JPS6024894B2 - Absorption heat pump device - Google Patents

Absorption heat pump device

Info

Publication number
JPS6024894B2
JPS6024894B2 JP10214280A JP10214280A JPS6024894B2 JP S6024894 B2 JPS6024894 B2 JP S6024894B2 JP 10214280 A JP10214280 A JP 10214280A JP 10214280 A JP10214280 A JP 10214280A JP S6024894 B2 JPS6024894 B2 JP S6024894B2
Authority
JP
Japan
Prior art keywords
heat
absorber
evaporator
heat pump
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10214280A
Other languages
Japanese (ja)
Other versions
JPS5726367A (en
Inventor
功 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10214280A priority Critical patent/JPS6024894B2/en
Publication of JPS5726367A publication Critical patent/JPS5726367A/en
Publication of JPS6024894B2 publication Critical patent/JPS6024894B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は液冷却式の吸収器を構成要素とする吸収式ヒー
トポンプ装置における暖房性能の改良をはかることを目
的とする。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to improve the heating performance of an absorption heat pump device having a liquid-cooled absorber as a component.

一般に空気熱源のヒートポンプは外気温度が低下すると
出力が低下し、これに反し暖房負荷の方は増加するとい
う関係にあるから、必然的に補助熱源が必要となる。
In general, air heat source heat pumps have a relationship in which the output decreases as the outside temperature decreases, while the heating load increases, so an auxiliary heat source is inevitably required.

従来電動圧縮式ヒートポンプにおいては電力によるジュ
ール加熱を補助熱源に用いているため省エネルギー性の
低いものになってしまっている。又圧縮式ヒートポンプ
では、外気温が低くなって空気熱源の蒸発器内で冷媒液
が蒸発しなくなったり、又蒸発器に氷がついて熱交換が
不十分となると冷煤は液体のままで圧縮機に入り、液圧
縮を起し、圧縮機を破壊する危険がある。そのため種々
の保護装置が必要であるばかりでなく、ヒートポンプを
停止させた状態では出力は補助熱源のみとなり、到底必
要暖房負荷をまかなうことができないため、使用可能な
地域はかなり緩い地域にかぎらざるをえない。吸収式冷
凍サイクルによるヒートポンプ暖房は省エネルギー性が
高く、又圧縮式ヒートポンプよりも寒冷な地方に適合す
るというすぐれた特徴を持っている。
Conventional electric compression heat pumps use electric Joule heating as an auxiliary heat source, resulting in low energy savings. In addition, in a compression heat pump, if the outside temperature becomes low and the refrigerant liquid no longer evaporates in the evaporator of the air heat source, or if ice builds up on the evaporator and heat exchange becomes insufficient, the cold soot remains as a liquid and the compressor There is a danger that the liquid may enter the tank, cause liquid compression, and destroy the compressor. Therefore, not only are various protective devices required, but when the heat pump is stopped, the output is only an auxiliary heat source, and it cannot cover the necessary heating load, so it is only possible to use it in areas with very relaxed conditions. No. Heat pump heating using an absorption refrigeration cycle is highly energy efficient and has the advantage of being more suitable for cold regions than compression heat pumps.

しかし吸収式ヒートポンプにおいても初めにのべた暖房
出力と暖房負荷の相反性は避けることができないため補
助熱源が必要である。吸収式ヒートポンプの補助熱源の
加え方に関して、液冷却吸収器の冷却液の出口と室内放
熱器の間に熱交換器と、前記熱交換器を加熱する加熱器
を設けることにより極めて効率よく寒冷時の吸収式ヒー
トポンプの出力低下を補う方法が発明されているが、本
発明は前記発明の改良に関するものである。まづ第1図
により吸収式ヒートポンプの原理を説明する。
However, even in absorption heat pumps, the contradiction between heating output and heating load mentioned earlier cannot be avoided, so an auxiliary heat source is necessary. Regarding how to add an auxiliary heat source to an absorption heat pump, by installing a heat exchanger between the coolant outlet of the liquid cooling absorber and the indoor radiator, and a heater that heats the heat exchanger, it can be used extremely efficiently in cold conditions. A method of compensating for the decrease in output of an absorption heat pump has been invented, and the present invention relates to an improvement of the above invention. First, the principle of an absorption heat pump will be explained with reference to FIG.

