JPS60248748A - Foamable resin composition - Google Patents

Foamable resin composition

Info

Publication number
JPS60248748A
JPS60248748A JP10366184A JP10366184A JPS60248748A JP S60248748 A JPS60248748 A JP S60248748A JP 10366184 A JP10366184 A JP 10366184A JP 10366184 A JP10366184 A JP 10366184A JP S60248748 A JPS60248748 A JP S60248748A
Authority
JP
Japan
Prior art keywords
resin
carboxylic acid
alkali metal
foaming
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10366184A
Other languages
Japanese (ja)
Inventor
Yutaka Igarashi
裕 五十嵐
Naosuke Kunimitsu
国光 直輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Cycon Ltd
Original Assignee
Ube Cycon Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Cycon Ltd filed Critical Ube Cycon Ltd
Priority to JP10366184A priority Critical patent/JPS60248748A/en
Publication of JPS60248748A publication Critical patent/JPS60248748A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a resin composition obtained by mixing an alkali metal carbonate to a resin containing a polymer having free carboxylic acid group bonded to the molecular chain, and capable of being kneaded at a high temperature, wherein the resin having high productivity and stability plays a role of a foaming agent. CONSTITUTION:An alkali metal carbonate is mixed in a resin containing a polymer having free carboxylic acid group bonded to the molecular chain. The polymer is the one prepared by the homopolymerization of acrylic acid, maleic acid, etc. or the copolymerization of the monomer with other monomers. The alkali metal carbonate is sodium carbonate, etc., and is used in excess.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明はポリマー自体が発泡に関与する発泡性樹脂組成
物に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a foamable resin composition in which the polymer itself takes part in foaming.

「従来の技術」 今日、熱可塑性樹脂発泡体が広く用いられているが、原
料樹脂に発泡性を与える為には、従来以下のような方法
が用いられてきた。
"Prior Art" Thermoplastic resin foams are widely used today, and the following methods have been conventionally used to impart foamability to raw material resins.

例えば重炭酸ソーダ(重曹)の単独熱分解による炭酸ガ
スと水蒸気を用いる方法でアクリロニトリル−ブタジェ
ン−スチレン樹脂(以下、ABS樹脂と称する。)−2
レツトに重曹を展着剤と共にタンブラ−、ヘンシェルミ
キサーなどで混合してペレット表面に付着させる(まぶ
す)方法(トライブレンド法)が一般的であった。この
方法では、発泡成形の前工程、例えばトライブレンドペ
レットの輸送時、成形機のホッパー内部などで付着した
重曹が脱落して発泡剤が不均一に分散する欠点が有った
。更に、近年、成形工程の自動化、成形機の大型化に伴
なってペレットローダ−を用いて成形機にペレットを供
給する場合が多くなってきたが、トライブレンドされた
ペレットは前記の欠点がある為にこのよう表装置を利用
できない。
For example, acrylonitrile-butadiene-styrene resin (hereinafter referred to as ABS resin)-2 is produced by a method using carbon dioxide gas and water vapor obtained by independent thermal decomposition of sodium bicarbonate (baking carbonate).
A common method has been to mix baking soda with a spreading agent in a tumbler, Henschel mixer, etc. and to adhere (sprinkle) it onto the pellet surface (tri-blend method). This method had the disadvantage that during the pre-process of foam molding, for example during transport of the triblend pellets, the baking soda adhering inside the hopper of the molding machine fell off and the foaming agent was dispersed non-uniformly. Furthermore, in recent years, as molding processes have become more automated and molding machines have become larger, pellet loaders have increasingly been used to supply pellets to molding machines; however, tri-blended pellets have the drawbacks mentioned above. Therefore, the table device cannot be used in this way.

一方、この欠点を解消する目的で、少量の樹脂に高濃度
の重曹をルーダ−などを用いて溶融、混練し、これをマ
スターペレットとして他の発泡剤を含まない樹脂ペレッ
トと混合して発泡成形する方法(マスターパッチ法)が
最近性なわれるようになった。
On the other hand, in order to eliminate this drawback, a small amount of resin is melted and kneaded with a high concentration of baking soda using a Ruder, etc. This is used as a master pellet and mixed with resin pellets that do not contain other foaming agents and foam molded. A method to do this (master patch method) has recently become popular.

