JPS60250731A - Living body communication system - Google Patents

Living body communication system

Info

Publication number
JPS60250731A
JPS60250731A JP10689884A JP10689884A JPS60250731A JP S60250731 A JPS60250731 A JP S60250731A JP 10689884 A JP10689884 A JP 10689884A JP 10689884 A JP10689884 A JP 10689884A JP S60250731 A JPS60250731 A JP S60250731A
Authority
JP
Japan
Prior art keywords
output
amplifier
living body
inputted
transmitted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10689884A
Other languages
Japanese (ja)
Inventor
Fumio Kitagawa
北川 文夫
Haruhiro Terada
寺田 晴博
Yoshinori Sainomoto
良典 才ノ本
Hiroshi Hagiwara
啓 萩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP10689884A priority Critical patent/JPS60250731A/en
Publication of JPS60250731A publication Critical patent/JPS60250731A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1107Measuring contraction of parts of the body, e.g. organ, muscle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6829Foot or ankle

Abstract

PURPOSE:To remove the complication of wiring and troubles due to radio interference by applying information to be transmitted to a carrier and transmitting the information through a living body tissue. CONSTITUTION:A switch 13 of a living body transmission system is connected to an carrier signal oscillator 14 and arranged on one foot bottom of a living body tissue 12. The output of the oscillator 14 is inputted to a carrier signal amplifier 15 and the output of the amplifier 15 is inputted to two electrodes 16 arranged on the ankle of the living body tissue 12. Two electrodes 17 arranged on calve muscles are connected to a carrier signal detecting amplifier 19 through an analog switch 18 and its output is inputted to a frequency discriminator 20. A mono- stable multivibrator 21 is triggered by the discriminated output of the discriminator 20, the output of the multivibrator 21 is inputted to the switch 18 and a gate pulse generator 22, the output of the generator 22 is inputted to a pulse amplifier 23, and the output of the amplifier 23 is applied to the electrode 17. Thus, the information transmitted with the carrier is detected and transmitted through the living body tissue 12, so that the complication of wiring and radio interference are removed.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は生体組織を伝送路として用いた生体通信方式に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a biological communication system using biological tissue as a transmission path.

〔背景技術〕[Background technology]

従来、心電、筋電、脳波等の生体電気信号を記録表示す
る方法として、有線方式と無線方式がある。
Conventionally, there are wired methods and wireless methods for recording and displaying bioelectrical signals such as electrocardiograms, electromyograms, and electroencephalograms.

有線方式では、第1図に示すように、生体1の心電2を
記録する場合、上記心電2は電tFM3により導出され
、増幅器4で増幅され、有線で記録表示器5に伝送され
る。無線方式では、第2図に示すように、生体lの心電
2は電極3を介して導出され、増幅器6で増幅され、高
周波変調器7で送信アンテナ8よ゛り無線で伝播される
。上記伝播信号は、受信アンテナ9で受信され、受信さ
れた高周波信号は復調器10で生体電気信号に変換され
、記録表示器Uに伝送される。
In the wired method, as shown in FIG. 1, when recording an electrocardiogram 2 of a living body 1, the electrocardiogram 2 is derived by an electric tFM 3, amplified by an amplifier 4, and transmitted to a recording display 5 by wire. . In the wireless system, as shown in FIG. 2, an electrocardiogram 2 of a living body 1 is derived through an electrode 3, amplified by an amplifier 6, and wirelessly propagated by a high frequency modulator 7 through a transmitting antenna 8. The propagation signal is received by the receiving antenna 9, and the received high frequency signal is converted into a bioelectrical signal by the demodulator 10 and transmitted to the recording display U.

しかし表から、上記有線方式では、生体1の任意の場所
で生体電気信号を収録するには、有線をはりめぐらす必
要があり、配線脱着の煩わしさや断線等の不都合があっ
た。また無線方式では、生体lの任意の場所で生体電気
信号を収録する場合に、不特定多数の収録には、混信対
策として多チャンネル化が必要となる為、コスト高に表
るという欠点があった。
However, as can be seen from the table, in the above-mentioned wired method, in order to record bioelectrical signals at any location of the living body 1, it is necessary to run the wires around, resulting in inconveniences such as troublesome wiring and disconnection. In addition, wireless methods have the disadvantage that when recording bioelectrical signals at any location on a living body, recording an unspecified number of people requires multiple channels to prevent interference, resulting in high costs. Ta.

〔発明の目的〕[Purpose of the invention]

本発明は上記の点を改善するために成したものであって
、その目的とするところは、有線方式における配線の脱
着や断線、無線方式における混信の問題の無い生体通信
方式を提供することにある。
The present invention has been made to improve the above points, and its purpose is to provide a biomedical communication system that is free from the problems of wire attachment and disconnection in wired systems and interference in wireless systems. be.