1は発生器でバーナー2でガスなどを熱暁せしめて加熱
を行うと、冷煤を吸収液に吸収せしめた溶液3から冷嬢
蒸気が発生し、配管4を経て被暖房空間5に設けられた
凝縮器6において凝縮し、凝縮熱はファン7によって作
られた風によって室内空気を暖めるのに供せられる。
Reference numeral 1 denotes a generator, and when gas or the like is heated by a burner 2, cooling steam is generated from a solution 3 in which cold soot is absorbed into an absorption liquid, and the vapor is provided in a heated space 5 through a pipe 4. The air is condensed in a condenser 6, and the heat of condensation is used by the wind generated by the fan 7 to warm the indoor air.

こ)で凝縮した液化冷媒は、配管8を経て、被暖房空間
5の外に出、減圧弁9を経て戸外に設けられた蒸発器1
01こ送られる。蒸発温度をTeとし、外気温度をTa
mとすれば、TeくTamならば外気から熱をうばつて
蒸発器10内で冷蝶は蒸発する。蒸発器101ま外気と
の熱交換をよくするように、ファン1 1により強制的
に蒸発器に空気が送られる。蒸発した冷媒蒸気は配管1
2を経て吸収器13に流入する。
The liquefied refrigerant condensed in this step passes through a pipe 8, exits the heated space 5, passes through a pressure reducing valve 9, and enters an evaporator 1 installed outdoors.
01 will be sent. The evaporation temperature is Te, and the outside temperature is Ta.
If m is Te x Tam, the cold butterfly evaporates in the evaporator 10 by extracting heat from the outside air. Air is forcibly sent to the evaporator 101 by a fan 11 so as to improve heat exchange with the outside air. The evaporated refrigerant vapor is transferred to pipe 1
2 and flows into the absorber 13.

一方吸収器13には発生器1において冷煤蒸気を放出し
、冷嬢含有量の減少した高温の希溶液が、配管14を経
て熱交換器15を通り、後述の濃溶液と熱交換すること
により、温度を下げて流量調整弁16を通り、吸収器1
3に注がれる。又吸収器内には冷却水管17があり、溶
液を冷却することができる。
On the other hand, the generator 1 releases cold soot vapor into the absorber 13, and the high-temperature dilute solution with reduced cold content passes through the pipe 14 and the heat exchanger 15, where it exchanges heat with a concentrated solution to be described later. , the temperature is lowered, the flow rate adjustment valve 16 is lowered, and the absorber 1
It is poured into 3. There is also a cooling water pipe 17 inside the absorber to cool the solution.

吸収器13に注がれた希溶液は冷煤蒸気を吸収し、溶液
は濃溶液となるが、この際多量の吸収熱を発生する。こ
の吸収熱は冷却水管17中を流れる水に奪われる。すな
わち水は加熱されて吸収器13を出る。この温水は配管
18を通って被暖房空間5内に設けた放熱器19に送ら
れ、ファン2川こよって作られた風によって熱を室内空
気に与え、水は冷却された配管21、水ポンプ22を経
て吸収器13にもどってくる。一方吸収器の中で冷煤蒸
気を吸収し、冷却水で冷却された濃溶液は配管23を通
り、溶液ポンプ24で加圧され、熱交換器15で高温の
希溶液と熱交換することにより温められ発生器1内に送
りこまれサイクルが完結する。
The dilute solution poured into the absorber 13 absorbs the cold soot vapor and becomes a concentrated solution, but at this time a large amount of absorption heat is generated. This absorbed heat is taken away by the water flowing through the cooling water pipe 17. That is, the water leaves the absorber 13 heated. This hot water is sent to the radiator 19 installed in the heated space 5 through the pipe 18, and the air generated by the two fans gives heat to the indoor air, and the water is sent to the cooled pipe 21, the water pump 22 and returns to the absorber 13. On the other hand, the concentrated solution that absorbs the cold soot vapor in the absorber and is cooled with cooling water passes through the pipe 23, is pressurized by the solution pump 24, and is heat exchanged with the high-temperature dilute solution in the heat exchanger 15. It is heated and fed into the generator 1 to complete the cycle.

