JPS60250255A - White corpuscle sorter - Google Patents

White corpuscle sorter

Info

Publication number
JPS60250255A
JPS60250255A JP59106378A JP10637884A JPS60250255A JP S60250255 A JPS60250255 A JP S60250255A JP 59106378 A JP59106378 A JP 59106378A JP 10637884 A JP10637884 A JP 10637884A JP S60250255 A JPS60250255 A JP S60250255A
Authority
JP
Japan
Prior art keywords
image
output
white blood
blood cell
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59106378A
Other languages
Japanese (ja)
Inventor
Akihide Hashizume
明英 橋詰
Jun Motoike
本池 順
Ryuichi Suzuki
隆一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59106378A priority Critical patent/JPS60250255A/en
Publication of JPS60250255A publication Critical patent/JPS60250255A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/14Optical investigation techniques, e.g. flow cytometry
    • G01N15/1468Optical investigation techniques, e.g. flow cytometry with spatial resolution of the texture or inner structure of the particle

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

PURPOSE:To enable accurate identification of white corpuscle by sorting it based on a feature parameter which permits the assay from a density histogram between multiple wavelengths utilizing the advantage of a filter that can accentuate the chromosomic property of cytoplasm. CONSTITUTION:A corpuscle image is converted into an electrical signal with photoelectric converters 32, 42 and 52 through red, green and blue filters 31, 41 and 51. Then, outputs of the photoelectric converters 32, 42 and 52 are digitized with A/D converters 33, 43 and 53 to be memorized into image memories 34, 44 and 54. Then, based on data of the image memories 34, 44 and 54, a density histogram is formed with a feature extractor 35 and analyzed with an arithmetic identifier 36 to sort white corpuscle based on the results of the analysis. This can improve the accuracy of sorting three forms, that is neutrophilic, juvenile and acidophilic.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、白血球の分類に有効な特徴量に関す(1) るもので、特に好酸球と好中球・幼若域の3者の分類識
別に好適な白血球分類装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to (1) feature values that are effective for classifying white blood cells, and in particular, the characteristics of the three types of white blood cells, eosinophils, neutrophils, and immature cells. The present invention relates to a leukocyte classification device suitable for classification and identification.

〔発明の背景〕[Background of the invention]

血球像の入力に関する色分解の波長としては、R: 5
60〜600nm、G: 510〜540nm、B: 
400〜430nmが適している。従来Gとして550
nmのフィルタ(以下、g′と記す)を用いていた(特
願昭50−105906号明細書参照)。このフィルタ
で入力した白血球像(入力した血球像からBのフィルタ
を介して入力した血球像をもとに赤血球像を除いたもの
)の濃度分布は、今回選定した3フィルタr:590n
m*g:525nm、b : 415nmのうちrで入
力した白血球像と同様の濃度分布(第1図(a))を示
す。
The color separation wavelength for blood cell image input is R: 5.
60-600nm, G: 510-540nm, B:
400-430 nm is suitable. 550 as conventional G
A nm filter (hereinafter referred to as g') was used (see the specification of Japanese Patent Application No. 50-105906). The concentration distribution of the white blood cell image input with this filter (the red blood cell image is removed based on the input blood cell image input through filter B) is as follows: 3 filters selected this time: 590n
m*g: 525 nm, b: 415 nm, showing the same concentration distribution as the white blood cell image input with r (FIG. 1(a)).

従来は、この第1図(a)の濃度分布C以下、濃度とヒ
ストグラムと記す)から、白血球の核と細胞質を濃度で
分離する閾値4,5,6.白血球の細胞質と背景を濃度
で分離する閾値7,8.9をめ、各々の平均閾値17,
18,19をめ(2) る。この平均閾値17,18.19以上の濃度をもつ総
頻度と、核と細胞質間の閾値4,5.6以上の濃度をも
つ総頻度(領域1,2.3・・・白血球の核面積に相当
する)の比から好中球、幼若味。
Conventionally, thresholds 4, 5, 6, . The threshold values for separating white blood cell cytoplasm and background by concentration are 7 and 8.9, and the average threshold values for each are 17 and 8.9, respectively.
18 and 19 (2). The total frequency with a concentration above the average threshold value of 17, 18.19, and the total frequency with a concentration above the threshold value of 4, 5.6 between the nucleus and the cytoplasm (area 1, 2.3... The nuclear area of white blood cells Neutrophils, immature taste from the ratio of corresponding).