しかしながら、ABS樹脂など多くの熱可塑性樹脂は1
70〜180℃以上で可塑化、溶融して添加された発泡
剤と混合するが、重曹は160℃以上で除々に180℃
では急速に熱分解する。このために、低分子量有機酸を
併用して重曹の熱分解開始温度を高温側にずらす方法、
および/または160℃以下の温度で機械的に混合する
方法が行なわれている。この方法では低温で高粘度の樹
脂を強制的に混練するために大きなせん断発熱が起こり
、局部的に160℃を越える場合がある。この局部的な
強いせん断発熱によって添加された重曹の一部が熱分解
するが、この程度をコントロールすることが難かしく、
マスターパッチの生産性、品質のバラツキに問題が有っ
た。更にこのような混線操作条件は通常のABS樹脂イ
レ2)の生産条件とは大きく異なシ、操作が困難である
ため格外品が出易いという欠点がある。
However, many thermoplastic resins such as ABS resin have 1
It is plasticized and melted at 70 to 180°C or higher and mixed with the added foaming agent, but baking soda is gradually heated to 180°C at 160°C or higher.
It thermally decomposes rapidly. For this purpose, a method of shifting the thermal decomposition start temperature of baking soda to a higher temperature side by using a low molecular weight organic acid in combination,
and/or a method of mechanically mixing at a temperature of 160° C. or lower. In this method, a high viscosity resin is forcibly kneaded at a low temperature, so a large amount of shear heat is generated, and the temperature locally may exceed 160°C. A portion of the added baking soda is thermally decomposed due to this localized strong shear heat generation, but it is difficult to control the extent of this.
There were problems with variations in productivity and quality of master patches. Furthermore, such cross-wire operation conditions are very different from the production conditions of normal ABS resin tile 2), and because the operation is difficult, there is a drawback that substandard products are likely to be produced.

また、炭酸ソーダを低分子量力ILyWン酸と併用して
炭酸ガス発生剤として用いる方法は従来より公知である
が、この組合せをそのままポリマーの発泡剤として用い
ても以下に述べるように不都合が多い。すなわち、低分
子量のカルがン酸は沸点が低く、高沸点のカルボン酸を
用いても樹脂の成形加工時の加熱によって添加されたカ
ルボン酸かにじみ出しくブリードして)製品の価値を損
なう。
In addition, a method of using soda carbonate in combination with low molecular weight ILyW acid as a carbon dioxide gas generating agent has been known, but even if this combination is used as it is as a blowing agent for polymers, there are many disadvantages as described below. . That is, carboxylic acid with a low molecular weight has a low boiling point, and even if a carboxylic acid with a high boiling point is used, the added carboxylic acid oozes out and bleeds out due to heating during resin molding, impairing the value of the product.

更に、発泡反応によって生成するこれらカルボン酸のア
ルカリ金属塩は界面活性剤として用いられているととか
らも分るように水に溶は易く、発泡製品の使用範囲が限
定される。水と接触しない用−途に限定して、例えば炭
素数18のカルボン酸を用いる場合、炭酸ソーダ1.0
 phrと反応させるのに必要なカルボン酸の添加量と
して、約5 phr以上の添加が必要である。このよう
に多量の低分子量物質が樹脂に添加された場合、成形時
のブIJ −ドの問題のみでなく、樹脂の硬さ、機械特
性、耐熱変形特性などが著るしく損なわれることは良く
知られている。
Furthermore, as can be seen from the fact that these alkali metal salts of carboxylic acids produced by the foaming reaction are used as surfactants, they are easily soluble in water, which limits the scope of use of foamed products. Limited to applications that do not come into contact with water, for example, when using a carboxylic acid having 18 carbon atoms, 1.0
The amount of carboxylic acid required to react with phr must be about 5 phr or more. When such a large amount of low molecular weight substances are added to a resin, it is common to notice that not only the IJ-doing problem occurs during molding, but also the hardness, mechanical properties, heat deformation resistance, etc. of the resin are significantly impaired. Are known.

「発明が解決しようとする問題点」 本願発明は、重曹等、樹脂と関係なく発泡する発泡剤を
用いた場合の、特に樹脂/発泡剤を押出機などを用いて
混練する工程の上述の諸問題を解決することを目的とし
ておシ、具体的には下記の従来技術の欠点を解決しよう
とするものである。
"Problems to be Solved by the Invention" The present invention solves the above-mentioned problems in the case of using a foaming agent such as baking soda that foams independently of the resin, especially in the process of kneading the resin/foaming agent using an extruder or the like. The purpose of this invention is to solve the problem, and specifically, to solve the following drawbacks of the prior art.

■ 樹脂/重薯混練温度が樹脂の可塑化温度の下限であ
ることが原因して、混線工程の少滴り、生産効率が低く
、局部せん断発熱によって重曹の一部が消費されて製品
ベレットに含まれる発泡剤量が一定にならない。
■ Because the resin/barley yam kneading temperature is the lower limit of the plasticizing temperature of the resin, small drips occur during the cross-wire process, production efficiency is low, and a portion of the baking soda is consumed due to localized shear heat generation and is not included in the product pellet. The amount of blowing agent applied is not constant.

■ 粒子状で添加される重曹単独で発泡するために、添
加量を多くして高発泡にすると連続気泡が生じて発泡セ
ルが大きくなるために表面状態及び物性が悪化する。
(2) Baking soda added in particulate form foams by itself, so if the amount added is increased to achieve high foaming, open cells will be generated and the foamed cells will become larger, resulting in deterioration of the surface condition and physical properties.