以上の説明から明らかなごとく、吸収式ヒートポンプに
おいては発生器においてバーナーにより与えられた熱以
外に蒸発器1川こおいて外気から与えられた熱が、凝縮
器6および熱交換器19において被暖房空間5内の空気
に移し与えられることになるから、暖房出力はこの両者
の和であり、有償の熱入力はバーナー2の熱入力のみで
あるから、成績係数すなわち暖房出力を加熱入力で割っ
た値は1より大となり、省エネルギー機器として今日非
常に注目されている。こ)で重要なことは上記の説明中
にもふれたごとく蒸発温度Teは外気温Tamより低く
なければ蒸発はおこらず、従って外気より熱を汲み上げ
ることはできないことである。
As is clear from the above explanation, in the absorption heat pump, in addition to the heat given by the burner in the generator, the heat given from the outside air in the evaporator 1 is used in the condenser 6 and heat exchanger 19 to be heated. Since the heat is transferred to the air in space 5, the heating output is the sum of both, and the only paid heat input is the heat input of burner 2, so the coefficient of performance is the heating output divided by the heating input. The value is greater than 1, and it is attracting much attention today as an energy-saving device. What is important in this case is that, as mentioned in the above explanation, evaporation will not occur unless the evaporation temperature Te is lower than the outside air temperature Tam, and therefore heat cannot be pumped up from the outside air.

従ってTam<reの状態になると液化冷煤は蒸発器1
川こ流入するが蒸発することなく、配管12を経て吸収
器13に流入する。圧縮式ヒートポンプではこのような
状態では未蒸発の液袷蝶はそのま)圧縮機に入ることに
なり極めて危険な状態であり、圧縮機の運転は停止させ
るか、蒸発器に補助熱源を加えて、強制的に冷煤を蒸発
させるかの手段が取られるが、吸収式の場合には、吸収
器に液冷煤が流入しても特に支障はなく、た)、吸収器
で発生する熱量が液体の混合熱だけであるため、気化冷
煤を吸収する時に比して凝縮熱分だけ少なくなり、出力
は数分の一に低下してしまう。
Therefore, when Tam<re, the liquefied cold soot is transferred to the evaporator 1.
Although it flows into the river, it flows into the absorber 13 via the pipe 12 without being evaporated. In a compression type heat pump, under such conditions, unevaporated liquid will directly enter the compressor, creating an extremely dangerous situation. In the case of an absorption type, there is no particular problem even if liquid cold soot flows into the absorber, and the amount of heat generated in the absorber is Since it is only the heat of mixing the liquid, the heat of condensation is less than when absorbing vaporized cold soot, and the output is reduced to a fraction of that.

又外気温Tamが蒸発温度Teより高くとも蒸発器に結
氷が生じた場合は、空気から熱が取りこめなくなり、こ
の場合も液化冷煤は未蒸発のま)吸収器に流入するため
、吸収器での発熱量は低下するが運転に支障はきたさな
い。一方凝縮熱6での冷煤の凝縮は蒸発器10での袷媒
の蒸発があろうと無関係であるから、凝縮熱6からの熱
出力は外気条件に関係な〈取出される。しかし放熱器1
9からの熱出力は吸収器13での熱出力が低下している
ため当然小さくなってしまう。この世力の低下を補う方
法として第2図に示すごとき方法が発明されている。
Even if the outside temperature Tam is higher than the evaporation temperature Te, if ice forms in the evaporator, heat cannot be taken in from the air, and in this case, the liquefied cold soot flows into the absorber without being evaporated. The amount of heat generated by the engine will decrease, but this will not affect operation. On the other hand, since the condensation of the cold soot in the heat of condensation 6 is independent of whether there is evaporation of the bedding medium in the evaporator 10, the heat output from the heat of condensation 6 is extracted regardless of outside air conditions. However, radiator 1
Naturally, the heat output from the absorber 9 becomes smaller because the heat output from the absorber 13 is reduced. A method as shown in Figure 2 has been invented as a method to compensate for the decline in worldly power.

次にこの吸収式ヒートポンプの出力補完の方法について
説明する。吸収式ヒートポンプの発生器、凝縮熱、蒸発
器の部分は第1図と同一であり、共通する各部分の番号
は同一の番号を付してある。第2図において吸収器13
には冷却水管17があり、冷却水入口25から入った冷
却水は吸収器で発生する吸収熱によって暖められ、冷却
水出口26から出てくる。
Next, a method of supplementing the output of this absorption heat pump will be explained. The generator, condensation heat, and evaporator parts of the absorption heat pump are the same as in FIG. 1, and the common parts are given the same numbers. In FIG. 2, the absorber 13
There is a cooling water pipe 17, and the cooling water that enters from the cooling water inlet 25 is warmed by the absorbed heat generated by the absorber and comes out from the cooling water outlet 26.

