JPS6025004A - Opto-magnetic recording device - Google Patents

Opto-magnetic recording device

Info

Publication number
JPS6025004A
JPS6025004A JP13249483A JP13249483A JPS6025004A JP S6025004 A JPS6025004 A JP S6025004A JP 13249483 A JP13249483 A JP 13249483A JP 13249483 A JP13249483 A JP 13249483A JP S6025004 A JPS6025004 A JP S6025004A
Authority
JP
Japan
Prior art keywords
waveform
output
signal
recording device
put together
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13249483A
Other languages
Japanese (ja)
Inventor
Shiro Okamura
岡村 史良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13249483A priority Critical patent/JPS6025004A/en
Publication of JPS6025004A publication Critical patent/JPS6025004A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor

Abstract

PURPOSE:To approximate the distribution of recording magnetism substantially rectangularly and to obtain higher density by deforming a signal waveform properly in terms of time and speeding up the rising and falling of heat locally. CONSTITUTION:A signal 7 is digitized 20 into a rectangular wave train 25, which is further deformed 26 by 21. This is attained by using a nonlinear processing or differentiation circuit, etc., and when the waveform 26 is used for a laser 4, strong local heating is performed firstly to speed up the leading edge of the waveform and also improve the trailing edge as well. Further, the waveform 26 is optimized by simulation. In an example 21, the output of 20 is put together with the output of the differentiation circuit 30 and the differential output after having the amplitude 32 adjusted through one-bit pulse delay 32 is put together 33 with the output which is not delayed to obtain said output. Other various known waveform converting circuits are usable.

Description

【発明の詳細な説明】 この発明は特にレーザを用いた高密度光磁気記録装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a high-density magneto-optical recording device using a laser.

この装置においては、移動する記録媒体の加熱がレーザ
ビームで行なわれるので、媒体上の一定点の温度上昇は
比較的ゆっくりと上り下るので、ディジタル記録におい
ては残留磁気は空間的な確率曲線的な形となる。そこで
、逐次密接した記録を行なうと重なり部が生じ、高密度
化を妨げる。
In this device, the moving recording medium is heated by a laser beam, so the temperature rise at a certain point on the medium rises and falls relatively slowly. It takes shape. Therefore, if recording is performed closely one after another, overlapping portions will occur, which will prevent high density.

本発明は信号波形を時間的に適当に変形して局部の熱の
立上りを速くかつ立下りも速かにすることによって、実
質上記録磁化の分布を方形的に近ずけ、より高密度化を
可能にすることを要旨とする。
The present invention makes the distribution of recorded magnetization substantially rectangular by appropriately changing the signal waveform temporally to make the local heat rise faster and fall faster, thereby achieving higher density. The purpose is to make it possible.

第1図は本発明の適用される発明者出願特願昭58−2
5389号明細書記載の如き光磁気記録装置を示す。1
は磁性媒体で右へ進む。2は一方向磁化用磁石で、3は
これと逆方向磁化磁石であって、3は弱いものでよい。
Figure 1 shows the inventor's patent application No. 58-2 to which the present invention is applied.
A magneto-optical recording device as described in No. 5389 is shown. 1
moves to the right in a magnetic medium. 2 is a magnet for unidirectional magnetization, and 3 is a magnet for magnetization in the opposite direction, and 3 may be a weak magnet.

°4は半導体レーザで、信号7で変調されレンズ5でビ
ーム6を生じ3の所でスポットを生じる。磁石3はビー
ム側でもよい。
4 is a semiconductor laser, which is modulated by a signal 7 to produce a beam 6 through a lens 5 and a spot at 3; The magnet 3 may be on the beam side.

第2図は周知の光磁気記録装置の例で、信号はコイルや
ヘッド3に入り、レーザ4は一定ビームを生じる。
FIG. 2 is an example of a well-known magneto-optical recording device in which the signal enters a coil or head 3 and a laser 4 produces a constant beam.