■ 発泡剤として重曹を用いると熱分解反応生成物であ
る炭酸ソーダが樹脂に残存する。また、低分子量カルボ
ン酸/炭酸アルカリ金属塩の組合せ発泡剤では樹脂に残
存する低分子量カルボン酸のブリード、樹脂の硬度及び
機械特性の低下、熱変形特性の低下、更に反応物である
有機酸アルカリ金属塩の水への溶出などの問題がある。
■ When baking soda is used as a blowing agent, soda carbonate, which is a thermal decomposition reaction product, remains in the resin. In addition, when using a combination blowing agent of low molecular weight carboxylic acid/alkali metal carbonate, the low molecular weight carboxylic acid remaining in the resin may bleed, the hardness and mechanical properties of the resin may decrease, the heat deformation properties may deteriorate, and the reactant organic acid alkali may bleed out. There are problems such as metal salts leaching into water.

「問題点を解決するための手段」 本発明は分子鎖に結合した遊離カルボン酸基を有するポ
リマーを含む樹脂に、炭酸アルカリ金属塩を混合してな
ることを特徴とする発泡性樹脂組成物である。
"Means for Solving the Problems" The present invention is a foamable resin composition characterized by mixing an alkali metal carbonate with a resin containing a polymer having free carboxylic acid groups bonded to its molecular chain. be.

本発明で用いられる、分子鎖に結合した遊離カルボン酸
基を有するポリマーを製造する方法としては、第1図の
プロセスフローチャートに示す如く、1個以上の遊離カ
ルボン酸基を有するビニルモノマー、すなわち、一般式
、 九4 〔式中の11.R2,R3は水素原子、低級アルキル基
またはカルがキシル基を示し、R4は−COOHまたは
−R5−(COOI()nを示す。(なお、R5は低級
アルキレン基またはフェニレン基、nは1〜5の整数を
示す)〕 で表わされる化合物、例えばアクリル酸、メタクリル酸
、マレイン酸、イタコン酸などを単独で、あるいは他の
ビニルモノマーと共重合して製造することもできるしく
A系列)、または、すでに重合されたポリマーに前記の
カルボン酸基を有するビニルモノマーと重合開始剤を加
え、加熱して重合させる公知の方法に従っても製造する
ことができる(B系列)。
As shown in the process flow chart of FIG. 1, the method for producing the polymer having free carboxylic acid groups bonded to the molecular chain used in the present invention is to produce a vinyl monomer having one or more free carboxylic acid groups, i.e. General formula, 94 [11. R2 and R3 represent a hydrogen atom, a lower alkyl group, or a xyl group, and R4 represents -COOH or -R5-(COOI()n. (R5 is a lower alkylene group or a phenylene group, and n is 1 to (representing an integer of 5)], such as acrylic acid, methacrylic acid, maleic acid, itaconic acid, etc., can be produced alone or by copolymerizing with other vinyl monomers (A series), or It can also be produced according to a known method in which the vinyl monomer having a carboxylic acid group and a polymerization initiator are added to an already polymerized polymer and polymerized by heating (Series B).

遊離カルボン酸基を有するビニルモノマーと共重合させ
るモノマーとしては、ラジカル重合性のビニルモノマー
であれば何でも使用できるが、例、tばエチレン、プロ
ピレン、ブチレン、ブタジェン、スチレン、アクリロニ
トリル、アクリル酸エステルモノマー、塩化ビニル、酢
酸ビニルなどの1種又は2種以上と混合して使用でき、
まだABS樹脂のようなグラフト重合体に重合段階で前
記のカルボン酸基を付加させる場合には、例えばブタジ
ェンを重合した後にスチレン、アクリロニトリルと共に
前記のカルボン酸基を有するモノマーを加えて共グラフ
ト重合する方法でも良い。用いられるカルメン酸基を有
するモノマーの量は、ポリマーの構成モノマー単位の一
部あるいは全部に用いることができ、ポリアクリル酸、
ポリメタクリル酸なども使用できる。
As the monomer to be copolymerized with the vinyl monomer having a free carboxylic acid group, any radically polymerizable vinyl monomer can be used, and examples include ethylene, propylene, butylene, butadiene, styrene, acrylonitrile, and acrylic acid ester monomers. , vinyl chloride, vinyl acetate, etc., or can be used in combination with two or more of them,
If the above-mentioned carboxylic acid group is to be added to a graft polymer such as ABS resin in the polymerization step, for example, after polymerizing butadiene, the above-mentioned monomer having a carboxylic acid group is added together with styrene and acrylonitrile for co-graft polymerization. Any method is fine. The amount of the monomer having a carmenic acid group to be used can be determined in part or all of the monomer units constituting the polymer.
Polymethacrylic acid and the like can also be used.