この場合外気から熱が十分に取入れられ、蒸発器10で
袷媒が完全に蒸発しておれば吸収器13で冷煤の凝縮熱
と混合熱に相当する発熱があり、冷却水出口26での水
温は暖房に使用しうるだけの温度に達するが、外気温が
下り蒸発器10で袷媒が完全には蒸発しなくなるとその
分だけ吸収器での発生熱量が低下し、全く蒸発しなくな
ると、混合熱の分だけとなり、吸収器での発生熱量は数
分の一に低下してしまい、この経路の暖房出力はいちじ
るしく低下する。そこで吸収器冷却水出口26と被暖房
空間5の中に設けた室内放熱器19を結ぶ配管の途中に
熱交換器27を設け、これをバーナー−28による燃焼
納熱で加熱する。この方法は極めて単純であるが吸収式
ヒートポンプの特徴を生かしたすぐれた補完方法である
。本発明はこの世力補完方法における廃熱を利用しシス
テムの効率を高めることを目的としたものである。すな
わち熱交換器27においてバーナーにおし、て発生する
熱のすべてが回収されるわけでなく20〜30%は回収
されないで捨てられる。
In this case, if sufficient heat is taken in from the outside air and the liner medium is completely evaporated in the evaporator 10, heat corresponding to the condensation heat and mixing heat of the cold soot will be generated in the absorber 13, and the cooling water outlet 26 will generate heat corresponding to the condensation heat and mixing heat of the cold soot. The water temperature reaches a temperature that can be used for heating, but when the outside temperature drops and the lining medium no longer evaporates completely in the evaporator 10, the amount of heat generated in the absorber decreases by that amount, and it may not evaporate at all. , the amount of heat generated in the absorber is reduced to a fraction of that of the mixed heat, and the heating output of this route is significantly reduced. Therefore, a heat exchanger 27 is provided in the middle of the pipe connecting the absorber cooling water outlet 26 and the indoor radiator 19 provided in the space to be heated 5, and the heat exchanger 27 is heated by combustion heat transfer by the burner 28. Although this method is extremely simple, it is an excellent complementary method that takes advantage of the characteristics of absorption heat pumps. The present invention aims to improve the efficiency of the system by utilizing waste heat in this power supplementation method. That is, not all of the heat generated by the burner in the heat exchanger 27 is recovered, and 20 to 30% is discarded without being recovered.

一方蒸発器10で冷煤を蒸発させるのに必要な熱量は空
気から取入れており、これが不十分であるため補助熱源
が作動しているわけであるから、この時の蒸発器の熱源
である空気の温度はかなり低く、又蒸発温度も低い。
On the other hand, the amount of heat required to evaporate the cold soot in the evaporator 10 is taken in from the air, and since this is insufficient, the auxiliary heat source is activated, so the heat source of the evaporator at this time, the air temperature is quite low, and the evaporation temperature is also low.

これに対しバーナーの廃熱の温度は50こC以上である
から、適当な熱交換器を設け、この廃熱を蒸発器り入れ
ることができればシステムの効率を高めることができる
。第3図は本発明の実施例を示す図である。第1図およ
び第2図と同一の部分には同一の番号を付した。
On the other hand, since the temperature of the waste heat from the burner is 50 C or higher, the efficiency of the system can be increased if a suitable heat exchanger is provided and this waste heat can be introduced into the evaporator. FIG. 3 is a diagram showing an embodiment of the present invention. The same parts as in FIGS. 1 and 2 are given the same numbers.

すなわち蒸発器1川こおいて液化袷煤が十分に蒸発しさ
れない場合は吸収器13には未蒸発の液化冷煤が流入し
十分な吸収熱が発生しないため、吸収器の冷却水管17
の出口側26での水温が十分上昇していないため、バー
ナー28に点火し、この熱で熱交換器27を加熱し室内
放熱器19の入口水温を必要な温度にするのであるが、
蒸発器10の後に集熱フィン31を有する熱交換器30
を直列に設け、バーナー28の排気をダクト32により
熱交換器3川こ導くごとくした。
In other words, if the liquefied soot is not sufficiently evaporated in the evaporator 1, unevaporated liquefied cold soot will flow into the absorber 13 and sufficient absorption heat will not be generated.
Since the water temperature at the outlet side 26 of the indoor radiator 19 has not risen sufficiently, the burner 28 is ignited and the heat exchanger 27 is heated to bring the inlet water temperature of the indoor radiator 19 to the required temperature.
Heat exchanger 30 with heat collecting fins 31 after evaporator 10
were installed in series, and the exhaust gas from the burner 28 was guided through the duct 32 to three heat exchangers.