〔発明の開示〕[Disclosure of the invention]

本発明の特徴は、生体組織を伝送路として用いることに
ある。
A feature of the present invention is that living tissue is used as a transmission path.

以下本発明を、実施例として掲げた図面に基づき説明す
る。
The present invention will be explained below based on the drawings shown as examples.

第3図は本発明の一実施例を示すブロック図である。生
体組織臣の一方の下腿の足底に設置されたスイッチUが
搬送波信号発振器14に接続され、上記発振器14の出
力は、搬送波信号増幅器15に入力され、上記増幅器の
出力は、上記生体組織νの足首に設置された2つの電極
16に接続される。他方の下腿では、腓腹筋に設置され
た2つの電極17が、アナログスイッチ18を介して、
搬送波信号検出増幅器19に接続され、上記増幅器19
の出力は周波数弁別益田に入力される。上記周波数弁別
益田の出力は単安定マルチバイブレータ21に入力され
、その出力は、前記アナログスイッチ、チ18とゲート
パルス発生器nに入力される。上記ゲートパルス発生器
乙の出力はパルス増幅器路に入力され、上記増幅器の出
力は、前記2つの電IIM17に接続される。
FIG. 3 is a block diagram showing one embodiment of the present invention. A switch U installed on the sole of one lower leg of the biological tissue subject is connected to a carrier wave signal oscillator 14, the output of the oscillator 14 is input to a carrier wave signal amplifier 15, and the output of the amplifier is connected to the biological tissue ν. is connected to two electrodes 16 placed on the ankles of the patient. On the other lower leg, two electrodes 17 placed on the gastrocnemius muscle are connected via an analog switch 18 to
connected to a carrier signal detection amplifier 19;
The output of is input to frequency discrimination Masuda. The output of the frequency discriminator Masuda is input to the monostable multivibrator 21, and its output is input to the analog switch 18 and the gate pulse generator n. The output of the gate pulse generator B is input to a pulse amplifier path, and the output of the amplifier is connected to the two IIMs 17.

かかる構成の生体通信方式の動作を説明する。The operation of the biomedical communication system having such a configuration will be explained.

今、前記生体組織しの一方の下腿に麻痺などの障害があ
る場合、歩行をスムーズに行うには、正常な下腿のi作
情報を利用して、麻痺した下腿の麻痺筋肉を運動させる
必要がある。正常下腿の足底に設置されたスイッチ13
が、生体組織Vの重心の移動に伴ってオンされると、搬
送波信号発振器14で搬送波信号が発生され、搬送波信
号増幅器15で増幅され、電極16を介して生体組織し
の下腿足首近傍に上記搬送波信号が注入される。注入さ
れた搬送波信号は、生体組織技を伝送され、麻痺し九下
腿に設置された電極17で検出される。アナログスイッ
チJ8は、後述する単安定マルチバイブレータ21が動
作してい々いとき、導通状態にあるので、電i17で検
出された搬送波信号は、アナログスイッチ18を通過し
て、搬送波信号検出増幅器19で増幅され、周波数弁別
益田で、搬送波信号であることが確認される。上記周波
数弁別益田としては、一般に位相固定式閉回路(Pha
se −Lock Loop 、以後PLLと略す)が
用いられる。従って、周波数弁別益田で認識された搬送
波信号は、パルス化され、単安定マルチバイブレータ4
の計りガとなる。上記トリガによって、単安定マルチバ
イブレータ21は、一定時間のパルスを発生させる。上
記パルス発生時はゲートパルス発生器nにより、数Hz
 から数十Hzのパルスが発生され、パルス増幅器部に
より増幅される。上記増幅信号は、電極17を介して麻
痺筋肉を刺激し、腓腹筋を運動させ、キックしながら歩
行を行なう。単安定フルチバイプレータ21の動作時、
即ちゲートパルスが麻痺筋肉を刺激している間、搬送波
信号検出増幅器19の入力保護のために、アナログスイ
ッチ摺が非導通となる。このようにして、生体組織径の
重心の移動により、下腿の足底のスイッチ13がオン、
オフを繰り返し、スムーズな歩行ができる。
Now, if there is a disorder such as paralysis in one of the lower legs of the living tissue, in order to walk smoothly, it is necessary to exercise the paralyzed muscles of the paralyzed lower leg using the i-motion information of the normal lower leg. be. Switch 13 installed on the sole of the normal lower leg
is turned on as the center of gravity of the biological tissue V moves, a carrier wave signal is generated by the carrier wave signal oscillator 14, amplified by the carrier wave signal amplifier 15, and transmitted to the biological tissue near the lower leg ankle via the electrode 16. A carrier signal is injected. The injected carrier wave signal is transmitted through the living tissue and detected by an electrode 17 placed on the paralyzed lower leg. Since the analog switch J8 is in a conductive state when the monostable multivibrator 21 (described later) is operating, the carrier wave signal detected by the electric i17 passes through the analog switch 18 and is detected by the carrier wave signal detection amplifier 19. It is amplified and verified to be a carrier wave signal by frequency discrimination Masuda. The above frequency discrimination Masuda is generally a phase-locked closed circuit (Pha
se-Lock Loop (hereinafter abbreviated as PLL) is used. Therefore, the carrier signal recognized by the frequency discrimination Masuda is pulsed and monostable multivibrator 4
It becomes a measurement. The above trigger causes the monostable multivibrator 21 to generate a pulse for a certain period of time. When the above pulse is generated, the gate pulse generator n generates a pulse of several Hz.
A pulse of several tens of Hz is generated from the pulse and is amplified by the pulse amplifier section. The amplified signal stimulates the paralyzed muscle via the electrode 17, moves the gastrocnemius muscle, and kicks while walking. When the monostable multi-biprator 21 operates,
That is, while the gate pulse is stimulating the paralyzed muscle, the analog switch slide is non-conducting to protect the input of the carrier signal detection amplifier 19. In this way, the switch 13 at the sole of the lower leg is turned on due to the movement of the center of gravity of the biological tissue diameter.
You can walk smoothly by repeatedly turning off and on.

