ
クと金属の接合法であるMo−Mnメタライジング+ム
g ろう付(セラミック表面にMo、Mn粉末をメタラ
イジングしたあと、金属とムg ろう付する方法)や接
着剤、焼きばめ等の方法は使用条件が過酷な場合採用で
きず、さらに高強度、高信頼性を有する接合法の開発が
必要である。
However, Mo-Mn metallization + mug brazing is a method of joining ceramics and metals that has traditionally been used for electrical parts, etc. (after metallizing Mo and Mn powder on the ceramic surface, metal and mug brazing are performed). Methods such as bonding, adhesives, and shrink fitting cannot be used if the usage conditions are severe, and it is necessary to develop a bonding method with even higher strength and reliability.

そこで、本発明者等は、セラミックと金属との接合方法
に関し、特にセラミックの割れを防止して強固に接合す
る手段として、インサート材を用いる方法を、すでに提
案している。
In view of this, the present inventors have already proposed a method of using an insert material as a means for firmly joining ceramics and preventing cracks in the ceramics, particularly as a method for joining ceramics and metals.

すなわち、インサート材として、N1 と金属酸化物、
窒化物又は炭化物、もしくはOu と金属酸化物、窒化
物又は炭化物を使用するもの(特願昭58−23798
6号参照)、ないしは、0ulO、NiO、Sing、
 FaO、Ago 、 A403゜MoO、Ti01.
 ZnO、AuO、0r20B、 Coo 、 Zr0
1゜TaO、WOI、 NbO、MgO、OaO、YI
OI のいずれか1つと、Ou、Ni、8i、Fe、 
Ag、 ム1゜Mo、Ti、Zn、Au、Or、Oo、
Zr、Ta、W。
That is, as insert materials, N1 and metal oxide,
Nitride or carbide, or one using O and metal oxide, nitride or carbide (Patent application No. 58-23798)
(see No. 6), or 0ulO, NiO, Sing,
FaO, Ago, A403°MoO, Ti01.
ZnO, AuO, 0r20B, Coo, Zr0
1゜TaO, WOI, NbO, MgO, OaO, YI
Any one of OI and Ou, Ni, 8i, Fe,
Ag, Mu1゜Mo, Ti, Zn, Au, Or, Oo,
Zr, Ta, W.

Wb、Mgのいずれか1つを混合した複合インサートを
使用するもの(特願昭58−238818号参照)であ
る。そして、このようなインサート材をセラミック接合
面にイオンブレーティング又は溶射て密着固定した後、
加熱反応促進処理して金属と強固に冶金的接合させるも
のである。
This uses a composite insert containing either Wb or Mg (see Japanese Patent Application No. 58-238818). Then, after ion brating or thermal spraying such an insert material to the ceramic bonding surface to tightly fix it,
It undergoes heat reaction acceleration treatment to form a strong metallurgical bond with metal.

本発明者等は、セラミックと金属との接合、特にセラミ
ック製回転体と金属製シャフトとの接合に関し、より一
層の研究を重ねた結果、本発明を完成したものである。
The present inventors have completed the present invention as a result of further research into the bonding of ceramics and metals, particularly the bonding of ceramic rotating bodies and metal shafts.

〔本発明の目的〕[Object of the present invention]

すなわち、本発明は、セラミック部材と金属部材とのよ
り強固な接合手段を提供することを特徴とする特に本発
明は、セラミック製の回転体と金属製のシャフトを接合
するにあたシ、過酷な回転に耐えるような高強度、高信
頼性を有するセラミック部材と全掛部材との接合方法を
提供することを目的とする。
That is, the present invention is characterized by providing a stronger bonding means between a ceramic member and a metal member. It is an object of the present invention to provide a method for joining a ceramic member and a full-hanging member that have high strength and high reliability so as to withstand heavy rotation.

〔本発明の構成〕[Configuration of the present invention]

そして、本発明は、上記目的を達成する手段として、セ
ラミック部材の継手部を、中央部の円周方向に溝を設け
た円柱体形状とし、これに金属製パイプを嵌入させ接合
するように構成した点にある。すなわち、本発明は、セ
ラミック部材と金属部材とを接合する方法に於いて、セ
ラミック部材の継手部を円柱状とし、がっ、その中央一
部に円周方向に溝を設け、これに若干内径を大きくし、
端部を閉じた金属製パイプを嵌入し、これを容器内に圧
力媒体粉末と共に封入し、オートクレーブ中で加熱、加
圧して拡散溶接し、次いで、該パイプと金属部材とを溶
接することを特徴とするセラミック部材と金属部材との
接合方法である。
As a means for achieving the above object, the present invention has a structure in which the joint portion of the ceramic member is formed into a cylindrical shape with a groove provided in the circumferential direction at the center, and a metal pipe is fitted into the cylindrical shape and joined. That's the point. That is, in the method of joining a ceramic member and a metal member, the present invention provides a method in which the joint portion of the ceramic member is made into a columnar shape, a groove is provided in a circumferential direction in a central part of the joint portion, and a groove is formed in the inner diameter slightly. Increase the
It is characterized by fitting a metal pipe with a closed end, sealing it in a container with pressure medium powder, heating and pressurizing it in an autoclave to perform diffusion welding, and then welding the pipe and the metal member. This is a method for joining a ceramic member and a metal member.

