JPS60249644A - Air-fuel control for multicylinder internal-combustion engine and apparatus thereof - Google Patents

Air-fuel control for multicylinder internal-combustion engine and apparatus thereof

Info

Publication number
JPS60249644A
JPS60249644A JP10371984A JP10371984A JPS60249644A JP S60249644 A JPS60249644 A JP S60249644A JP 10371984 A JP10371984 A JP 10371984A JP 10371984 A JP10371984 A JP 10371984A JP S60249644 A JPS60249644 A JP S60249644A
Authority
JP
Japan
Prior art keywords
cylinder
fuel
air
pressure
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10371984A
Other languages
Japanese (ja)
Other versions
JPH0531653B2 (en
Inventor
Toshiaki Motoi
許斐 敏明
Tsuneji Ito
伊藤 恒司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP10371984A priority Critical patent/JPS60249644A/en
Publication of JPS60249644A publication Critical patent/JPS60249644A/en
Publication of JPH0531653B2 publication Critical patent/JPH0531653B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1406Introducing closed-loop corrections characterised by the control or regulation method with use of a optimisation method, e.g. iteration

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To make air-fuel rato as lean as possible by always reducting the fuel feed amount for one cylinder and controlling the fuel feed amount for each cylinder so that the variation value of the combustion pressure detected by a pressure sensor installed into the above-described cylinder becomes below a prescribed value. CONSTITUTION:A pulse generator 2 generates pulse signals for each equicycle capacity and equicrank-angle of an engine 1, and said pulse signals are detected by a detector 3 and outputted into an amplifier 4. In this case, the air-fuel ratio of one cylinder is set leaner than that of other cylinder, and the pressure in a combustion chamber is detected by a pressure sensor 5 installed into the cylinder and outputted into the amplifier 4. The above-described signals are amplified in the amplifier 4 and scale-formed and outputted into calculator 6, where the variation value of the combustion pressure of the cylinder is calculate. A control signal is outputted into a fuel injection valve 8 by a controller 7, and the fuel amount supplied into each cylinder is controlled so that the variation value of the combustion pressure becomes below a prescribed value.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼圧力の変動の大きさに応じて燃料供給量
を変化させる空燃比制御方法およびその装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an air-fuel ratio control method and apparatus for changing the amount of fuel supplied in accordance with the magnitude of fluctuations in combustion pressure.

従来の技術 トルク変動を許容値に抑えつつ空燃比を極力薄くするこ
とのできる空燃比制御装置として、本出願人は既に特願
昭59−5694号において、燃焼室内の圧力を検出す
る圧力センサを用いたものを提案した。すなわち、燃焼
圧力の変動が許容値内に入るように燃料供給量を制御し
ようとするものである。ところがこの空燃比制御装置に
おいては、各気筒における空燃比がそれぞれ限界値にな
るように制御されると、アイドル運転時に燃焼圧力の変
動値が急に変化するとラフアイドルを生じてエンストを
起こすおそれがある。このため上記空燃比制御装置にお
いては、各気筒の空燃比を失火限界よりも少し濃いめに
制御しなければならず、燃費の向上には一定の限界があ
った。また各気筒毎に圧力センサを設けていることから
装置全体が高価なものとなっていた。
Conventional Technology As an air-fuel ratio control device that can minimize the air-fuel ratio while suppressing torque fluctuations to an allowable value, the present applicant has already proposed a pressure sensor for detecting the pressure inside the combustion chamber in Japanese Patent Application No. 59-5694. I suggested what I used. That is, the fuel supply amount is controlled so that the fluctuation in combustion pressure falls within an allowable value. However, in this air-fuel ratio control device, if the air-fuel ratio in each cylinder is controlled to reach its respective limit value, a sudden change in the fluctuation value of combustion pressure during idling may cause rough idling, which may cause the engine to stall. be. For this reason, in the above air-fuel ratio control device, the air-fuel ratio of each cylinder must be controlled to be slightly higher than the misfire limit, and there is a certain limit to the improvement of fuel efficiency. Furthermore, since a pressure sensor is provided for each cylinder, the entire device becomes expensive.