前記の遊離カルがン酸基を有するモノマーを、樹脂の一
部に重合させて用いる場合の基体樹脂としては、180
℃以下の温度で可塑化して添加された炭酸アルカリ金属
塩とよく混和し、180℃を越える温度で成形加工され
る熱可塑性樹脂であれば特に限定されないが例えば、ポ
リスチレン、ポリプロピレン、ポリ塩化ビニル、エチレ
ン−酢酸ビニル共重合体、スチレン−アクリロニトリル
共重合体、ABS樹脂、アクリル酸ブチル−スチレン−
アクリロニトリル樹脂、塩素化ポリエチレン−スチレン
−アクリロニトリル樹脂、EPDM−スチレン−アクリ
ロニトリル樹脂、ポリフェニレンエーテル−スチレン樹
脂などを使用できる。溶融、可塑化温度が200℃以上
であるポリアミド、ポリブチレンテレフタレート、ポリ
エチレンテレフタレート、ポリカーブネートなどの樹脂
に対して本発明の発泡方法を用いる場合には、これらの
樹脂と相溶して180℃以下の温度で可塑化する前記の
ポリマーのうち1種又は2種以上の樹脂を遊離カルボン
酸基を有するモノ“マーで変性した後に炭酸アルカリ金
属塩を添加゛して180℃以下の温度で混練して得た樹
脂ペレットを前記の200℃以上の温度で溶融、可塑化
する樹脂ベレットと混合し、200℃以上の温度で成形
加工することができる。
When using the above-mentioned monomer having a free carboxylic acid group by polymerizing it into a part of the resin, the base resin is 180
There are no particular limitations on thermoplastic resins as long as they are plasticized at a temperature of 180°C or below and are well miscible with the added alkali metal salt and are molded at a temperature exceeding 180°C, but examples include polystyrene, polypropylene, polyvinyl chloride, Ethylene-vinyl acetate copolymer, styrene-acrylonitrile copolymer, ABS resin, butyl acrylate-styrene-
Acrylonitrile resin, chlorinated polyethylene-styrene-acrylonitrile resin, EPDM-styrene-acrylonitrile resin, polyphenylene ether-styrene resin, etc. can be used. When the foaming method of the present invention is used for resins such as polyamide, polybutylene terephthalate, polyethylene terephthalate, and polycarbnate, which have a melting and plasticizing temperature of 200°C or higher, they are compatible with these resins and have a temperature of 180°C. One or more resins among the above polymers that plasticize at the following temperatures are modified with a monomer having a free carboxylic acid group, and then an alkali metal carbonate is added and kneaded at a temperature of 180°C or less. The resin pellets obtained can be mixed with the resin pellets that are melted and plasticized at a temperature of 200°C or higher, and then molded at a temperature of 200°C or higher.

炭酸アルカリ金属塩としては、炭酸ナトリウム、炭酸カ
リウム、炭酸リチウムなどが使用できる。
As the alkali metal carbonate, sodium carbonate, potassium carbonate, lithium carbonate, etc. can be used.

カルボン酸基を有する樹脂に対する添加量は、樹脂に含
まれるカルボン酸基の量に対する炭酸アルカリ金属塩の
反応当量(カルボン酸基2モルに対して炭酸アルカリ金
属塩1モル)より多くても少カくても良いが、炭酸アル
カリ金属塩は通常の樹脂の成形温度(350℃以下)で
は溶融しないために、発泡反応は同−液反応となり、カ
ルボン酸基の全量を反応させるためには過剰の炭酸アル
カリ金属塩を用いる必要があり、逆に添加した炭酸アル
カリ金属塩の全量を反応させるためにはカルがン酸基の
過剰量が必要である。発泡反応後の生成物に注目すると
、炭酸アルカリ金属塩を過剰に添加するとその一部が残
存して製品価値を損なう場合が有るのに対して、カルボ
ン酸基を過剰に用いた場合は炭酸アルカリ金属塩の残存
量が少なく、ポリマーに結合したカルボン酸基およびカ
ルがン酸アルカリ金属塩がイオン結合を形成して製品の
物性を向上させることが期待されて好都合である@他方
、樹脂に含まれるカルボン酸基を効率良く発泡させるた
めには炭酸アルカリ金属塩を過剰に加える方が良い。
The amount added to the resin having carboxylic acid groups is at least less than the reaction equivalent of the alkali metal carbonate to the amount of carboxylic acid groups contained in the resin (1 mol of the alkali metal carbonate per 2 mol of carboxylic acid groups). However, since alkali metal carbonate does not melt at normal resin molding temperatures (below 350°C), the foaming reaction is a same-liquid reaction, and in order to react the entire amount of carboxylic acid groups, an excess amount is required. It is necessary to use an alkali metal carbonate, and conversely, in order to react the entire amount of the alkali metal carbonate added, an excess amount of carboxylic acid groups is required. Focusing on the product after the foaming reaction, if an excessive amount of alkali metal carbonate is added, a portion of it may remain and impair the product value, whereas if an excess of carboxylic acid groups are used, the alkali metal carbonate This is advantageous because the residual amount of the metal salt is small, and the carboxylic acid group and the alkali metal carboxylic acid salt bonded to the polymer are expected to form ionic bonds and improve the physical properties of the product. In order to efficiently foam the carboxylic acid groups, it is better to add an excess of the alkali metal carbonate.