そして、上記のようにセラミック部材と金属部材とを接
合する際に、セラミック部材の継手部材又金属製パイプ
の内面に、 ■ N1 と金属酸化物、窒化物又は炭化物、もしく#
′iau と金属酸化物、窒化物又は炭化物■ 0ul
O、Ni0 、 8101@’ lFe0 、Ago 
When joining a ceramic member and a metal member as described above, N1 and a metal oxide, nitride, or carbide, or #
'iau and metal oxide, nitride or carbide ■ 0ul
O, Ni0, 8101@' lFe0, Ago
.

A 40 @ 1M OO+ T i 02 * Z 
n O* ムuO、0rzO@。
A 40 @ 1M OO+ T i 02 * Z
n O* MuuO, 0rzO@.

Coo、ZrO2,Tag、WOI、M’bO,MgO
Coo, ZrO2, Tag, WOI, M'bO, MgO
.

OaO、YIOs のいずれか1つと、Ou、111゜
Bi、F’e、ムg、 ムA、Mo、Ti、Zn。
Any one of OaO, YIOs, Ou, 111°Bi, F'e, Mug, MuA, Mo, Ti, Zn.

ムu、Or、Co、Zr、Ta、W、Nb。Mu, Or, Co, Zr, Ta, W, Nb.

Mgのいずれか1つを混合したもの ■ Ml、Ou、Or tインサート材としてコーティングすることを好ましい
実施態様とするものである。
A preferred embodiment is to coat a mixture of any one of Mg, Ml, Ou, Or t as an insert material.

以下、本発明をセラミック製回転体と金属製シャフトと
の接合を例としてあげ、第1〜4図に基づいて詳細に説
明するが、本発明はこれのみに限定されるものではなく
、セラミック製回転体以外にセラミック製静止構造体を
金属部材に接合する場合も当然のことながら本発明に包
含されるものである。
Hereinafter, the present invention will be explained in detail based on FIGS. 1 to 4, taking as an example the joining of a ceramic rotating body and a metal shaft. However, the present invention is not limited to this, and Naturally, the present invention also includes the case where a ceramic stationary structure other than a rotating body is bonded to a metal member.

第1図は本発明の実施例であるセラミック製回転体と金
属製パイプとを接合するための工程図を示し、第2図は
同接合時の加圧工程を示す図であり、第3図は金属製パ
イプに金属製シャフトを接合する際の該パイプ端面加工
工程を示し、第4図は同パイプと金属製シャフトとを接
合する工程を示す図である。
FIG. 1 shows a process diagram for joining a ceramic rotating body and a metal pipe according to an embodiment of the present invention, FIG. 2 shows a pressurizing process during the same joining, and FIG. FIG. 4 shows the process of working the end face of a metal pipe when joining the metal shaft to the metal pipe, and FIG. 4 is a diagram showing the process of joining the pipe and the metal shaft.

1は813N4. 810 、Zr01. ム403等
のセラミック製回転体、2Fiコパール(Ire−Ni
−Co合金)、炭素鋼、ステンレス鋼、N1 合金等の
一方の端部が閉じた金属製パイプ、3はセラミック回転
体の継手部に移行するR部、4は継手部となるセラミッ
ク円柱部、5は継手部となるセラミック円柱部の中央部
に円周方向に設けた溝、7はステンレス鋼、炭素鋼等の
容器、8は継手部に3次元の加圧力を伝達するZrO2
等をはじめメするセラミック粉あるいは石膏等の圧力媒
体である。なお6は、容器7の内外の気密を確保するた
めの溶接を示す。
1 is 813N4. 810, Zr01. Ceramic rotating body such as Mu403, 2Fi Copal (Ire-Ni
-Co alloy), carbon steel, stainless steel, N1 alloy, etc., a metal pipe with one end closed, 3 is an R part that transitions to the joint part of the ceramic rotating body, 4 is a ceramic cylindrical part that becomes the joint part, Reference numeral 5 indicates a groove provided in the circumferential direction in the center of the ceramic cylindrical part that becomes the joint part, 7 a container made of stainless steel, carbon steel, etc., and 8 a ZrO2 member that transmits three-dimensional pressing force to the joint part.
pressure medium such as ceramic powder or gypsum. Note that 6 indicates welding to ensure airtightness inside and outside the container 7.

本発明では、まず、第1図の如く、セラミック製回転体
1と金属製パイプ2を相対させ、その両者をかん合させ
る。その際、溝5又はパイプ2の内面に、あるいは、円
柱部4又はパイプ2の内面に、前述した複合インサート
ないしはインサート材がコーテングされているものであ
る。
In the present invention, first, as shown in FIG. 1, a ceramic rotating body 1 and a metal pipe 2 are made to face each other, and the two are engaged with each other. In this case, the inner surface of the groove 5 or the pipe 2, or the inner surface of the cylindrical portion 4 or the pipe 2, is coated with the above-described composite insert or insert material.

又、セラミック製回転体1の継手部となる円柱部4と金
属製パイプ2との間隙Xll1、(1011〜α2■を
採用する((101m以下で祉かん合挿入が困難であシ
、α2■以上では後述する3次元加圧拡散溶接で圧力媒
体5の粉末が接合面に侵入しやすくなり、接合を阻害す
るためである) 次いで、このようにがん合された円柱部4とパイプ2と
を、第2図に示すように、金属製容器7の中央部にセッ
トする。そしflその周囲を圧力媒体8の粉末を圧密し
て詰めたあと、容器7の上端にふたをし、溶接6で内部
を密閉する。
In addition, the gap between the cylindrical part 4, which is the joint part of the ceramic rotating body 1, and the metal pipe 2 is set at This is because the powder of the pressure medium 5 easily enters the joint surface during three-dimensional pressurized diffusion welding, which will be described later, and inhibits the joint. is set in the center of the metal container 7, as shown in Fig. 2.Then, the powder of the pressure medium 8 is compacted and packed around it, and the upper end of the container 7 is covered, and the welding 6 Seal the inside with.