発明が解決しようとする問題点 本発明は以上の問題点を解決することを目的とし、すな
わち、エンストを起こすおそれを除去しつつ空燃比を薄
<シて燃費の向上を図り、しかも安価な空燃比制御装置
を得ることを目的とする。
Problems to be Solved by the Invention It is an object of the present invention to solve the above problems, namely, to improve fuel efficiency by reducing the air-fuel ratio while eliminating the risk of engine stalling, and to provide an inexpensive air-fuel ratio. The purpose is to obtain a fuel ratio control device.

問題点を解決するための手段 本発明の第1の発明は、空燃比制御方法に係り、lの気
筒に対する燃料供給量を他の気筒に対する燃料供給量よ
りも常時少なくなるよう調整するとともに、該1の気筒
に燃焼圧力を検知する圧力センサを取付け、この圧力セ
ンサにより検知された燃焼圧力の変動値が所定値以下と
なるように各気筒に対する燃料供給量を制御することを
特徴としている。
Means for Solving the Problems A first aspect of the present invention relates to an air-fuel ratio control method, which adjusts the amount of fuel supplied to one cylinder so that it is always smaller than the amount of fuel supplied to other cylinders, and A pressure sensor for detecting combustion pressure is attached to one cylinder, and the amount of fuel supplied to each cylinder is controlled so that the fluctuation value of the combustion pressure detected by the pressure sensor is equal to or less than a predetermined value.

また本発明の第2の発明は、上記方法を実施するための
装置に係り、各気筒毎に設けられてそれぞれの気筒に燃
料を供給する燃料供給手段と、1の気筒に取付けられて
この気筒の燃焼圧力を検知する圧力センサと、この圧力
センサにより検知された燃焼圧力の変動値が所定値以下
となるように上記燃料供給手段を制御する制御手段とを
備え、上記1の気筒の燃料供給手段は燃料供給量が多の
気筒よりも常時少なくなるように調整されていることを
特徴としている。
A second aspect of the present invention relates to an apparatus for carrying out the above method, including a fuel supply means provided for each cylinder to supply fuel to each cylinder, and a fuel supply means attached to one cylinder to supply fuel to the cylinder. a pressure sensor for detecting the combustion pressure of the first cylinder; and a control means for controlling the fuel supply means so that the fluctuation value of the combustion pressure detected by the pressure sensor is equal to or less than a predetermined value. The means is characterized in that the amount of fuel supplied is adjusted so that it is always smaller than the number of cylinders.

作用 空燃比が最も小さくなるように調整された気筒の燃焼圧
力の変動の大きさに応じて燃料供給量が制御され、その
変動の大きさが所定値より大きければ燃料供給量は増量
され、逆に所定値よりも小さければ燃料供給量は減量さ
れる。
The amount of fuel supplied is controlled according to the magnitude of fluctuation in the combustion pressure of the cylinder, which is adjusted so that the working air-fuel ratio is the smallest.If the magnitude of the fluctuation is larger than a predetermined value, the amount of fuel supplied is increased; is smaller than a predetermined value, the fuel supply amount is reduced.

実施例 以下図示実施例により本発明を説明する。Example The present invention will be explained below with reference to illustrated embodiments.

第1図は本発明を4気筒エンジンに適用した例を示し、
エンジン本体1にはクランク軸に連結されたパルス発生
器2が設けられ、このパルス発生器2の近傍には検出器
3が配設される。パルス発生器2はエンジンの等行程容
積毎および等クランク角毎にパルス信号を発生し、検出
器3はこのパルス信号を検出して増幅器4へ出力する。
FIG. 1 shows an example in which the present invention is applied to a four-cylinder engine,
The engine body 1 is provided with a pulse generator 2 connected to a crankshaft, and a detector 3 is provided near the pulse generator 2. A pulse generator 2 generates a pulse signal every equal stroke volume of the engine and every equal crank angle, and a detector 3 detects this pulse signal and outputs it to an amplifier 4.