好酸球の3者を分類していた。しかし必ずしも幼若味と
好酸球の分類には有効でないという欠点があった。
Three types of eosinophils were classified. However, it has the drawback that it is not necessarily effective in classifying juvenile taste and eosinophils.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上記欠点を解消し、好中球。 The object of the present invention is to eliminate the above-mentioned drawbacks and to improve the production of neutrophils.

幼若球、好酸球の3者をより精度良く識別する白血球分
類装置を提供することにある。
It is an object of the present invention to provide a white blood cell classification device that can more accurately distinguish between immature cells and eosinophils.

〔発明の概要〕[Summary of the invention]

従来の手法は、単波長における濃度ヒストグラムの分布
の相異から、特徴パラメータを定量化し分類を行なうも
のであった。これに対し、今回は細胞質(細胞質内に含
まれる顆粒も含む)の染色性を最も強調するフィルタ(
r:590nm、g: 525 n m t b : 
415 n m)を選択した利点を活かし、単波長にお
ける濃度ヒストグラムでなく、複数波長間の濃度ヒスト
グラムから定量化で(3) きる特徴パラメータをもとに、より精度良く分類を行お
うというものである。
Conventional methods quantify characteristic parameters and perform classification based on differences in the distribution of concentration histograms at single wavelengths. In contrast, this time we used a filter (
r: 590 nm, g: 525 nm tb:
Taking advantage of the advantage of selecting 415 nm), we aim to perform more accurate classification based on characteristic parameters that can be quantified (3) from concentration histograms between multiple wavelengths, rather than concentration histograms at a single wavelength. be.

第1図に、rおよびgを介して入力した白血球像の濃度
ヒストグラムを示している。
FIG. 1 shows a density histogram of a white blood cell image input via r and g.

ここでは、好酸球の顆粒(細胞質上に密に存在する)の
g:525nmにおける吸収率が、核の吸収率にほぼ等
しくなることを利用している。すなわち、gの濃度ヒス
トグラムから白血球の核とみなされる部分13に対する
、rの濃度ヒストグラムから核とみなされる部分13の
比が、好中球におけるrの核1の、gの核11に対する
比、幼若味rの核2の、gの核12に対する比に較べて
小さく(第2図)なり、好酸球と他の2者の分類識別が
可能となる。
Here, it is utilized that the absorption rate of eosinophil granules (densely present on the cytoplasm) at g:525 nm is approximately equal to the absorption rate of the nucleus. That is, the ratio of the part 13 considered to be the nucleus from the concentration histogram of r to the part 13 considered to be the nucleus of white blood cells from the concentration histogram of g is the same as the ratio of nucleus 1 of r to nucleus 11 of g in neutrophils, The ratio of nucleus 2 of young taste r to nucleus 12 of g is smaller (FIG. 2), making it possible to classify eosinophils and the other two.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第3図、第4図により説明する
Embodiments of the present invention will be described below with reference to FIGS. 3 and 4.

血球像を赤フィルタ31、緑フィルタ41、青フィルタ
51を介して光電変換器32,42゜52で電気信号に
変換する。ここで、光電変換器(4) としでは例えば撮像管、固体撮像素子等が考えられる。
The blood cell image is passed through a red filter 31, a green filter 41, and a blue filter 51, and then converted into an electrical signal by photoelectric converters 32, 42°52. Here, the photoelectric converter (4) may be, for example, an image pickup tube, a solid-state image sensor, or the like.