何れにしても、テープ局部の微少区間の温度変化は急昇
急降できない。
In any case, the temperature change in a small local area of the tape cannot rise or fall suddenly.

第3図はテープ方形波的信号に対し進行方向Xに関する
ある瞬間の温度分布を示す。熱の伝導率の比熱、従フて
熱時定数によって図の如き確率曲線的な裾を引いた形と
なることは明らかである。
FIG. 3 shows the temperature distribution at a certain instant in the traveling direction X for a tape square wave signal. It is clear that the specific heat of the thermal conductivity and the thermal time constant form a probability curve with a tail as shown in the figure.

従って記録された残留磁気も同様な形となり、ディジタ
ルの例えば「1」の信号の境界が明確でなくなる。
Therefore, the recorded residual magnetism has a similar shape, and the boundaries of digital signals, such as "1", are no longer clear.

第4図は第3図に示すような記録が連フた場合を示し、
16.16.17.18は逐次の磁化を示す。図示のよ
うに隣接の磁化がオーバーラツプして混信するか、低密
度化するかを選ばざるを得ない。換言すれば、帯域制限
が速かに生じ得ない。
Figure 4 shows a case where the records shown in Figure 3 are continuous,
16.16.17.18 show sequential magnetization. As shown in the figure, there is no choice but to choose between overlapping adjacent magnetizations and interference, or reducing the density. In other words, band limitation cannot occur quickly.

第5図は第4図の磁化分布を改善して方形に近ずけた場
合を示し、図示の如<15’、1B’、17’、1B’
のように高密度化できることが判る。
FIG. 5 shows the case where the magnetization distribution in FIG. 4 has been improved to approach a rectangular shape.
It can be seen that the density can be increased as shown in the figure.

第6図は第5図に示す如き磁化分布を生じる本発明回路
を示す。信号7は2oでディジタル化され、25のよう
な方形波列を生じるが、更に21で26に示すように変
形される。これは周知の如き非線形処理あるいは微分回
路等を用いて実行できる、26のような波形を例えば第
1図のレーザ4に用いれば最初は強力に局部加熱して波
形の立上りを速かにし、立下りも改善できる。26の波
形はシヱミーションで最適化することができ、第3図の
10の分布を最も隣接混信の少ないよう選ぶことは容易
である。
FIG. 6 shows a circuit according to the invention which produces a magnetization distribution as shown in FIG. Signal 7 is digitized at 2o, yielding a square wave train such as 25, but is further transformed at 21 as shown at 26. This can be done using well-known nonlinear processing or a differential circuit.If a waveform such as 26 is used, for example, in the laser 4 in FIG. The descent can also be improved. 26 waveforms can be optimized by simulation, and it is easy to select the 10 distributions in FIG. 3 to minimize adjacent interference.

第7図は第6図の21の内容例で、第6図20の出力は
微分回路30の出力と合成し、1ビツトパルス遅延32
を経て振幅を調節した微分出力を33で再び合成して得
られる。その他種々の周知の波形変換回路を用いること
ができる。
FIG. 7 is an example of the contents of 21 in FIG. 6. The output of 20 in FIG.
The amplitude-adjusted differential outputs are synthesized again at 33. Various other known waveform conversion circuits can be used.

本発明装置は上記の如く記録密度を向上するのみならず
、レーザの過大な出力を不要とし長寿命化できる。これ
は局部的加熱を効率良く行い得るからである。
The device of the present invention not only improves the recording density as described above, but also eliminates the need for excessive laser output and can extend the life of the device. This is because local heating can be performed efficiently.

本発明は上記特定例に限らず、種々の変形が可能である
The present invention is not limited to the above-mentioned specific example, and various modifications are possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第12図は本発明の適用される光磁気記録装置を示す。 第3.4.5図は本発明を説明する記録磁界波形図を示
す。第6図は本発明の原理を示す回路図を示す、第7図
は第6図の部分の例である。
FIG. 12 shows a magneto-optical recording device to which the present invention is applied. FIG. 3.4.5 shows a recording magnetic field waveform diagram illustrating the present invention. FIG. 6 shows a circuit diagram illustrating the principle of the present invention, and FIG. 7 is an example of the portion shown in FIG.