このあと、オートクレーブ中で、これを加熱加圧し、前
記セラミック円柱部4と金属製パイプ2t−接合する。
Thereafter, this is heated and pressurized in an autoclave to join the ceramic cylindrical portion 4 and the metal pipe 2t.

その際の施工条件は加熱温度500℃以上1400℃以
下、加圧力CL 1 kg /鱈2以上20ゆ/■冨以
下、時間は5分以上5時間以下とする。それぞれの数値
の下限以下の条件ではセラミックの回転体1と金属製パ
イプ2の反応性が低いため、接合欠陥が生じ易く、上限
以上ではコスト高となることと、接合性向上にもはや寄
与するところがないためである。また、加圧力が低いと
金属製パイプ2とセラミック円柱部4の接触、密着も生
じない。
The construction conditions at that time are a heating temperature of 500° C. or more and 1400° C. or less, a pressing force of CL 1 kg/cod 2 or more and 20 yu/cm or less, and a time of 5 minutes or more and 5 hours or less. When the respective values are below the lower limit, the reactivity between the ceramic rotating body 1 and the metal pipe 2 is low, so bonding defects are likely to occur, and when the values are above the upper limit, the cost will be high and the bond will no longer contribute to improving bonding performance. This is because there is no Moreover, if the pressing force is low, contact and close contact between the metal pipe 2 and the ceramic columnar part 4 will not occur.

このオートクレーブ中の加熱、加圧処理で、第3図の如
く、金属製パイプ2はセラミック円柱部4と強固に接合
されると共に溝5内に塑性変形して同様に強固に接合さ
れ、次いで金属製パイプ2の端面をセラミック円柱部4
の径と同一径に加工される。なお、第1図において、円
柱部4の先端を球面状とすることもできるも−のである
Through this heating and pressure treatment in the autoclave, as shown in FIG. The end face of the manufactured pipe 2 is connected to the ceramic cylinder part 4.
The diameter is the same as that of the In addition, in FIG. 1, the tip of the cylindrical portion 4 can also be made into a spherical shape.

このあと、第4図に示す如く、炭素鋼、ステンレス鋼、
N1合金等の金属製ンヤフ)10と金属製パイプ2とを
電子ビーム溶接、レーザ溶接、TiG溶接等で溶接部1
11r形成し、接合、組立を完了する。
After this, as shown in Figure 4, carbon steel, stainless steel,
Welding part 1 is made by electron beam welding, laser welding, TiG welding, etc., and the metal pipe 2 is welded by electron beam welding, laser welding, TiG welding, etc.
11r is formed, joining and assembly are completed.

なお、継手部には前記したインサート材を用いるのを原
則とするが、稼動条件が比較的緩やかな場合は、Ni、
Ou、Or などを蒸着、メッキなどの手法によりコー
ティングしておいても良く、インサート材なしで直接接
合も可能である。
In principle, the above-mentioned insert material is used for the joint, but if the operating conditions are relatively gentle, Ni,
They may be coated with Ou, Or, etc. by vapor deposition, plating, or the like, and direct bonding is also possible without an insert material.

又、第2図では金属製容器7に1個の部材が挿入された
ものを示しているが、当然乍ら、多数個の挿入を行って
も良いことは言うまでもない。
Further, although FIG. 2 shows one member inserted into the metal container 7, it goes without saying that a plurality of members may be inserted.

本発明は、上記したように、セラミック製回転体1の継
手部となる部分を円柱状とし且つ、第1図及び第3図に
示す如く当該円柱部4に溝5を設け、相手の金属製パイ
プ2金かん合した継手形状を採用することおよびオート
クレーブ中でガス圧で第2図に示した当該部材を内、、
蔵した金属容器7を加熱下で3次元方向に加圧すること
によシ、金属製パイプ2が塑性変形して、セラミック円
柱部4および溝5内に密着して、強固な拡散溶接継手が
得られる。特に溝5を設けたことによって、セラミック
製回転体1と金属製パイプ2間の引抜き方向の強度は冶
金的接合効果の外に機械的結合効果が加わシ、大きく増
大する。
As described above, the present invention has a cylindrical portion for the joint portion of the ceramic rotating body 1, and a groove 5 is provided in the cylindrical portion 4 as shown in FIGS. 1 and 3. Adopting a joint shape in which the two pipes are fitted with gold, and applying gas pressure to the member shown in Figure 2 in an autoclave.
By pressurizing the stored metal container 7 in a three-dimensional direction while heating, the metal pipe 2 is plastically deformed and tightly adheres to the ceramic cylindrical portion 4 and the groove 5, resulting in a strong diffusion welded joint. It will be done. In particular, by providing the grooves 5, the strength in the drawing direction between the ceramic rotating body 1 and the metal pipe 2 is greatly increased by adding a mechanical bonding effect to the metallurgical bonding effect.

即ち、上記第1及び3図の如き溝付円柱はめ込み継手を
用い、且つ、加熱下で3次元加圧を行うことではじめて
、全継手面に均等な加圧力が付加され、高強度継手およ
びセラミックの耐破損性にすぐれる良好な拡散溶接継手
を得ることができる。
In other words, by using a grooved cylindrical fit-in joint as shown in Figures 1 and 3 above and applying three-dimensional pressure under heating, an even pressure can be applied to all joint surfaces, resulting in high-strength joints and ceramic joints. A good diffusion welded joint with excellent breakage resistance can be obtained.