ついで上記光電変換器32,42,52の出力を各々A
/D変換器33,43,53でディジタル化し、画像メ
モリ34,44,54に記憶する。上記画像メモリ34
,44.54のデータをもとに特徴抽出装置35におい
て、濃度ヒストグラムを生成し、演算識別装置36で濃
度ヒストグラムの解析を行い、その解析結果をもとに白
血球を分類する。
Then, the outputs of the photoelectric converters 32, 42, and 52 are respectively A.
/D converters 33, 43, 53 digitize and store in image memories 34, 44, 54. The above image memory 34
, 44.54, the feature extraction device 35 generates a concentration histogram, the arithmetic identification device 36 analyzes the concentration histogram, and the white blood cells are classified based on the analysis results.

第4図は、上記特徴抽出装置35の一構成例を示したも
のである。
FIG. 4 shows an example of the configuration of the feature extracting device 35. As shown in FIG.

画像メモリ34の出力および画像メモリ54の出力およ
び定数値を記憶したメモリ62の出力を引算回路61に
導き、画像メモリ34の出力から画像メモリ54の出力
を引いた信号を作る。一方2値化回路63.64にあら
かじめめている閾値を演算識別装置36から与えておく
。2値化回路63には、画像メモリ54の出力を導き、
設定閾値以上の信号の場合は′1′″、それ以外の場合
は0”の信号を出力する。また2値化回路64には、(
5) 上記引算回路61の出力を導き、設定閾値以下の信号の
場合はu 1 pt、それ以外の場合はat O#lの
信号を出力する。ついで、上記2値化回路63,64の
##Qjl、”l”信号をAND回路65に導き、血球
像中の赤血球部分は1117′、その他の部分は′0″
の2値化信号を作る(詳細は特願昭57−223820
号″領域分割方法″を参照)。
The output of the image memory 34, the output of the image memory 54, and the output of the memory 62 storing constant values are led to a subtraction circuit 61, and a signal obtained by subtracting the output of the image memory 54 from the output of the image memory 34 is generated. On the other hand, a predetermined threshold value is given to the binarization circuits 63 and 64 from the arithmetic identification device 36. The output of the image memory 54 is led to the binarization circuit 63,
If the signal is equal to or higher than the set threshold, a signal of ``1'' is output, otherwise a signal of 0'' is output. Furthermore, the binarization circuit 64 has (
5) The output of the subtraction circuit 61 is derived, and if the signal is below the set threshold, the signal u 1 pt is output, otherwise the signal at O#l is output. Next, the ##Qjl and "l" signals of the binarization circuits 63 and 64 are led to the AND circuit 65, and the red blood cell part in the blood cell image is set to 1117', and the other parts are set to '0'.
Create a binary signal (see patent application No. 57-223820 for details)
(Refer to No. ``Region Division Method'').

一方、選択回路66は、演算識別装置36の信号により
、画像メモリ34あるいは画像メモリ44のいずれか一
方を選択するように設定し、選択した一方の信号をゲー
ト回路67に出力する。
On the other hand, the selection circuit 66 is set to select either the image memory 34 or the image memory 44 according to the signal from the arithmetic identification device 36, and outputs the selected signal to the gate circuit 67.

ゲート回路67のゲート信号として上記AND回路65
の出力を用い、赤血球部分に対応する入力信号の通過を
禁止した信号を作る。上記ゲート回路67の出力をヒス
トグラム生成回路68に導けば、所望の濃度ヒストグラ
ムを得ることができる。
The above AND circuit 65 serves as a gate signal for the gate circuit 67.
Using the output of , a signal is created that prohibits the passage of the input signal corresponding to the red blood cell part. By guiding the output of the gate circuit 67 to the histogram generation circuit 68, a desired density histogram can be obtained.

選択回路66の指定を変えて、2回同じ操作を繰り返す
ことにより、rの濃度ヒストグラムとgの濃度ヒストグ
ラムがまる。
By changing the designation of the selection circuit 66 and repeating the same operation twice, the density histogram of r and the density histogram of g are matched.