本発明の発泡性樹脂組成物は、通常の熱可塑性樹脂発泡
体の製造に用いられる他、特に汎用樹脂といわゆるエン
ジニアリングプラスチックとのポリマーブレンドタイプ
の発泡体の製造、または多量の添加剤を混合する必要の
有る難燃性発泡体の製造に際して好適に用いられ、樹脂
自体が発泡反応に関与することから高い発泡倍率でも表
面状態の良い成形品が得られることから、広い用途の発
泡製品を製造するのに適している。
The foamable resin composition of the present invention can be used not only for the production of ordinary thermoplastic resin foams, but also for the production of polymer blend type foams of general-purpose resins and so-called engineering plastics, or for mixing large amounts of additives. It is suitably used in the production of necessary flame-retardant foams, and because the resin itself participates in the foaming reaction, molded products with good surface conditions can be obtained even at high expansion ratios, making it possible to produce foamed products with a wide range of uses. suitable for.

「実施例」 以下、実施例、比較例によシ更に詳細に説明する。"Example" Hereinafter, a more detailed explanation will be given based on Examples and Comparative Examples.

比較例1)。Comparative example 1).

通常のABS樹脂(サイコラック−T宇部サイコラック
)100重量部(以下phr )に重曹1.5phrを
混合して径20%の押出機(ラボプラストミル、東洋精
機製作所製)のヒーター設定温度を変えて押出し成形し
、成形品の比重を測定した所、表1の結果が得られた(
サンプルA)。該ABS樹脂の比重が約1.04である
ことから、重曹を単独で使用するとヒーターの設定温度
160℃以下の温度でも若干の発泡が起こっており、1
70℃ではかなシ発泡している。
Mix 1.5 phr of baking soda with 100 parts by weight (hereinafter referred to as phr) of ordinary ABS resin (Cycolac-T Ube Cycolac) and set the heater temperature of an extruder with a diameter of 20% (Laboplast Mill, manufactured by Toyo Seiki Seisakusho). When we extruded and measured the specific gravity of the molded product, the results shown in Table 1 were obtained (
Sample A). Since the specific gravity of the ABS resin is approximately 1.04, when baking soda is used alone, some foaming occurs even at a temperature below the heater setting temperature of 160°C.
It foams slightly at 70°C.

実施例1)。Example 1).

通常の乳化重合でポリブタジェンを重合した後、スチレ
ン、アクリロニトリルと共にメタクリル酸2、5 ph
rを加え、開始剤、分子量調節剤を加えて変性ABS樹
脂を得た。このものの210℃における流動性は0.3
7A1(注1)であった。この樹脂に1.5 phr 
(モル反応当量)の炭酸ソーダを添加、混合して比較例
1と同様に押出し成形した所、表1、サンプルBのよう
に180℃までの温度ではまったく発泡せず、有効な発
泡は190℃以上の温度で起こる。
After polymerizing polybutadiene by ordinary emulsion polymerization, 2.5 ph of methacrylic acid is added together with styrene and acrylonitrile.
A modified ABS resin was obtained by adding r, an initiator, and a molecular weight regulator. The fluidity of this product at 210°C is 0.3
It was 7A1 (Note 1). 1.5 phr to this resin
When (molar reaction equivalent) of sodium carbonate was added and mixed and extrusion molded in the same manner as in Comparative Example 1, no foaming occurred at temperatures up to 180°C as shown in Table 1, Sample B, and effective foaming was at 190°C. Occurs at temperatures above

実施例2)。Example 2).

実施例1の変性ABS樹脂の、210℃の流動性が3・
2A&(注2)のものを重合した・この樹脂に炭酸ソー
ダ1.5 phrを加えて比較例1と同様に押出し成形
して表1、サンプルC1の結果を得た。
The fluidity of the modified ABS resin of Example 1 at 210°C is 3.
2A & (Note 2) was polymerized. 1.5 phr of soda carbonate was added to this resin and extrusion molded in the same manner as in Comparative Example 1 to obtain the results of Sample C1 in Table 1.