3次元加圧を行うことでセラミック製回転体1、金属製
パイプ2、その継手部、いずれにも均等加圧が加わるた
め、部材の偏加圧による破損も生じない。すなわち、こ
の加圧はオートクレーブ中のガス圧が、金属製容器中の
粉末に伝達され、ついで継手部、部材に伝達されること
となる。また、この接合部に、本発明者等が提案した前
記のインサート材を使用することによって、よシ高強度
の接合が得られるものである。
By performing three-dimensional pressurization, uniform pressure is applied to the ceramic rotating body 1, the metal pipe 2, and their joints, so that damage due to uneven pressure on the members does not occur. That is, this pressurization means that the gas pressure in the autoclave is transmitted to the powder in the metal container, and then to the joints and members. Furthermore, by using the above-mentioned insert material proposed by the present inventors in this joint, a joint with much higher strength can be obtained.

これは、インサート材中のセラミックがセラミック製回
転体1とイオン結合あるいは共有結合を主体に拡散結合
し、一方、インサート材中の金属が金属製パイプ2と金
属結合で拡散接合し、良好な接合が成就するものである
This is because the ceramic in the insert material is diffusion bonded to the ceramic rotating body 1 mainly through ionic or covalent bonding, while the metal in the insert material is diffusion bonded to the metal pipe 2 through metal bonding, resulting in a good bond. is achieved.

一方、Ni、Ou、Or インサートおよび直接接合の
場合は、とれら金属の表面に存在する微量酸化物が酸化
物系セラミック製回転体ではその構成酸化物と、非酸化
物系セラミック製回転体ではその焼結助剤として含まれ
ている酸化物と反応して接合し、これら金属と金属製パ
イプとは金属同志の接合とな夛、容易に接合が成就する
(これら金属の表面に存在する酸化物は加圧により部分
的に破壊され、清浄な金属の露出面と強固に拡散接合す
る)。
On the other hand, in the case of Ni, Ou, Or inserts and direct bonding, the trace oxides present on the surface of these metals are different from the constituent oxides in the oxide ceramic rotating body, and in the case of the non-oxide ceramic rotating body. These metals and metal pipes are bonded by reacting with the oxides contained as sintering aids, and the bonding between these metals and metal pipes is easily accomplished. The object is partially destroyed by pressure and forms a strong diffusion bond with the exposed surface of clean metal).

オートクレーブ中での加熱、加圧が終了すると冷却する
が、冷却過程において、セラミック円柱部の熱膨張係数
(Si、〜4. SiO・・・ 3〜4X10−・7℃
、Al40B 、 Zr01 + + + 7〜8 X
 10−7℃)が金属製パイプの熱膨張係数(炭素鋼・
・・12 X 10−”/ t:、ステンレス鋼・・・
17×10−’/C5N1合金・・・12 X 10−
’/ ℃、コパール・・・5 X 10−’ /’C)
よシ小さいため、金属製パイプがセラミック円柱より大
きく収縮し、セラミックに密着しながら冷却する。即ち
、接合面には剥離力は全く生ぜず、逆に密着方向に力が
作用して冷却し、すぐれた継手tmることかできる。こ
れは金属製パイプを外面に配設した本発明の継手の大き
な作用効果の一つである。
When the heating and pressurization in the autoclave are finished, it is cooled, but during the cooling process, the coefficient of thermal expansion of the ceramic cylinder part (Si, ~4. SiO... 3~4X10-7℃)
, Al40B, Zr01 + + + 7~8 X
10-7℃) is the thermal expansion coefficient of metal pipe (carbon steel
...12 x 10-"/t:, stainless steel...
17×10-'/C5N1 alloy...12 X 10-
'/℃, Copal...5 x 10-'/'C)
Because it is so small, the metal pipe contracts more than the ceramic cylinder and cools while being in close contact with the ceramic. That is, no peeling force is generated on the joint surfaces, but on the contrary, force acts in the direction of adhesion and cooling, resulting in an excellent joint. This is one of the major effects of the joint of the present invention in which a metal pipe is disposed on the outer surface.

なお、オートクレーブ中での加熱、加圧による接合に類
似するものとして、焼ばめ結合があるが、この焼ばめは
温度を一定時間、均一に保持することが困難であること
、加圧力を大きく負荷することが困難であること等よシ
、十分な拡散接合の履行が不可能であり、且つまた、セ
ラミックに加圧応力が負荷された部分と負荷されない部
分との境界で、セラミックが破損しやすい欠点を有する
が、本発明では、これら不具合点を全て解決しうるもの
である。
Shrink fit is similar to joining by heating and pressure in an autoclave, but this shrink fit is difficult to maintain a uniform temperature for a certain period of time, and it is difficult to apply pressure. In addition to the fact that it is difficult to apply a large load, it is impossible to perform sufficient diffusion bonding, and the ceramic may be damaged at the boundary between the area where pressure stress is applied and the area where it is not. However, the present invention can solve all of these problems.

また、第1図における溝5への金属製パイプ2の塑性変
形密着はこの焼ばめ法では困難であることは言うまでも
ない。
Further, it goes without saying that it is difficult to plastically deform the metal pipe 2 into close contact with the groove 5 in FIG. 1 using this shrink fitting method.