本実施例においては、4番気筒の空燃比が他の気筒より
も若干薄くなるように予め設定されており、エンジン本
体1には4番気筒に対応させて圧力センサ5が取付けら
れる。圧力センサ5は、点火プラグに内蔵されるか、あ
るいはこれとは別体になっており、燃焼室内の圧力を検
知してその圧力信号を増幅器4へ出力する。
In this embodiment, the air-fuel ratio of the No. 4 cylinder is preset to be slightly leaner than that of the other cylinders, and a pressure sensor 5 is attached to the engine body 1 in correspondence with the No. 4 cylinder. The pressure sensor 5 is built into the spark plug or is separate from the spark plug, and detects the pressure within the combustion chamber and outputs a pressure signal to the amplifier 4.

増幅器4は上記パルス信号および圧力信号を波形整形す
るとともに増幅し、さらにスケール化して演算器6へ出
力する。演算器6は入力された信号から、上記4番気筒
の各サイクル毎の図示平均有効圧力(Pi) 、このP
iの平均値(Pi) 、Piの変動値(ΔPi= l 
Pi−Pi l )およびエンジン回転数(N)を演算
し、その演算結果を制御手段7へ出力する。制御手段7
は演算器6から入力された信号から、後述するように、
各気筒に対する燃料供給量をめ、各気筒毎に設けられた
燃料噴射弁8に対して制御信号を出力する。燃料噴射弁
8は制御手段7からの制御信号に基づいて開弁して燃料
噴射を行なう。
The amplifier 4 shapes the waveforms of the pulse signal and the pressure signal, amplifies them, scales them, and outputs the scaled signals to the calculator 6. From the input signal, the calculator 6 calculates the indicated mean effective pressure (Pi) for each cycle of the No. 4 cylinder, and this P
Average value of i (Pi), variation value of Pi (ΔPi=l
Pi-Pil) and engine rotational speed (N), and outputs the calculation results to the control means 7. Control means 7
is obtained from the signal input from the arithmetic unit 6, as will be described later.
A control signal is output to the fuel injection valve 8 provided for each cylinder based on the amount of fuel supplied to each cylinder. The fuel injection valve 8 opens based on a control signal from the control means 7 to perform fuel injection.

なお演算器6および制御手段7はマイコンにより構成す
ることが好ましいが、その他の演算回路により構成して
もよい。
Note that although it is preferable that the arithmetic unit 6 and the control means 7 are constituted by a microcomputer, they may be constituted by other arithmetic circuits.

制御手段7は第3図に示されるフローチャートに従って
燃料噴射量を演算するのであるが、この演算のために、
Piの許容最大変動値ΔP imaxを記憶している。
The control means 7 calculates the fuel injection amount according to the flowchart shown in FIG. 3, and for this calculation,
The maximum allowable fluctuation value ΔP imax of Pi is stored.

八Pimaxはエンジンラフネスの限界に対応する。Eight Pimax corresponds to the limit of engine roughness.

Piの変動値ΔPiは空燃比A/Fに対して第2図に示
されるように変化し、この図において破線Bの部分は失
火を起すおそれのある状態を示す。
The fluctuation value ΔPi of Pi changes as shown in FIG. 2 with respect to the air-fuel ratio A/F, and in this diagram, the portion indicated by the broken line B indicates a state in which a misfire may occur.

ところが実線の部分であっても、空燃比の大きいCの部
分は、燃焼圧力の変動が大きすぎて車両の振動が大きく
、乗員にとって不快感がある。しかして許容限界ΔPi
mayがめられ、この値が制御手段7に記憶される。こ
のΔPimaxの大きさは、Piの大きさの例えば20
%である。さて本実施例においては、4番気筒の空燃比
が最も清くなるように調整されており、その空燃比が例
えばλ1であるとすると、他の気筒の空燃比λ2はλ、
よりも若干濃いめであり、λ1に対するλ2のバラツキ
の大きさは、λ1の例えば2%くらいである。
However, even in the solid line part, in the part C where the air-fuel ratio is high, the combustion pressure fluctuates so much that the vehicle vibrates so much that it is uncomfortable for the occupants. However, the permissible limit ΔPi
may is determined and this value is stored in the control means 7. The size of this ΔPimax is, for example, 20 of the size of Pi.
%. In this embodiment, the air-fuel ratio of the No. 4 cylinder is adjusted to be the cleanest, and if that air-fuel ratio is, for example, λ1, then the air-fuel ratios of the other cylinders λ2 are λ,
The variation in λ2 with respect to λ1 is, for example, about 2% of λ1.