このようにすればバーナー28で生じた熱の熱交換器2
7で回収しえなかった分は熱交換器30により回収され
、液化袷媒の未蒸発部分の一部を蒸発せしめることがで
きる。
In this way, the heat generated by the burner 28 can be transferred to the heat exchanger 2.
The amount that could not be recovered in step 7 is recovered by the heat exchanger 30, and a part of the unevaporated portion of the liquefied liner medium can be evaporated.

この説明では熱交換器30は、蒸発器10の後に設けた
が、逆に膨張弁9の後に熱交換器30を設けその後に蒸
発器10を設ける構成も考えられる。第4図は本発明の
他の実施例である。
In this explanation, the heat exchanger 30 is provided after the evaporator 10, but conversely, a configuration in which the heat exchanger 30 is provided after the expansion valve 9 and the evaporator 10 is also considered is conceivable. FIG. 4 shows another embodiment of the invention.

本図においても第1図および第2図と同一の部分には同
一の番号を付し、かつ必要な部分のみを記した。すなわ
ち34はヒートパイプで一端36に集熱フィン33を有
し、バーナーの廃熱で加熱されている。ヒートポンプの
他端37は蒸発器10とフィン35により熱的に結合さ
れており、ヒートパイプ34の部分36で蒸発したヒー
トポンプに充填された熱媒体は他端37で凝縮した熱を
蒸発器に与える。このような構成にすることにより、バ
ーナーの廃熱を蒸発器101こ加えることができ、かつ
蒸発器10とヒートパイプ34の凝縮部37との間は5
℃程度の温度差がつくので、この部分で結露がおこり、
結氷までに至らない。又蒸発部分36を加熱する排気は
極めて多量の水分を含んでおり、フィン33で凝縮する
が、結氷はしない。このようにすれば水分の多いバーナ
ーの排気中の顕熱および潜熱を有効に蒸発器1川こ送る
ことができる。以上詳述したごとく本発明を用いれば、
吸収式ヒートポンプ装置の補助加熱手段として、吸収器
冷却液を燃焼熱によって加熱する方式において、前記燃
焼器における廃熱を有効に利用することができ、蒸発器
の結氷を妨げることによりヒートポンプの機能低下を少
くすることができるなどすぐれた効果があり極めて価値
のある発明である。
In this figure as well, the same parts as in FIGS. 1 and 2 are given the same numbers, and only necessary parts are described. That is, a heat pipe 34 has a heat collecting fin 33 at one end 36, and is heated by waste heat from a burner. The other end 37 of the heat pump is thermally coupled to the evaporator 10 by the fins 35, and the heat medium filled in the heat pump evaporated at the portion 36 of the heat pipe 34 is condensed at the other end 37 and gives the heat to the evaporator. . With this configuration, the waste heat of the burner can be added to the evaporator 101, and the distance between the evaporator 10 and the condensing section 37 of the heat pipe 34 is 5.
Since there is a temperature difference of about ℃, condensation occurs in this area,
It does not reach the point of freezing. Furthermore, the exhaust gas that heats the evaporator section 36 contains an extremely large amount of moisture, which condenses on the fins 33 but does not form ice. In this way, the sensible heat and latent heat in the burner exhaust gas containing a large amount of water can be effectively sent through the evaporator. If the present invention is used as detailed above,
As an auxiliary heating means for an absorption heat pump device, the waste heat in the combustor can be effectively used in a method in which the absorber cooling liquid is heated by combustion heat, and the function of the heat pump is reduced by preventing freezing of the evaporator. This is an extremely valuable invention as it has excellent effects such as being able to reduce the amount of water.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸収式ヒートポンプの原理説明図、第2図は本
発明の前提となる吸収式ヒートポンプ装置の構成図、第
3図は本発明の実施例を示す構成図、第4図は本発明の
他の実施例の構成図である。 1・・・・・・発生器、2・・・・・・バーナ、5・…
・・被暖房空間、6・・・・・・凝縮器、10・・・・
・・蒸発器、13・…・・吸収器、15・・・・・・熱
交換器、17…・・・冷却水管、19・・・・・・室内
放熱器、27・・・・・・熱交換器、28・・・・・・
バーナ、30…・・・熱交換器。 第1図 第4図 第2図 第3図
Fig. 1 is a diagram explaining the principle of an absorption heat pump, Fig. 2 is a block diagram of an absorption heat pump device which is the premise of the present invention, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a block diagram of the present invention. It is a block diagram of another Example. 1... Generator, 2... Burner, 5...
... Heated space, 6... Condenser, 10...
...Evaporator, 13...Absorber, 15...Heat exchanger, 17...Cooling water pipe, 19...Indoor radiator, 27... Heat exchanger, 28...
Burner, 30...Heat exchanger. Figure 1 Figure 4 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1 少くとも発生器と、凝縮器と、蒸発器と、液冷却の
吸収器より成り、前記吸収器の冷却液の顕熱と冷媒の凝
縮熱を暖房などに用いる吸収式ヒートポンプ装置に補助
加熱手段として前記吸収器冷却液の吸収器出口側に燃焼
熱による冷却液加熱用熱交換器および熱焼器を設け、前
記熱焼器の排気中に含まれる廃熱を前記蒸発器に導く手
段を設けたことを特徴とする吸収式ヒートポンプ装置。
1. An absorption heat pump device consisting of at least a generator, a condenser, an evaporator, and a liquid-cooled absorber, and which uses the sensible heat of the coolant of the absorber and the condensation heat of the refrigerant for heating, etc., with auxiliary heating means. A heat exchanger for heating the coolant using combustion heat and a thermal sinter are provided on the absorber outlet side of the absorber cooling liquid, and a means is provided for guiding waste heat contained in the exhaust gas of the thermal sinter to the evaporator. An absorption heat pump device characterized by:
JP10214280A 1980-07-24 1980-07-24 Absorption heat pump device Expired JPS6024894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10214280A JPS6024894B2 (en) 1980-07-24 1980-07-24 Absorption heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10214280A JPS6024894B2 (en) 1980-07-24 1980-07-24 Absorption heat pump device