以上のようにセラミック製回転体に金属製ノくイブが接
合されると、金属シャフトとは通常の溶接法で溶接が可
能であシ、全工程の接合が完了する。
When the metal knob is joined to the ceramic rotating body as described above, it can be welded to the metal shaft using a normal welding method, and the entire joining process is completed.

以上本発明の詳細な説明したが、さらに本発明の具体例
をあげ、本発明をより詳細に説明−する。第5図は以下
の本発明の具体例1〜4を説明するだめの図であって、
セラミック回転体と金属製パイプとの概要寸法図である
Although the present invention has been described in detail above, the present invention will be explained in more detail by giving specific examples of the present invention. FIG. 5 is a diagram for explaining specific examples 1 to 4 of the present invention below,
FIG. 2 is a schematic dimensional diagram of a ceramic rotating body and a metal pipe.

〔具体例1〕−インサート材として81sN4十N i
を用いた例− 供試材として、5i3N40回転体、コバールのパイプ
、8841のシャフトを用いた。回転体は直径が100
 [(A)、継手部の円柱部が30+aφ■)、長さ4
ow(c)でその中間部に旅さ1′■(G)、長さ20
 ’W (Fl)の溝を設けてあり、接合部となる部分
に5isN4+Ni (重量%で51sli4/ Ni
 = 30 /70 ) f PVDコーティングした
。コパールパイプは内径3αosw+$co)、外径5
 /> 05 mm ’fi (10s長さa 3m 
(F) (端部は3IIllの肉厚をもつ中実部を有す
る)である。
[Specific example 1] - 81sN40Ni as insert material
Example using 5i3N40 rotating body, Kovar pipe, and 8841 shaft were used as test materials. The rotating body has a diameter of 100
[(A), cylindrical part of joint part is 30+aφ■), length 4
Travel to the middle part with ow (c) 1'■ (G), length 20
'W (Fl) groove is provided, and the joint part is 5isN4+Ni (51sli4/Ni in weight%).
= 30/70) f PVD coated. Copal pipe has an inner diameter of 3αosw+$co) and an outer diameter of 5
>> 05 mm 'fi (10s length a 3m
(F) (The end has a solid portion with a wall thickness of 3IIIll).

両者をかん合したあと、厚さ111mの5US304容
器内の中心部に挿入し、その周囲にZrO2粉末を封入
したあと、厚さ11KmのSUB 504製上ぶたをか
ぶせ、周囲をシール溶接した。
After mating the two, it was inserted into the center of a 5US304 container with a thickness of 111 m, ZrO2 powder was sealed around it, and then a top lid made of SUB 504 with a thickness of 11 km was covered and the surrounding area was sealed and welded.

次いで、これをオートクレーブに入れ、1200℃に加
熱し、N、ガス圧1500 kg7tws” 、加熱保
持時間2時間で3次元加圧の拡散溶接を行った。
Next, this was placed in an autoclave, heated to 1200° C., and three-dimensional pressure diffusion welding was performed under N gas pressure of 1500 kg7tws” and a heating holding time of 2 hours.

その結果、コバールパイプはS i、N4円柱部の溝内
に変形密着すると共に継手部には非接合部がなく、良好
な継手性能を有するEl 13N4− コバールの継手
が得られた。そのあと、この接合体 □のコバール端部
f:5isN4 円柱部と同じ径(至))をもつように
穴あけ加工し、該コバールと8841製のシャフトとを
電子ビーム溶接で溶接して、所定の回転構造体を得た。
As a result, the Kovar pipe was deformed and tightly adhered to the groove of the Si, N4 cylinder part, and there was no non-bonded part in the joint part, so that an El 13N4-Kovar joint with good joint performance was obtained. After that, a hole is drilled at the Kovar end of this joined body □ so that it has the same diameter (to) as the cylindrical part, and the Kovar and the shaft made of 8841 are welded by electron beam welding. A rotating structure was obtained.

最後に該回転構造体を回転試験したが、良好な回転性能
が得られ、高信頼性を有する継手が形成されることが判
明した。
Finally, the rotary structure was subjected to a rotation test, and it was found that good rotation performance was obtained and a highly reliable joint was formed.

〔具体例2〕−インサート材として0ulO+Ouを用
いた例− 供試材として、ム403の回転体、コバールのパイプ、
8s41のシャフトを用いた。回転体は直径が100■
(A)、継手部の円柱部が30■φφ)、長さ40■(
0)でその中間部に深さ1■(G)、長さ20■但)の
溝を設けてあ)、接合部となる部分に0ulO+Ou 
(重量係でcu、o/ Ou = 50150 ) f
 PVDコーティングした。コパールパイプは内径3α
05■φCD)、外径3605■φ(]0、長さ4 :
s m(?) (端部は6■の肉厚をもつ中実部を有す
る)である。
[Specific Example 2] - Example using 0ulO+Ou as insert material - As test materials, Mu403 rotating body, Kovar pipe,
An 8s41 shaft was used. The diameter of the rotating body is 100■
(A), the cylindrical part of the joint is 30mmφφ), the length is 40mm (
0), a groove with a depth of 1 (G) and a length of 20 (provided) is provided in the middle part of the groove, and the part that will become the joint is 0ulO+Ou.
(Cu, o/Ou = 50150 in the weight department) f
PVD coated. Copal pipe has an inner diameter of 3α
05■φCD), outer diameter 3605■φ(]0, length 4:
s m(?) (the end has a solid part with a wall thickness of 6 mm).