実施例1と同様に180″Cまでの温度では全く発泡し
ないが、変性ABS樹脂の流動粘度が低いために炭酸ソ
ーダとカルメン酸基の反応速度が上がシ、190℃以上
の温度に於ける発泡の程度はサンプルCの方がサンプル
Bよシも高い。
As in Example 1, foaming does not occur at all at temperatures up to 180"C, but because the flow viscosity of the modified ABS resin is low, the reaction rate between soda carbonate and carmenic acid groups increases, and at temperatures above 190"C. The degree of foaming in Sample C is also higher than in Sample B.

表 1 実施例1,2よシ遊離カルゴン酸基を含むABS樹脂に
同量の炭酸ソーダを混合して発泡させると、樹脂の流動
性が高い方が良く発泡するが、発泡反応が開始される温
度は一定であり、180℃までは全く発泡しない。
Table 1 As in Examples 1 and 2, when an ABS resin containing free cargonic acid groups is mixed with the same amount of soda carbonate and foamed, the resin with higher fluidity foams better, but the foaming reaction starts. The temperature is constant and no foaming occurs up to 180°C.

実施例3)。Example 3).

実施例1で作成された変性ABS樹脂に炭酸ソーダをカ
ルボン酸基のモル反応当量を基準として添加し、ヒータ
ー設定温度190℃で比較例1と同じ押出機を用いて押
出成形を行ない、成形品の比重を表2のように測定した
。炭酸ソーダをカルボン酸基のモル反応当量よシも少な
く加えても、過剰に加えても発泡体が得られるが、カル
ぎン酸基の変性量を効率良く利用するためには炭酸ソー
ダをそのモル反応当量よシも過剰に加えた方が良い。
Sodium carbonate was added to the modified ABS resin prepared in Example 1 based on the molar reaction equivalent of carboxylic acid groups, and extrusion molding was performed using the same extruder as in Comparative Example 1 at a heater setting temperature of 190°C to obtain a molded product. The specific gravity was measured as shown in Table 2. Foams can be obtained even when adding less or more soda than the molar reaction equivalent of the carboxylic acid group, but in order to efficiently utilize the modified amount of the carboxylic acid group, It is better to add an excess of the molar reaction equivalent.

中腹酸ソーダ2モル/カルボン酸基1モルを1.0とし
て、実施例4)。
Example 4), where 2 moles of sodium chloride acid/1 mole of carboxylic acid group is 1.0.

ポリブタジェンラテックス20 phrに10 phr
のメタクリル酸と残部をスチレン、アクリロニトリルを
加えて全量を100 phrとして乳化重合を行ない変
性ABS樹脂を得た。これに炭酸ソーダ62phr及び
0.5 phrの滑剤を加えてバンバリーミキサ−で混
練し、発泡剤を含む樹脂ペレットを得だ。
Polybutadiene Latex 20 phr to 10 phr
methacrylic acid, the balance was styrene, and acrylonitrile was added to make the total amount 100 phr, and emulsion polymerization was carried out to obtain a modified ABS resin. 62 phr of soda carbonate and 0.5 phr of a lubricant were added to this and kneaded in a Banbury mixer to obtain resin pellets containing a blowing agent.

このものの比重は0.9797cm3でアリ、ハンハI
) −ミキサー内では強いせん断発熱によって180℃
を越える温度になっているようである。
The specific gravity of this thing is 0.9797cm3, so it's ok.
) -In the mixer, the temperature reaches 180℃ due to strong shear heat generation.
It seems that the temperature has exceeded .

この樹脂ペレットを比較例1と同じ押出機で押出し成形
して表3の結果を得た。バンバリーミキサ−のような高
いせん断を与える混線機を用いた場合でも発泡剤の多く
は分解せずに残存しており、高い発泡倍率を示している
。更に、ヒーター設定温度の200℃から230℃まで
ほぼ一定の比重が得られたことから、発泡成形工程の温
度条件依存性が極めて小さいと言える。
This resin pellet was extruded using the same extruder as in Comparative Example 1, and the results shown in Table 3 were obtained. Even when a mixer that provides high shear such as a Banbury mixer is used, most of the foaming agent remains without being decomposed, resulting in a high foaming ratio. Furthermore, since a substantially constant specific gravity was obtained from the heater set temperature of 200° C. to 230° C., it can be said that the dependence on the temperature conditions of the foam molding process is extremely small.

表 3 実施例5)。Table 3 Example 5).