第4図は本発明の他の実施例を示すブロック図であり、
生体組織Uの一端で検出した生体電気信号を任意の他端
へ伝送し、記録表示するものである。生体組織Uの一端
に取り付けられた2つの電極部は検出増幅器部に接続さ
れ、上記増幅益田の出力はフィルタIに入力され、上記
フィルりIの出力は電圧制御型発振器加に入力され、上
記発振益田の出力は変調増幅器9に入力され、上記増幅
器部の出力は前記電極5に接続される。前記生体組織U
の他端では、2つの電極刃が復調増幅器31に接続され
、上記増幅器31の出力はFM復調器&に入力され、上
記復調器澄の出力はデータレコーダおに入力される。
FIG. 4 is a block diagram showing another embodiment of the present invention,
The bioelectrical signal detected at one end of the living tissue U is transmitted to any other end and recorded and displayed. The two electrode sections attached to one end of the living tissue U are connected to the detection amplifier section, the output of the amplifier Masuda is input to the filter I, the output of the filter I is input to the voltage controlled oscillator, and the output of the amplifier Masuda is input to the filter I. The output of the oscillating Masuda is input to a modulation amplifier 9, and the output of the amplifier section is connected to the electrode 5. The living tissue U
At the other end, the two electrode blades are connected to a demodulating amplifier 31, the output of which is input to an FM demodulator and the output of the demodulator is input to a data recorder.

上記構成の生体通信方式の動作を心電検出の場合で説明
する。生体組織例の胸壁に設置された電極6で、生体電
気信号である心電を検出し、検出した心電は、検出増幅
器部で増幅され、増幅信号はフィルりIで雑音を除去さ
れ、電圧制御型発振器Zの周波数を変調する。高周波に
変調された心電は、゛変調増幅器9で増幅され、電極部
から生体組織例に注入される。上記高周波に変調された
心電は、生体組織あ内を伝送され、任意の他端、例えば
、手首に取り付けられた電極(資)により検出され、復
調増幅器31で増幅され、FM復調器&で。
The operation of the biomedical communication system having the above configuration will be explained in the case of electrocardiogram detection. An electrocardiogram, which is a bioelectrical signal, is detected with an electrode 6 installed on the chest wall of a living tissue example, and the detected electrocardiogram is amplified in a detection amplifier section, and the amplified signal is filtered to remove noise by a filter I. Modulate the frequency of controlled oscillator Z. The electrocardiogram modulated at high frequency is amplified by the modulation amplifier 9 and injected into the living tissue from the electrode section. The electrocardiogram modulated to the high frequency is transmitted through the living tissue, detected by an electrode attached to an arbitrary other end, for example, the wrist, amplified by the demodulation amplifier 31, and then transmitted to the FM demodulator & .