上記、濃度ヒストグラムを演算識別装置36に(6) 導き、核と細胞質の閾値ペア(4,14)、(5゜15
)、(6,16)をめる。その手法は、濃度の高い方の
谷を検出することによりめる。上記各のない場合は濃度
の低い方の谷と濃度の高い方の山の濃度値を一定の比率
で内分した濃度値を閾値とする(詳細は特願昭57−9
4381号″閾値決定法″′を参照)。ついで、上記閾
値ペア(4,14)。
The concentration histogram described above is guided to the calculation discriminator 36 (6), and the nucleus and cytoplasm threshold pairs (4, 14), (5°15
), (6,16). The method is determined by detecting the valley with higher concentration. If none of the above exists, the threshold value is the concentration value obtained by internally dividing the concentration value of the valley with lower concentration and the concentration value of the mountain with higher concentration at a certain ratio (for details, see Japanese Patent Application No. 57-9
No. 4381 ``Threshold Determination Method''). Next, the threshold pair (4, 14).

(5,15)、(6,16)から、核面積相当値のペア
(1,11)、(2,12)、(3,t3)をめ、各ペ
アの比から入力された白血球の分類を行う。ここでは、
演算識別装置36として汎用の計算機を想定してその処
理手順を述べたが、この処理をハード化し高速化するこ
とも可能である。
From (5, 15) and (6, 16), find the pair of nuclear area equivalent values (1, 11), (2, 12), (3, t3), and classify the white blood cells input from the ratio of each pair. I do. here,
Although the processing procedure has been described assuming a general-purpose computer as the arithmetic identification device 36, it is also possible to implement this processing in hardware and speed it up.

また、全体の構成としても、A/D変換器を1つだけも
って光電変換器の出力を逐次切替えてA/D変換する方
式、光電変換器・A/D変換器を1系統だけもって、フ
ィルタを切替える方式、画像メモリを用いず、必要な画
像をその都度A/D変換する方式等変形は多々可能であ
る。
In addition, the overall configuration is a method that has only one A/D converter and sequentially switches the output of the photoelectric converter for A/D conversion, and a method that has only one system of photoelectric converters and A/D converters and filters. Many modifications are possible, such as a method of switching between images, a method of A/D converting a necessary image each time without using an image memory, etc.

〔発明の効果〕〔Effect of the invention〕

(7) 本発明によれば、好中球、幼若味、好酸球の細胞質の染
色性の違いを強調した特徴パラメータの定量化ができる
ので、上記3者の分類精度向上に多大の効果を得ること
ができる。
(7) According to the present invention, it is possible to quantify characteristic parameters that emphasize the differences in cytoplasmic staining of neutrophils, immature tastes, and eosinophils, which has a great effect on improving the classification accuracy of the above three types. can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、bは、好中球、幼若味、好酸球の赤および緑
光下での濃度ヒストグラム、第2図は特徴パラメータの
分布範囲を示す図、第3図、第4図は本発明の一実施例
になる装置の構成を示すブロック図である。 31.41,51・・・光学フィルタ、32,42゜5
2・・・光電変換装置、33,43,53・・・A/D
変換器、34,44,54・・・画像メモリ、35・・
・特徴抽出装置、36・・・演算識別装置、61・・・
引算回路、62・・・メモリ、63,64・・・2値化
回路、65・・・AND回路、66・・・選択回路、6
7・・・ゲー(8) 子 2 図 1 / 第 3 目 第4− 図
Figures 1a and b are concentration histograms of neutrophils, juveniles, and eosinophils under red and green light, Figure 2 is a diagram showing the distribution range of characteristic parameters, Figures 3 and 4 are FIG. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention. 31.41,51...Optical filter, 32,42゜5
2... Photoelectric conversion device, 33, 43, 53... A/D
Converter, 34, 44, 54... Image memory, 35...
-Feature extraction device, 36... Arithmetic identification device, 61...
Subtraction circuit, 62... Memory, 63, 64... Binarization circuit, 65... AND circuit, 66... Selection circuit, 6
7... Game (8) Child 2 Figure 1 / 3rd eye 4th - Figure

Claims (1)