スチレン、アクリロニトリルと共にメタクリル酸10 
phrを加えて乳化重合し、変性スチレン−アクリロニ
トリル共重合体を得た。この樹脂に62phrの炭酸ソ
ーダを加えて比較例1と同じ押出機を用いヒーター設定
温度175℃で押出し成形した所、成形品の比重は約1
.08であシ、全く発泡していない。この炭酸ソーダが
混練された樹脂成形品をペレタイザーで砕いて砕片状と
した後、通常のABS樹脂ベレット(サイコラック−L
E宇部サすコン■製)75重量部と混合して全量を10
0重量部とし、210℃のヒーター設定温度で押出成形
した所、成形品の比重は0.83でありた。
Methacrylic acid 10 with styrene and acrylonitrile
phr was added and emulsion polymerized to obtain a modified styrene-acrylonitrile copolymer. When 62 phr of soda carbonate was added to this resin and extrusion molded using the same extruder as in Comparative Example 1 at a heater setting temperature of 175°C, the specific gravity of the molded product was approximately 1.
.. 08, no foaming at all. This resin molded product kneaded with soda carbonate is crushed with a pelletizer into pieces, and then a regular ABS resin pellet (Cycolac-L
Mix with 75 parts by weight (manufactured by E Ube Sascon) to make the total amount
When extrusion molding was carried out at a heater setting temperature of 210° C., the specific gravity of the molded product was 0.83.

比較例2)。Comparative Example 2).

通常のABS樹脂(サイコラック−T宇部サイコラック
)にオレイン酸2.0phr、炭酸ソーダ0.4phr
を加えて比較例1と同じ押出機で押出し成形した。ヒー
ター設定温度210℃のとき比重は1.02で発泡して
いないがオレイン酸がブリードして表面光沢が上がり、
240℃以上で比重が0.95以下となったがオレイン
酸のブリードも同時に激しくなった。
Regular ABS resin (Cycolac-T Ube Cycolac) with 2.0 phr of oleic acid and 0.4 phr of soda carbonate.
was added and extruded using the same extruder as in Comparative Example 1. When the heater setting temperature is 210℃, the specific gravity is 1.02 and there is no foaming, but the oleic acid bleeds out and the surface gloss increases.
At temperatures above 240°C, the specific gravity became 0.95 or less, but the bleeding of oleic acid also became intense.

注1:3.18餌φX7.95mのオリフィスを用い、
5.66kg荷重で1分間の流出樹脂量を重さ■で表示
Note 1: Using a 3.18 bait φ x 7.95 m orifice,
The amount of resin flowing out for 1 minute with a load of 5.66 kg is displayed in weight ■.

注2;注1と同じオリフィス、同一荷重で25秒間の流
出樹脂量。
Note 2: Amount of resin flowing out for 25 seconds using the same orifice and the same load as Note 1.

1−発明の効果」 本発明ではポリマーに結合した遊離カルボン酸と炭酸ア
ルカリ金属塩を組合せて用いるが、その発泡反応は実施
例1)に示したように180℃以下の温度では起こらな
い。従って、マスターバッチ生産工程で重曹単独の場合
よりも20℃高い180℃までの温度で樹脂と炭酸アル
カリ金属塩の混線を行なうことができるために混練工程
の生産性を高めることができる。また、170〜180
℃の温度では全く反応しないために、生産ロフト間でマ
スターパッチに含まれる発泡剤量を容易に一定にするこ
とができるために、発泡成形品成形工程の安定性、少滴
シも向上する。
1-Effects of the Invention In the present invention, a free carboxylic acid bonded to a polymer and an alkali metal carbonate are used in combination, but the foaming reaction does not occur at temperatures below 180°C as shown in Example 1). Therefore, in the masterbatch production process, the resin and the alkali metal carbonate can be mixed at a temperature of up to 180°C, which is 20°C higher than when baking soda alone is used, thereby increasing the productivity of the kneading process. Also, 170-180
Since it does not react at all at a temperature of 0.degree. C., the amount of blowing agent contained in the master patch can be easily made constant between production lofts, which improves the stability of the foam molding process and reduces the amount of droplets.

更に、発泡反応がポリマーの分子鎖に結合したカルボン
酸と炭酸アルカリ金属塩の2分子反応で起こり、発泡が
ポリマーの分子状で起こるために、小さく、独立した緻
密な発泡セルが得られ、高発泡でも物性の良い発泡成形
品を製造できる。また、重曹発泡剤を用いた場合、炭酸
ソーダが発泡成形品に残存するのに対して、本発明の発
泡剤システムでは発泡反応生成物がポリマーに結合した
カルボン酸のアルカリ金属塩であり、用いられる量に依
って異なるが、発泡後の製品物性の低下を防ぐうえでむ
しろ有利である。この利点は又、前述の低分子量カルボ
ン酸と炭酸アルカリ金属塩の発泡剤システムと比較した
場合にも強調される。
Furthermore, the foaming reaction occurs through a bimolecular reaction of the carboxylic acid bonded to the molecular chain of the polymer and the alkali metal carbonate, and since foaming occurs in the molecular form of the polymer, small, independent and dense foam cells are obtained, resulting in high Even with foaming, foam molded products with good physical properties can be produced. Furthermore, when a baking soda blowing agent is used, the sodium carbonate remains in the foamed molded product, whereas in the blowing agent system of the present invention, the foaming reaction product is an alkali metal salt of a carboxylic acid bonded to a polymer. Although it depends on the amount of foaming, it is rather advantageous in preventing deterioration of the physical properties of the product after foaming. This advantage is also highlighted when compared to the low molecular weight carboxylic acid and alkali metal carbonate blowing agent systems described above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の発泡性樹脂組成物の製造工程の流れを
表すプロセスチャートである。 笛 1 図 (A) (B)
FIG. 1 is a process chart showing the flow of manufacturing steps for the foamable resin composition of the present invention. Flute 1 Diagram (A) (B)