Publications (2)

Publication Number Publication Date
JPS5726367A JPS5726367A (en) 1982-02-12
JPS6024894B2 true JPS6024894B2 (en) 1985-06-15

Family

ID=14319500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10214280A Expired JPS6024894B2 (en) 1980-07-24 1980-07-24 Absorption heat pump device

Country Status (1)

Country Link
JP (1) JPS6024894B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58178162A (en) * 1982-04-09 1983-10-19 松下電器産業株式会社 Absorption type heat pump device
JPS59189262A (en) * 1983-04-08 1984-10-26 松下電器産業株式会社 Absorption type heat pump device

Also Published As

Publication number Publication date
JPS5726367A (en) 1982-02-12

Similar Documents

Publication Publication Date Title
EA011442B1 (en) Boiler condensation module
CN104374117B (en) Water chilling unit and control method
CN1144987C (en) Absorbing refrigerator
JP2005315127A (en) Gas turbine
EP0725919A1 (en) Generator-absorber-heat exchange heat transfer apparatus and method and use thereof in a heat pump
JPS6024894B2 (en) Absorption heat pump device
JPS6343662B2 (en)
KR100512827B1 (en) Absorption type refrigerator
JPH0854156A (en) Cooling and heating device utilizing exhaust heat of engine and operating method thereof
JP2909305B2 (en) Gas turbine intake cooling system
JP2000055496A (en) Absorption type water chiller/heater
JP2004301345A (en) Ammonia absorption refrigerator
JPH0754211B2 (en) Co-generation system using absorption heat pump cycle
JP3986633B2 (en) Heat utilization system
KR100291107B1 (en) Low pressure refrigerant temperature riser of air conditioner
JPH0340307B2 (en)
CN2479447Y (en) Series solusion circulation lithium bromide direct-combustion machine with soluison high-temp. generator
JPS602587B2 (en) Absorption heat pump heating device
KR0136205Y1 (en) Absorptive type airconditioner
JPS602586B2 (en) Absorption heat pump
JPH08121900A (en) Absorption type refrigerating machine using engine exhaust heat
CN2479448Y (en) Series solusion circulation lithium bromide direct-combustion machine with solusion low-temp. generator
JPS5924134A (en) Calorimeter for air conditioner
JP3311926B2 (en) Absorption air conditioner
JPH1123089A (en) Absorption refrigerator