両者をかん合したあと、厚さ1■のSUB 304容器
内の中心部に挿入し、その周囲にZr01粉末を封入し
たあと厚さ1■のEIU8304製上ぶたをかぶせ、周
囲をシール溶接した。
After mating the two, it was inserted into the center of a 1-inch-thick SUB 304 container, Zr01 powder was sealed around it, and a 1-inch-thick EIU8304 top lid was placed on top, and the periphery was sealed and welded.

次いで、これをオートクレーブに入れ、1000uK加
熱し、Arガス圧1500 kg7cm”、加熱保持時
間2時間で3次元加圧の拡散溶接を行った。
Next, this was placed in an autoclave, heated at 1000 uK, and three-dimensional pressure diffusion welding was performed at an Ar gas pressure of 1500 kg 7 cm'' and a heating holding time of 2 hours.

その結果、コパールパイプはム401円柱部の溝内に変
形密着すると共に継手部には非接合部がなく、良好な継
手性能を有するA403− コバールの継手が得られた
。そのあと、この接合体のコバール端部をム403円柱
部と同じ径CB)t−もつように穴あけ加工し、該コバ
ールと8841製のシャフトとを電子ビーム溶接で溶接
して、所定の回転構造体を得た。最後に該回転構造体を
回転試験したが、良好な回転性能が得られ、高信頼性を
有する継手が形成されることが判明した。
As a result, the copal pipe deformed and adhered tightly within the groove of the cylindrical part of M401, and there was no non-bonded part in the joint, so that a joint of A403-Kovar with good joint performance was obtained. After that, the Kovar end of this joined body is drilled so that it has the same diameter CB) as the columnar part of Mu403, and the Kovar and the shaft made of 8841 are welded by electron beam welding to form a predetermined rotating structure. I got a body. Finally, the rotary structure was subjected to a rotation test, and it was found that good rotation performance was obtained and a highly reliable joint was formed.

〔具体例3〕−インサート材としてN1 を用いた例− 供試材として8100回転体、コバールのパイプ、 8
US 304のシャフト’に用いた。回転体は直径が1
o o mCA)、継手部の円柱部が3OWφ(η、長
さ40■(0)で、その中間部に深さαs m (G)
、長さ20■@)の#を設けてあシ、接合部となる部分
にN1 をPVDコーティングした。コバールパイプは
内径3α0555mφΦ)、外径3&05mφ@)、長
さs o m(F) (端部は10簡の肉厚をもつ中東
部を有する)である。
[Specific Example 3] - Example using N1 as insert material - 8100 rotating body, Kovar pipe, 8 as test materials
Used for US 304 shaft. The rotating body has a diameter of 1
o o mCA), the cylindrical part of the joint part is 3OWφ(η, length 40■(0), and the depth αs m (G) is in the middle part.
, 20 cm in length) was provided, and the part that would become the joint was PVD coated with N1. The Kovar pipe has an inner diameter of 3α0555mφΦ), an outer diameter of 3×05mφ@), and a length s o m (F) (the end has a middle part with a wall thickness of 10 pieces).

両者金かん合したあと、厚さ1■のSUB 304容器
内の中心部に挿入し、その周囲に石膏粉末を封入したあ
と、厚さ1■の5US304 m上ぶたをかぶせ、周囲
をシール溶接した。次いで、これをオートクレーブに入
れ、tloocに加熱し、N、ガス圧1500 kc9
/76+”、加熱保持時間1時間で3次元加圧の拡散溶
接を行った。
After fitting the two pieces together, it was inserted into the center of a 1-inch-thick SUB 304 container, and gypsum powder was sealed around it, then a 1-inch-thick 5US304 m top lid was placed on top, and the surrounding area was sealed and welded. . This was then placed in an autoclave and heated to tlook, N, gas pressure 1500 kc9
/76+”, three-dimensional pressure diffusion welding was performed with a heating holding time of 1 hour.

その結果、コバールパイプは810円柱部の溝内に変形
密着すると共に継手部には非接合部がなく、良好な継手
性能を有する810−コパールの継手が得られた。
As a result, the Kovar pipe was deformed and tightly adhered to the groove of the 810 columnar part, and there was no non-bonded part in the joint part, so that an 810-Copal joint with good joint performance was obtained.

そのあと、この接合体のコバール端部i 810円柱部
と同じ径φ)をもつように、穴あけ加工し、該コバーー
ル、!: 8U8304製のシャフトとをレーザ溶接で
溶接して所定の回転構造体を得た。最後に該回転構造体
番回転試験したが、良好な回転性能が得られ、高信頼性
を有する継手が形成されることが判明した。
After that, a hole is drilled so that the Kovar end part i of this joined body has the same diameter φ) as the 810 cylindrical part, and the Kovar,! : A shaft made of 8U8304 was welded by laser welding to obtain a predetermined rotating structure. Finally, a rotation test was conducted on the rotating structure, and it was found that good rotation performance was obtained and a highly reliable joint was formed.

〔具体例4〕−インサート材を用いない例−供試材とし
て5i(3の回転体、コバールのパイプ、N i Or
Mo鋼のシャフトを用いた。回転体は直径が1o o 
wCA)、継手部の円柱部が30■φの)、長さ40■
(0)で、その中間部に深さα5四(G)、長さ20 
mm @の溝を設けである。コパールのパイプは内径3
α05 ttm 、fΦ)、外径3&051φ俤)、長
さ50■(F) (端部は10■の肉厚をもつ中実部を
有する)である。
[Specific Example 4] - Example not using insert material - 5i (rotating body of 3, Kovar pipe, Ni Or
A Mo steel shaft was used. The rotating body has a diameter of 1 o
wCA), the cylindrical part of the joint is 30■φ), length 40■
(0), the depth α54 (G) and the length 20 in the middle part.
A groove of mm@ is provided. Copal pipe has an inner diameter of 3
α05 ttm , fΦ), outer diameter 3×051φ), and length 50 mm (F) (the end portion has a solid part with a wall thickness of 10 mm).