制御手段7は以上のデータを基に、各気筒毎に燃料噴射
弁8の噴射量を定める。第3図は制御手段7が各サイク
ル毎に実行する処理の手順を示す。
The control means 7 determines the injection amount of the fuel injection valve 8 for each cylinder based on the above data. FIG. 3 shows the procedure of processing executed by the control means 7 in each cycle.

ステップ11では、演算器6において計算された各気筒
のΔPiが読込まれ、このΔPiはステップ12におい
てΔP imaxと比較される。ΔPiがΔPimax
以上であるということは、燃焼圧力の変動値が許容値以
上であるので、次にステップ13に移り、空燃比を濃く
すべく燃料噴射量τがαだけ増量される(ただし、τ、
αは噴射時間を示す)このαの大きさは、現捏の噴射量
の例えば2%である。ステップ12においてΔPiがΔ
Pimaxより小さいと判断されると、これは燃焼圧力
の変動値が許容範囲にあることを示し、次にステップ1
4が実行され、空燃比を薄くすべく燃料噴射量τがβだ
け減量される(ただし、βは噴射時間を示す)。このβ
の大きさは、現在の噴射量の例えば1%である。
In step 11, ΔPi of each cylinder calculated by the calculator 6 is read, and in step 12, this ΔPi is compared with ΔP imax. ΔPi is ΔPimax
This means that the fluctuation value of the combustion pressure is greater than or equal to the allowable value, so the process moves to step 13, where the fuel injection amount τ is increased by α in order to enrich the air-fuel ratio (however, τ,
(α indicates the injection time) The magnitude of α is, for example, 2% of the injection amount in the current process. In step 12, ΔPi is Δ
If it is determined to be less than Pimax, this indicates that the fluctuation value of combustion pressure is within the permissible range, and then step 1
4 is executed, and the fuel injection amount τ is reduced by β in order to thin the air-fuel ratio (β indicates the injection time). This β
The magnitude is, for example, 1% of the current injection amount.

以上のように本実施例は、1つの気筒の空燃比を失火限
界に設定し、他の気筒の空燃比をそれよりも若干濃いめ
に調整している。したがって、燃焼圧力の変動が大きく
なって上記1つの気筒の空燃比が失火限界を越えたとし
ても、他の気筒は失火せず、エンジンラフネスは生じな
い。また空燃比を従来よりも薄くできるので燃費を向上
させることができる。なお、上記他の気筒の空燃比λ2
は、上記1の気筒の空燃比λ1よりも濃いが、第4図に
示されるように空燃比が薄くなるほど燃費率(SFC)
の変化は少なくなるので、上記他の気筒の燃費率5FC
2は上記1の気筒の燃費率SFC、とあまり変わらない
As described above, in this embodiment, the air-fuel ratio of one cylinder is set to the misfire limit, and the air-fuel ratios of the other cylinders are adjusted to be slightly richer than that. Therefore, even if fluctuations in combustion pressure become large and the air-fuel ratio of the one cylinder exceeds the misfire limit, other cylinders will not misfire and engine roughness will not occur. Furthermore, since the air-fuel ratio can be made leaner than before, fuel efficiency can be improved. Note that the air-fuel ratio λ2 of the other cylinders is
is richer than the air-fuel ratio λ1 of the above-mentioned cylinder 1, but as shown in Fig. 4, as the air-fuel ratio becomes thinner, the fuel efficiency (SFC)
Since the change in is small, the fuel efficiency of the other cylinders mentioned above is 5FC.
2 is not much different from the cylinder fuel efficiency SFC in 1 above.

また上記実施例は、1気筒のみのPi、 PiおよびΔ
Piを演算するよう構成されているので、演算時間が短
く、実時間処理が比較的容易になり、また1気筒のみに
圧力センサを取付けるので、システム全体のコストを低
減させることができる。
Further, in the above embodiment, Pi, Pi and Δ of only one cylinder are
Since the system is configured to calculate Pi, the calculation time is short and real-time processing is relatively easy, and since a pressure sensor is attached to only one cylinder, the cost of the entire system can be reduced.