Claims (1)

【特許請求の範囲】[Claims] キューリ点を持つ磁性媒体を用い該磁性媒体を局部的に
温度上昇させ常温において信号に応じた残留磁界を生じ
させる記録装置において、該信号を時間的に変形して局
部的温度上昇を速かにするようにした光磁気記録装置。
In a recording device that uses a magnetic medium with a Curie point and locally increases the temperature of the magnetic medium to generate a residual magnetic field according to a signal at room temperature, the signal is temporally transformed to quickly cause a local temperature rise. A magneto-optical recording device designed to
JP13249483A 1983-07-20 1983-07-20 Opto-magnetic recording device Pending JPS6025004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13249483A JPS6025004A (en) 1983-07-20 1983-07-20 Opto-magnetic recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13249483A JPS6025004A (en) 1983-07-20 1983-07-20 Opto-magnetic recording device

Publications (1)

Publication Number Publication Date
JPS6025004A true JPS6025004A (en) 1985-02-07

Family

ID=15082681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13249483A Pending JPS6025004A (en) 1983-07-20 1983-07-20 Opto-magnetic recording device

Country Status (1)

Country Link
JP (1) JPS6025004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908423A1 (en) 1997-10-09 1999-04-14 Murata Manufacturing Co., Ltd. Barium titanate semiconductive ceramic
CN1093104C (en) * 1998-04-13 2002-10-23 株式会社村田制作所 Semiconducting ceramic and semiconducting ceramic electronic element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0908423A1 (en) 1997-10-09 1999-04-14 Murata Manufacturing Co., Ltd. Barium titanate semiconductive ceramic
CN1087719C (en) * 1997-10-09 2002-07-17 株式会社村田制作所 Barium titanate [-Base] semiconductive ceramic
CN1093104C (en) * 1998-04-13 2002-10-23 株式会社村田制作所 Semiconducting ceramic and semiconducting ceramic electronic element

Similar Documents

Publication Publication Date Title
US5018119A (en) Method for reproducing signal using an external magnetic field from magneto-optical recording medium having three magnetic layers
JPS5778652A (en) Thermal magnetic recording carrier and thermal magnetic recording system
CA2073311A1 (en) Magneto-optical recording medium whereon recording is carried out with an overwriting function
EP0818783A3 (en) Magneto optical recording medium and method
JPS57113402A (en) Method and device for vertical thermomagnetic recording
JPS5794906A (en) Optical magnetic recorder
EP0429343B1 (en) A recording apparatus using magneto-optical effect
KR950025656A (en) Magneto-optical recording medium and information reproducing method using same
JP3038853B2 (en) Overwritable magneto-optical recording medium with high-level margin expanded
JPS6025004A (en) Opto-magnetic recording device
US5499227A (en) Information recording and reproducing apparatus
JPH04134741A (en) Overwritable magneto-optical recording medium having 4-layered film structure
KR920017049A (en) Magneto-optical recording and playback method
US4167761A (en) Precedent and subsequent minor transitions to alleviate pulse crowding
JP2642639B2 (en) Magneto-optical recording method
JPS57164418A (en) Vertical heat magnetic recording medium
JPS58108045A (en) Photomagnetic recorder
JPH04228138A (en) Method and device for magneto-optical recording and reproducing
JPS58146007A (en) Photomagnetic recording system
JPS57195303A (en) Vertical thermomagnetic recording method
KR900002266A (en) External magnetic field device of magneto-optical information recording and reproducing apparatus
JP2960433B2 (en) Optical disk recording apparatus and recording method
JPH02154348A (en) Magneto-optical storage device
JPH04245044A (en) Method and device for recording information on magneto-optical recording medium
JPS59125728U (en) magneto-optical recording device