元の生体電気信号である心電に変換される。上記FMt
JIm器羽は、一般に高周波信号にPLLがロ ツクす
ることにより復調される。上記復調された心電はデータ
レコーダ(により記録表示される。上記実施例では、生
体の任意の場所で、生体電気信号を収録することができ
る。
It is converted into an electrocardiogram, which is the original bioelectrical signal. Above FMt
JIM equipment is generally demodulated by locking a PLL to a high frequency signal. The demodulated electrocardiogram is recorded and displayed by a data recorder. In the above embodiment, bioelectrical signals can be recorded at any location in the living body.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明によれば、生体の任意の複数点間の
情報伝送において、上記情報を、搬送波に乗せ、伝送路
としての生体組織内を伝送させるようにしたので、配線
の煩わしさや、混信の問題の無い生体通信方式が提供で
きた。
As described above, according to the present invention, when transmitting information between any plurality of points in a living body, the information is carried on a carrier wave and transmitted within the living tissue as a transmission path. We were able to provide a biomedical communication method that does not have the problem of interference.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は従来の生体電気信号の記録表示方式
を示すブロック図、第3図は本発明の一実施例を示すブ
ロック図、第4図は本発明の他の実施例を示すブロック
図である。 臣・ツ・・・生体組織、14・・・搬送波信号発振器、
り°°°周波数弁別器・丞゛゛電圧制御型発振器・謔°
°す復調器。 第1図 第2図 第3図
FIGS. 1 and 2 are block diagrams showing a conventional bioelectrical signal recording and display system, FIG. 3 is a block diagram showing one embodiment of the present invention, and FIG. 4 is a block diagram showing another embodiment of the present invention. It is a block diagram. Minister/Tsu...Biological tissue, 14...Carrier signal oscillator,
Frequency discriminator/voltage controlled oscillator/song
°S demodulator. Figure 1 Figure 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)生体における任意の複数点間の情報伝送において
、上記伝送すべき情報を、搬送波に乗せると共に、生体
組織を介して伝送することを特徴とした生体通信方式。
(1) A biological communication system characterized in that, in information transmission between arbitrary points in a living body, the information to be transmitted is carried on a carrier wave and transmitted via biological tissue.
(2)上記伝送すべき情報が、生体電気信号である特許
請求の範囲第1項記載の生体通信方式。
(2) The biomedical communication system according to claim 1, wherein the information to be transmitted is a bioelectrical signal.
JP10689884A 1984-05-25 1984-05-25 Living body communication system Pending JPS60250731A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10689884A JPS60250731A (en) 1984-05-25 1984-05-25 Living body communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10689884A JPS60250731A (en) 1984-05-25 1984-05-25 Living body communication system

Publications (1)

Publication Number Publication Date
JPS60250731A true JPS60250731A (en) 1985-12-11

Family

ID=14445283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10689884A Pending JPS60250731A (en) 1984-05-25 1984-05-25 Living body communication system

Country Status (1)