なお、1つの気筒の空燃比を薄くする手段としては、燃
料噴射弁に対する指令信号である燃料噴射パルスの幅を
短くしたり、あるいは噴射弁のジェット径を小さくして
もよく、また電流制御抵抗を少し大きくしてもよい。
Note that the air-fuel ratio of one cylinder can be reduced by shortening the width of the fuel injection pulse, which is a command signal to the fuel injection valve, or by reducing the jet diameter of the injection valve. You can make it a little bigger.

上記実施例は燃料噴射弁を有するエンジンに本発明を適
用したものであるが、本発明は気化器を有するエンジン
にも適用でき、この場合にはエアブリード量を制御する
ことにより空燃比を制御すればよい。
Although the above embodiment applies the present invention to an engine having a fuel injection valve, the present invention can also be applied to an engine having a carburetor, and in this case, the air-fuel ratio is controlled by controlling the amount of air bleed. do it.

燃料噴射弁を有するエンジンであっても、また気化器を
有するエンジンであっても、上述のようにΔPiの植を
見て燃料供給量を制御するのは通常の走行時だけてあり
、例えばスロットル開度が急増する急加速時や、スロッ
トル開度が40°以上の高負荷、高速時においては、上
述のように空燃比を薄くする制御は行なわない。また減
速時においては、基本的に燃料供給は遮断される。
Regardless of whether the engine has a fuel injection valve or a carburetor, the amount of fuel supplied is controlled by looking at ΔPi as described above only during normal driving.For example, when controlling the throttle During sudden acceleration where the opening degree rapidly increases, or when the throttle opening degree is 40° or more under high load and high speed, the air-fuel ratio is not controlled to be lean as described above. Furthermore, during deceleration, the fuel supply is basically cut off.

発明の効果 以上のように本発明によれば、空燃比を極力薄くするこ
とができるので燃費をさらに向上させることができる。
Effects of the Invention As described above, according to the present invention, the air-fuel ratio can be made as low as possible, so that fuel efficiency can be further improved.

また燃料圧力センサを1つの気筒のみに設けるので、装
置全体のコストを低下させることができる。
Furthermore, since the fuel pressure sensor is provided in only one cylinder, the cost of the entire device can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は燃焼
圧力の変動の大きさと空燃比の関係を示すグラフ、第3
図は制御手段による制御を示すフローチャート、第4図
は燃費率と空燃比の関係を示すグラフである。 5・・・圧力センサ、 7・・・制御手段、8・・・燃
料噴射弁(燃料供給手段)。 第1図 第3図 第4図
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a graph showing the relationship between the magnitude of fluctuation in combustion pressure and the air-fuel ratio, and FIG.
The figure is a flowchart showing control by the control means, and FIG. 4 is a graph showing the relationship between fuel efficiency and air-fuel ratio. 5... Pressure sensor, 7... Control means, 8... Fuel injection valve (fuel supply means). Figure 1 Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1.1の気筒に対する燃料供給量を他の気筒に対する燃
料供給量よりも常時少なくなるよう調整するとともに、
該1の気筒に燃焼圧力を検知する圧力センサを取付け、
この圧力センサにより検知された燃焼圧力の変動値が所
定値以下となるように各気筒に対する燃料供給量を制御
することを特徴とする多気筒内燃機関の空燃比制御方法
。 2、各気筒毎に設けられてそれぞれの気筒に燃料を供給
する燃料供給手段と、1の気筒に取付けられてこの気筒
の燃焼圧力を検知する圧力センサと、この圧力センサに
より検知された燃焼圧力の変動値が所定値以下となるよ
うに上記燃料供給手段を制御する制御手段とを備え、上
記1の気筒の燃料供給手段は燃料供給量が池の気筒より
も常時少なくなるように調整されていることを特徴とす
る多気筒内燃機関の空燃比制御装置。
1. Adjust the amount of fuel supplied to the first cylinder so that it is always smaller than the amount of fuel supplied to other cylinders,
A pressure sensor for detecting combustion pressure is installed in the first cylinder,
An air-fuel ratio control method for a multi-cylinder internal combustion engine, comprising controlling the amount of fuel supplied to each cylinder so that a fluctuation value of combustion pressure detected by the pressure sensor is equal to or less than a predetermined value. 2. A fuel supply means provided for each cylinder to supply fuel to each cylinder, a pressure sensor attached to the first cylinder to detect the combustion pressure of this cylinder, and a combustion pressure detected by this pressure sensor. control means for controlling the fuel supply means so that the fluctuation value of the fuel supply means is below a predetermined value, and the fuel supply means for the first cylinder is adjusted so that the amount of fuel supplied to the first cylinder is always smaller than that for the cylinders in the pond. An air-fuel ratio control device for a multi-cylinder internal combustion engine.
JP10371984A 1984-05-24 1984-05-24 Air-fuel control for multicylinder internal-combustion engine and apparatus thereof Granted JPS60249644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10371984A JPS60249644A (en) 1984-05-24 1984-05-24 Air-fuel control for multicylinder internal-combustion engine and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10371984A JPS60249644A (en) 1984-05-24 1984-05-24 Air-fuel control for multicylinder internal-combustion engine and apparatus thereof