両者を直接、かん合したあと、厚さ1■のSUE 30
4容器内の中心部に挿入し、その周囲に石膏粉末を封入
したあと、厚さ1m111の8U8304製上ぶたをか
ぶせ周囲をシール溶接した。次いで、これをオートクレ
ーブに入れ、1150℃に加熱し、Arガス圧2000
 K/’Cl11”、加熱保持時間2時間で3次元加圧
の拡散溶接を行った。
After directly mating the two, SUE 30 with a thickness of 1.
After inserting it into the center of the container and sealing the gypsum powder around it, a top lid made of 8U8304 with a thickness of 1 m111 was covered and the surrounding area was sealed and welded. Next, this was placed in an autoclave, heated to 1150°C, and Ar gas pressure 2000°C.
Three-dimensional pressure diffusion welding was performed at K/'Cl11'' and a heating holding time of 2 hours.

その結果、コバールパイプは810円柱部の溝内に変形
密着すると共に、継手部には非接合部がなく、良好な継
手性能を有する810−コバールの継手が得られた。そ
のあと、この接合体のコパール端部t−810円柱部と
同じ径俤)をもつように穴あけ加工し、該コパールとN
i(IrMo鋼製のシャフトとをレーザ溶接して、所定
の回転構造体を得九。最後に該回転構造体を回転試験し
たが、良好な回転性能が得られ、高信頼性を有する継手
が形成されることが判明した。
As a result, the Kovar pipe deformed and adhered tightly within the groove of the 810 cylindrical portion, and there was no non-bonded portion in the joint, resulting in an 810-Kovar joint with good joint performance. After that, a hole is drilled so that the copal end of this joined body has the same diameter as the t-810 cylindrical part, and the copal and N
i (IrMo steel shaft) was laser welded to obtain a specified rotating structure.Finally, the rotating structure was subjected to a rotational test, and it was found that good rotational performance was obtained and the joint had high reliability. was found to be formed.

〔本発明の効果〕[Effects of the present invention]

本発明は、以上詳記したように、セラミック部材の継手
部を、中央部の円周方向に溝を設けた円柱体形状とし、
これに金属製パイプを嵌合させ、この両者を圧着接合さ
せ、次いで、該パイプと金属部材とを接合させるもので
あるから、セラミック部材と金属部材とが強固に接合で
きる効果が生ずるものである。特に本発明では、セラミ
ック部材の継手部として、溝を設けた円柱体形状とした
ことによシ、金属製パイプが該円柱体の円柱部と強固に
接合されると共に、溝内に塑性変形して、同様に強固に
接合される効果が生ずるものである。
As detailed above, the present invention provides a joint portion of a ceramic member having a cylindrical shape with a groove provided in the circumferential direction at the center,
A metal pipe is fitted into this, the two are bonded together by pressure, and then the pipe and the metal member are joined, so that the ceramic member and the metal member can be firmly joined. . In particular, in the present invention, the joint part of the ceramic member is formed into a cylindrical body with a groove, so that the metal pipe is firmly joined to the cylindrical part of the cylindrical body and is not plastically deformed into the groove. This also produces the effect of a strong bond.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例であるセラミック製回転体と金
属製パイプとを接合するための工程図を示し、第2図は
同接合時の加圧工程を示し、第3図は金属製パイプに金
属製シャフトを接合する際の該パイプ端面加工工程を示
し、第4図は同パイプと金属製シャフトとを接合する工
程を示す。第5図はセラミック回転体と金属製パイプと
の概要寸法図である。 1・・・回転体 2・・・パイプ 3・・・R部 4・・・円柱部 5・・・溝 6・・・溶接 7・・・容器 8・・・圧力媒体 10・・・シャフト 11・・・溶接部 X・・・間隙 復代理人 内 1) 明 後代理人 萩 原 亮 − 第1図 第1頁の続き ■発明者 松1)光雄 相模原−1
FIG. 1 shows a process diagram for joining a ceramic rotating body and a metal pipe according to an embodiment of the present invention, FIG. 2 shows a pressurizing process during the same joining, and FIG. FIG. 4 shows the pipe end face processing process when joining the metal shaft to the pipe, and FIG. 4 shows the process of joining the pipe and the metal shaft. FIG. 5 is a schematic dimensional drawing of the ceramic rotating body and the metal pipe. 1...Rotating body 2...Pipe 3...R section 4...Cylindrical section 5...Groove 6...Welding 7...Container 8...Pressure medium 10...Shaft 11 ...Welding part

Claims (4)