Claims (1)

【特許請求の範囲】[Claims] 分子鎖に結合した遊離カルデン酸基を有するポリマーを
含む樹脂に、炭酸アルカリ金属塩を混合してなることを
特徴とする発泡性樹脂組成物。
1. A foamable resin composition comprising a resin containing a polymer having a free caldic acid group bonded to a molecular chain and an alkali metal carbonate salt mixed therein.
JP10366184A 1984-05-24 1984-05-24 Foamable resin composition Pending JPS60248748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10366184A JPS60248748A (en) 1984-05-24 1984-05-24 Foamable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10366184A JPS60248748A (en) 1984-05-24 1984-05-24 Foamable resin composition

Publications (1)

Publication Number Publication Date
JPS60248748A true JPS60248748A (en) 1985-12-09

Family

ID=14359967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10366184A Pending JPS60248748A (en) 1984-05-24 1984-05-24 Foamable resin composition

Country Status (1)

Country Link
JP (1) JPS60248748A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051669A1 (en) * 1998-04-08 1999-10-14 E.I. Du Pont De Nemours And Company Expanded ethylene copolymers
JP2002097294A (en) * 2000-09-20 2002-04-02 Jsr Corp Sponge
JP2019143092A (en) * 2018-02-23 2019-08-29 デンカ株式会社 Extruded foamed sheet, molded body, and food container

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144731A (en) * 1981-03-02 1982-09-07 Du Pont Mitsui Polychem Co Ltd Manufacture of ionically crosslinked foamed resin object
JPS58194930A (en) * 1982-05-11 1983-11-14 Dainippon Ink & Chem Inc Production of thermoplastic resin foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144731A (en) * 1981-03-02 1982-09-07 Du Pont Mitsui Polychem Co Ltd Manufacture of ionically crosslinked foamed resin object
JPS58194930A (en) * 1982-05-11 1983-11-14 Dainippon Ink & Chem Inc Production of thermoplastic resin foam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999051669A1 (en) * 1998-04-08 1999-10-14 E.I. Du Pont De Nemours And Company Expanded ethylene copolymers
JP2002097294A (en) * 2000-09-20 2002-04-02 Jsr Corp Sponge
JP2019143092A (en) * 2018-02-23 2019-08-29 デンカ株式会社 Extruded foamed sheet, molded body, and food container

Similar Documents

Publication Publication Date Title
US3725317A (en) Nucleation of thermoplastic polymeric foams
JPH0711035A (en) Improved blowing agent concentrate, and composition and article obtained from it
CA1145087A (en) Flameproof polystyrene foam and process for the manufacture thereof
US4048272A (en) Method for preparing improved expanded polystyrene sheet
JPS58111834A (en) Preparation of extruded polystyrene sheet foam
JPS61502390A (en) Production of crosslinked styrene polymer foam
US4048208A (en) Method for preparing improved expanded polystyrene sheet
JPH0358376B2 (en)
KR20070043840A (en) Method for the production of expandable styrol polymers having improved expandability
CN1261899A (en) Vinyl aromatic polymer coupling and foams
EP1590402B8 (en) Solid concentrate composition for polymeric chain extension
JP2003510438A (en) Block chlorinated polyolefins used as impact modifier tougheners for PVC or CPVC
JPS60248748A (en) Foamable resin composition
JPS6259640A (en) Foaming of butyral resin composition
TWI230719B (en) Crosslinked foam of ethylene vinyl acetate copolymer and acid copolymer
KR900006330B1 (en) Crosslinked silane-functional vinylidene chloride polymer and films or foam therefrom
JPH0598062A (en) Foamable styrene resin granule and production thereof
JP2800282B2 (en) Method for producing thermoplastic resin composition
JPS58134137A (en) Thermoplastic resin composition
US20220315749A1 (en) Process for Producing Vinyl Aromatic (Co)Polymer Incorporating Post-Consumer and/or Post-Industrial Recycled Polystyrene
JPH06505294A (en) Process for manufacturing uniquely expanded thermoplastic polymers
US4393016A (en) Process for producing plate-like polystyrene resin foam
KR101912893B1 (en) Flame retardant styrofoam produced by using flame retardant vinyl acetate polymer emulsion resin
JPH0341163A (en) Thermoplastic resin composition
JPH09151269A (en) Foamable vinyl chloride resin composition for injection molding