Publications (2)

Publication Number Publication Date
JPS60249644A true JPS60249644A (en) 1985-12-10
JPH0531653B2 JPH0531653B2 (en) 1993-05-13

Family

ID=14361496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10371984A Granted JPS60249644A (en) 1984-05-24 1984-05-24 Air-fuel control for multicylinder internal-combustion engine and apparatus thereof

Country Status (1)

Country Link
JP (1) JPS60249644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368742A (en) * 1986-09-09 1988-03-28 Nissan Motor Co Ltd Fuel feeding control device for internal combustion engine
US4736724A (en) * 1986-12-01 1988-04-12 Ford Motor Company Adaptive lean limit air fuel control using combustion pressure sensor feedback

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134329A (en) * 1974-07-19 1976-03-24 Bosch Gmbh Robert
JPS58113555A (en) * 1981-12-25 1983-07-06 Nissan Motor Co Ltd Air-fuel ratio controller of internal-combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134329A (en) * 1974-07-19 1976-03-24 Bosch Gmbh Robert
JPS58113555A (en) * 1981-12-25 1983-07-06 Nissan Motor Co Ltd Air-fuel ratio controller of internal-combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6368742A (en) * 1986-09-09 1988-03-28 Nissan Motor Co Ltd Fuel feeding control device for internal combustion engine
US4736724A (en) * 1986-12-01 1988-04-12 Ford Motor Company Adaptive lean limit air fuel control using combustion pressure sensor feedback

Also Published As

Publication number Publication date
JPH0531653B2 (en) 1993-05-13

Similar Documents

Publication Publication Date Title
US4683856A (en) Engine roughness control means
EP0364959A2 (en) Multi-cylinder engine control method and electronic control apparatus therefor
US4638781A (en) Fuel cut-off device for internal combustion engine
US6145489A (en) Torque controller for internal combustion engine
US5058556A (en) Device for determining activated condition of an oxygen sensor
JPS60249644A (en) Air-fuel control for multicylinder internal-combustion engine and apparatus thereof
JPH0718357B2 (en) Fuel injection control device for internal combustion engine
JPH09209798A (en) Exhaust gas recirculating device for engine and its method
US5080074A (en) Air-fuel ratio control device of an internal combustion engine
JP3296112B2 (en) Fuel injection control device for diesel engine
JP2930256B2 (en) Engine throttle valve controller
JPS60243335A (en) Air-fuel ratio controlling apparatus
JP3493697B2 (en) Engine air-fuel ratio control device
JPS6138140A (en) Fuel injection control device in internal-combustion engine
JPS6158939A (en) Control method for fuel injection amount of internal-combustion engine
JPH0429855B2 (en)
JPS59190431A (en) Fuel injection quantity control method of internal- combustion engine
JP2976599B2 (en) Ignition timing control device for internal combustion engine
JP2678297B2 (en) Engine ignition timing control device
JPS62253963A (en) Ignition timing controller for engine
JPS6017247A (en) Control method of asynchronous injection at acceleration in electronically controlled fuel injection engine
JPS6248965A (en) Ignition timing control equipment for internal combustion engine
JPH0575904B2 (en)
JPS62189348A (en) Fuel injection control device for engine
JPH06272601A (en) Control of engine