Country Link
JP (1) JPS60250731A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01288274A (en) * 1988-05-16 1989-11-20 Tokyo Electric Co Ltd Low frequency remedying device
WO1996023373A1 (en) * 1995-01-25 1996-08-01 Philip Ashley Haynes Communication method
WO1996036134A1 (en) * 1995-05-08 1996-11-14 Massachusetts Institute Of Technology System for non-contact sensing and signalling using human body as signal transmission medium
FR2742903A1 (en) * 1995-12-20 1997-06-27 Daimler Benz Ag DEVICE FOR BODY-RELATED DATA TRANSMISSION BETWEEN TWO TERMINALS
FR2784839A1 (en) * 1998-10-16 2000-04-21 Boris Rybak Inter-personal and intra-personal telephone signal transmission uses direct detection of human voice enabling transmission of speech in noisy environment
JP2003037566A (en) * 2001-05-14 2003-02-07 Sony Corp Device and system for transmitting information
EP1298822A3 (en) * 2001-09-26 2006-02-15 Nippon Telegraph and Telephone Corporation Transceiver suitable for data communication between wearable computers
KR100723307B1 (en) 2005-10-25 2007-05-30 한국전자통신연구원 Communication device
KR100767414B1 (en) 2006-09-21 2007-10-17 한국과학기술원 Wireless video transmission and receipt apparatus using a human body
EP1329134B1 (en) * 2000-05-10 2008-12-31 The Board of Trustees of the University of Illinois Intrabody communication for a hearing aid
JP2011224085A (en) * 2010-04-16 2011-11-10 Alps Electric Co Ltd Living body communication device and living body communication system
US20110286722A1 (en) * 2003-01-25 2011-11-24 Tae-Song Kim Method and system for data communication using a body
US8160672B2 (en) 2003-01-25 2012-04-17 Korea Institute Of Science And Technology Method and system for data communication in human body and sensor therefor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160436A (en) * 1981-03-27 1982-10-02 Gen Engineering Kk Communication apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57160436A (en) * 1981-03-27 1982-10-02 Gen Engineering Kk Communication apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0657261B2 (en) * 1988-05-16 1994-08-03 東京電気株式会社 Low frequency therapy device
JPH01288274A (en) * 1988-05-16 1989-11-20 Tokyo Electric Co Ltd Low frequency remedying device
WO1996023373A1 (en) * 1995-01-25 1996-08-01 Philip Ashley Haynes Communication method
US6118882A (en) * 1995-01-25 2000-09-12 Haynes; Philip Ashley Communication method
WO1996036134A1 (en) * 1995-05-08 1996-11-14 Massachusetts Institute Of Technology System for non-contact sensing and signalling using human body as signal transmission medium
US5914701A (en) * 1995-05-08 1999-06-22 Massachusetts Institute Of Technology Non-contact system for sensing and signalling by externally induced intra-body currents
FR2742903A1 (en) * 1995-12-20 1997-06-27 Daimler Benz Ag DEVICE FOR BODY-RELATED DATA TRANSMISSION BETWEEN TWO TERMINALS
FR2784839A1 (en) * 1998-10-16 2000-04-21 Boris Rybak Inter-personal and intra-personal telephone signal transmission uses direct detection of human voice enabling transmission of speech in noisy environment
EP1329134B1 (en) * 2000-05-10 2008-12-31 The Board of Trustees of the University of Illinois Intrabody communication for a hearing aid
JP2003037566A (en) * 2001-05-14 2003-02-07 Sony Corp Device and system for transmitting information
US7263295B2 (en) 2001-09-26 2007-08-28 Nippon Telegraph And Telephone Corporation Transceiver suitable for data communications between wearable computers
US7430374B2 (en) 2001-09-26 2008-09-30 Nippon Telegraph & Telephone Corp. Transceiver suitable for data communications between wearable computers
EP1298822A3 (en) * 2001-09-26 2006-02-15 Nippon Telegraph and Telephone Corporation Transceiver suitable for data communication between wearable computers
US7493047B2 (en) 2001-09-26 2009-02-17 Nippon Telegraph And Telephone Company Transceiver suitable for data communications between wearable computers
US20110286722A1 (en) * 2003-01-25 2011-11-24 Tae-Song Kim Method and system for data communication using a body
US8160672B2 (en) 2003-01-25 2012-04-17 Korea Institute Of Science And Technology Method and system for data communication in human body and sensor therefor
KR100723307B1 (en) 2005-10-25 2007-05-30 한국전자통신연구원 Communication device
KR100767414B1 (en) 2006-09-21 2007-10-17 한국과학기술원 Wireless video transmission and receipt apparatus using a human body
JP2011224085A (en) * 2010-04-16 2011-11-10 Alps Electric Co Ltd Living body communication device and living body communication system

Similar Documents

Publication Publication Date Title
US4981141A (en) Wireless electrocardiographic monitoring system
US5168874A (en) Wireless electrode structure for use in patient monitoring system
US5579781A (en) Wireless transmitter for needle electrodes as used in electromyography
JPS60250731A (en) Living body communication system
US5458123A (en) System for monitoring patient location and data
US3534728A (en) Physiological parameter measuring system
EP1267706B1 (en) Portable ecg signaling device
US3991747A (en) Portable cardiac monitoring system and method
EP0458883B1 (en) Wireless electrocardiographic monitoring system
US4326535A (en) Circuit and method for the radiotelemetry of esophageal pH in an ECG radiotelemetry system
US6654633B2 (en) Mobile neurological signal data acquisition system and method
US3659591A (en) Electromagnetic flowmeter
US3815109A (en) Miniature multichannel biotelemeter system
US3650264A (en) Apparatus for electro-medical investigation
Zweizig et al. The design and use of an FM/AM radiotelemetry system for multichannel recording of biological data
JPH05317278A (en) Radio transmission type bioinformation detecting and recording device
CN106562783A (en) Electrocardio measurement method and device
Nowogrodzki et al. Non-invasive microwave instruments for the measurement of respiration and heart rates
JPH01284230A (en) Device for measuring information on living body
Holsinger et al. Portable EKG telephone transmitter
Yonezawa et al. A multichannel telemetry system for recording cardiovascular neural signals
Güler et al. A low-cost biotelemetry system for long time monitoring of physiological data
JPH0346730Y2 (en)
Deutsch A 15-electrode totally implanted time-multiplex telemetry unit
RU2066973C1 (en) Monitoring system sensor