【特許請求の範囲】[Claims] (1) セラミック部材と金属部材上を接合する方法に
於いて、セラミック部材の継手部を円柱状とし、かつ、
その中央部に円周方向に溝を設け、とれに若干内径を大
きくシ、端部を閉じた金属製パイプを嵌入し、これを容
器内に圧力媒体粉末と共に封入し、オートクレーブ中で
加熱、加圧して拡散溶接し、次いで、該パイプと金属部
材とを溶接することを特徴とするセラミック部材と金属
部材との接合方法。
(1) In the method of joining a ceramic member and a metal member, the joint portion of the ceramic member is made cylindrical, and
A groove is formed in the center of the tube in the circumferential direction, and a metal pipe with a slightly larger inner diameter and a closed end is inserted into the tube.This is sealed in a container together with pressure medium powder, and heated and heated in an autoclave. 1. A method of joining a ceramic member and a metal member, which comprises applying pressure and diffusion welding, and then welding the pipe and the metal member.
(2) セラミック部材の継手部面又は金属製パイプの
内面に、1A1 と金属酸化物、窒化物又は炭化物、も
しくは、Ou と金属酸化物、窒化物又は炭化物をイン
サート材としてコーテングする特許請求の範囲第1項記
載のセラミック部材と金属部材との接合方法。
(2) A claim in which the joint surface of a ceramic member or the inner surface of a metal pipe is coated with 1A1 and a metal oxide, nitride, or carbide, or Ou and a metal oxide, nitride, or carbide as an insert material. 2. A method for joining a ceramic member and a metal member according to item 1.
(3) セラミック部材の継手部面又は金属製パイプの
内面に、0ulO、NiO、5iO1,Fleo 、 
Ago 。 A408.’ MOO、Ti01.ZnO、AuO,0
rlO1゜Coo 、ZrO2,TaO、No!、Nb
O、MgO。 OaO、Y2O2のいづれか1つと、Ou、Ni。 Eli、Il’e、Ag、At、MO,Ti、Zn、A
u。 Or、Co、Zr、Ta、W、Nb、Mgのいづれか1
つを混合した複合インサート材をコーティングする特許
請求の範囲第1項記載のセラミック部材と金属部材との
接合方法。
(3) On the joint surface of the ceramic member or the inner surface of the metal pipe, 0ulO, NiO, 5iO1, Fleo,
Ago. A408. ' MOO, Ti01. ZnO, AuO, 0
rlO1゜Coo, ZrO2, TaO, No! ,Nb
O, MgO. One of OaO, Y2O2, Ou, Ni. Eli, Il'e, Ag, At, MO, Ti, Zn, A
u. Any one of Or, Co, Zr, Ta, W, Nb, Mg
2. The method of joining a ceramic member and a metal member according to claim 1, wherein the composite insert material is coated with a composite insert material in which the two are mixed.
(4) セラミック部材の継手部面又は金属製パイプの
内面に、Ni、Ou、Or ftインサート材としてコ
ーティングする特許請求の範囲第1項記載のセラミック
部材と金属部材との接合方法。
(4) The method of joining a ceramic member and a metal member according to claim 1, wherein the joint surface of the ceramic member or the inner surface of the metal pipe is coated as an Ni, Ou, Or ft insert material.
JP10372884A 1984-05-24 1984-05-24 Method of bonding ceramic member and metal member Pending JPS60251179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10372884A JPS60251179A (en) 1984-05-24 1984-05-24 Method of bonding ceramic member and metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10372884A JPS60251179A (en) 1984-05-24 1984-05-24 Method of bonding ceramic member and metal member

Publications (1)

Publication Number Publication Date
JPS60251179A true JPS60251179A (en) 1985-12-11

Family

ID=14361712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10372884A Pending JPS60251179A (en) 1984-05-24 1984-05-24 Method of bonding ceramic member and metal member

Country Status (1)

Country Link
JP (1) JPS60251179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4890783A (en) * 1988-11-29 1990-01-02 Li Chou H Ceramic-metal joining
WO1990006208A1 (en) * 1988-11-29 1990-06-14 Li Chou H Materials joining
US5104747A (en) * 1989-10-04 1992-04-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Joined assembly of ceramic and metallic materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4890783A (en) * 1988-11-29 1990-01-02 Li Chou H Ceramic-metal joining
WO1990006208A1 (en) * 1988-11-29 1990-06-14 Li Chou H Materials joining
US5104747A (en) * 1989-10-04 1992-04-14 Kabushiki Kaisha Toyota Chuo Kenkyusho Joined assembly of ceramic and metallic materials

Similar Documents

Publication Publication Date Title
JPH0339993B2 (en)
JPH0516382B2 (en)
US7108166B2 (en) Method for sealing a battery case
JPS61249689A (en) Production of composite member
JP2752768B2 (en) Joint structure of turbine rotor
US4580714A (en) Hard solder alloy for bonding oxide ceramics to one another or to metals
US3793705A (en) Process for brazing a magnetic ceramic member to a metal member
JPS60251179A (en) Method of bonding ceramic member and metal member
JPS60231473A (en) Method of bonding ceramic member and metal member
JPS60251180A (en) Method of bonding ceramic member and metal member
JPS5891088A (en) Method of bonding ceramic and metal
JPS62182169A (en) Method of joining ceramic member to metal member
KR100306493B1 (en) Diffusion joint method of puberty material
JPS60246275A (en) Method of bonding ceramic member and metal member
JPH0351321Y2 (en)
JPS59207885A (en) Method of bonding ceramic member to metal member
JPS6277186A (en) Solid phase joining method
JP2515927Y2 (en) Bonding structure of ceramic members and metal members
JPH061672A (en) Joining structure for ceramic shaft and metallic shaft
JPH01141882A (en) Method for bonding ceramic to metallic member
JPS61219766A (en) Joint structure of ceramic shaft and metal shaft
JPS5895670A (en) Method of bonding silicon nitride ceramic and metal
JP2747865B2 (en) Joint structure between ceramics and metal
JPH0573715B2 (en)
JPH03189477A (en) Abrasion resistant piston ring and manufacture thereof