【特許請求の範囲】 光電変換手段により波長別に入力された赤成分。 緑成分、青成分の血球像(以下、各々1画像2g画像、
b画像と略す)を用いて、5画像と、1画像と5画像の
差画像から赤血球を検出する検出手段と、g画像あるい
は1画像の一方を選択する選択手段を有し、上記選択手
段の出力を上記検出手段の出力で信号の通過を制御する
制御手段を有し、上記制御手段の出力をもとにヒストグ
ラムを生成する生成手段を有し、上記生成手段の出力を
もとに1画像あるいはg画像での白血球の核とみなされ
る値を算出する演算手段と、上記演算手段の2つの出力
の比から、白血球特に好酸球と好中球。 幼若域を識別する識別手段を有する白血球分類装置。
[Claims] Red components input by wavelength by photoelectric conversion means. Blood cell images of green component and blue component (hereinafter, 1 image 2g image each,
a detection means for detecting red blood cells from 5 images and a difference image between the 1 image and the 5 images; and a selection means for selecting either the g image or the 1 image; The output includes a control means for controlling the passage of a signal using the output of the detection means, and a generation means for generating a histogram based on the output of the control means. Alternatively, white blood cells, particularly eosinophils and neutrophils, can be determined from the calculation means for calculating the value considered to be the nucleus of white blood cells in the g image and the ratio of the two outputs of the above calculation means. A white blood cell classification device having an identification means for identifying a juvenile region.
JP59106378A 1984-05-28 1984-05-28 White corpuscle sorter Pending JPS60250255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59106378A JPS60250255A (en) 1984-05-28 1984-05-28 White corpuscle sorter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59106378A JPS60250255A (en) 1984-05-28 1984-05-28 White corpuscle sorter

Publications (1)

Publication Number Publication Date
JPS60250255A true JPS60250255A (en) 1985-12-10

Family

ID=14432049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59106378A Pending JPS60250255A (en) 1984-05-28 1984-05-28 White corpuscle sorter

Country Status (1)

Country Link
JP (1) JPS60250255A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290946A (en) * 1987-05-22 1988-11-28 Shimadzu Corp Cell identification device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290946A (en) * 1987-05-22 1988-11-28 Shimadzu Corp Cell identification device

Similar Documents

Publication Publication Date Title
US3999047A (en) Method and apparatus utilizing color algebra for analyzing scene regions
JP6959614B2 (en) Analyzer and flow cytometer
US3851156A (en) Analysis method and apparatus utilizing color algebra and image processing techniques
JP7428994B2 (en) measurement system
KR20190043135A (en) Systems and methods for classifying biological particles
US20170102310A1 (en) Flow cytometer and a multi-dimensional data classification method and an apparatus thereof
US20080172185A1 (en) Automatic classifying method, device and system for flow cytometry
JPH0658928A (en) Particle analyzer
KR101995763B1 (en) Cytometry apparatus and method
CN107389536B (en) Flow cell particle classification counting method based on density-distance center algorithm
Frankel et al. Application of neural networks to flow cytometry data analysis and real‐time cell classification
CN106975617B (en) A kind of Classification of materials method based on color selector
CN109446964A (en) Face detection analysis method and device based on end-to-end single-stage multiple scale detecting device
KR101995764B1 (en) Cytometry apparatus and method
CN114332856A (en) Feature extraction method and device for blood type card image and blood type interpretation system
US4850024A (en) Method and apparatus for classifying white blood cells
JP4554810B2 (en) Particle analyzer and particle analysis method
US5684584A (en) Apparatus for analyzing cells in urine
JP3002325B2 (en) Surface inspection equipment
JPS60250255A (en) White corpuscle sorter
JP3504030B2 (en) Method and apparatus for determining particle criterion, and particle analyzer using the criterion
JPH02194359A (en) Separation of blood cell of three main types from leucocyte cell histogram
JPS5830049B2 (en) Automatic reticulocyte measurement device
JPH0443311B2 (en)
Selvaraj et al. ‘K-Means Clustering Based Segmentation of Lymphocytic Nuclei for Acute Lymphocytic Leukemia Detection