JPS60248214A - Flow rate controlling device - Google Patents

Flow rate controlling device

Info

Publication number
JPS60248214A
JPS60248214A JP59104597A JP10459784A JPS60248214A JP S60248214 A JPS60248214 A JP S60248214A JP 59104597 A JP59104597 A JP 59104597A JP 10459784 A JP10459784 A JP 10459784A JP S60248214 A JPS60248214 A JP S60248214A
Authority
JP
Japan
Prior art keywords
flow rate
filter
valve
flow
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59104597A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shiozawa
塩沢 義博
Hitoshi Ishimaru
等 石丸
Yuhei Tamura
田村 裕平
Takeshi Ueno
健 上野
Setsuo Nonaka
野中 節雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP59104597A priority Critical patent/JPS60248214A/en
Publication of JPS60248214A publication Critical patent/JPS60248214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)

Abstract

PURPOSE:To maintain a flow rate in a condensate line at a fixed value and to execute stable operation by adding a flow meter, a flow rate controlling valve, and a controlling device therefor to a by-path pipe line provided in parallel to plural filters. CONSTITUTION:A flow meter 42, a flow rate controlling valve 51, and a controlling device therefor are provided as constituting members of a by-path pipe line enabling flow rate control during operation using the by-path line. Namely, in the case of complete by-path operation, the flow meter 41 and the flow meter 42 are controlled so as to obtain a set flow rate inputted to a setter 103. Further, as the by-path flow rate controlling device is required to be in a nonoperating condition when the whole filters 11 are in operation, a connector 120 is provided to the upstream side of a controller 123 where the signal from the controller 102 is inputted to detect whether one filter 11 is in suspended condition or not by a detector 121. When there is a suspending filter, the connector 120 is operated and the signal from the controller 102 is transmitted to the controller 123.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、並列に設置される複数基のろ過器からなるろ
過装置とこのろ過装置のバイパス管路に係り、特に、バ
イパス管路を使用する運転時においても各ろ過器とバイ
パス管路との流量制御が可能なようにした流量制量装置
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a filtration device consisting of a plurality of filters installed in parallel and a bypass pipe line of this filtration device, and particularly relates to a filter using a bypass pipe line. The present invention relates to a flow rate control device that allows flow rate control between each filter and a bypass pipe even during operation.

〔発明の背景〕[Background of the invention]

例えば、火力・原子カプラントの復水給水系統に採用さ
れているプリコート式ろ過装置の場合、復水のろ過処理
は、ろ1尚器内のろ布表面に形成されたろ材層を復水が
通過することにより達成される。ここで、復水の処理容
量が多く かっ、連続的にろ過運転を行なう場合は、部
分容鷲のろ過器を複数基設置するのが通常であり、また
、ろ過装置のバイパス運転を考慮してバイパス管路を設
置する。
For example, in the case of a pre-coat type filtration device used in the condensate water supply system of thermal power plants and nuclear power plants, the condensate filtration process involves the condensate passing through a filter medium layer formed on the surface of the filter cloth in the filter 1. This is achieved by If the condensate treatment capacity is large and continuous filtration operation is to be performed, it is normal to install multiple partial volume filters, and consideration should be given to bypass operation of the filtration equipment. Install a bypass pipeline.

第1図は、火力・原子カプラントで採用のろ過装置とそ
のバイパス管路の概略系統を示すものである。ろ過器は
、屋1〜Anのようにn基設置されバイパス運転は、ろ
過装置で処理できる容量と同じ処理能力をもつものとす
る。
Figure 1 shows a schematic diagram of a filtration device and its bypass line used in thermal power and nuclear couplants. It is assumed that n filters are installed, such as in rooms 1 to An, and that the bypass operation has the same processing capacity as that which can be processed by the filtration device.

12は、復水入口管であり、より高圧側の上流系統から
移送育れる復水0人口となる・6過器11へは、復水入
口管1′2から分岐する管13、入口 ゛弁14、流量
計40等、流量制御弁50及びろ過器入口管15をへて
、ろ過器11へ導かれる。ろ過器11で処理された復水
d:、ろ過器出口管16、出口弁17及び管18をへて
復水出口管19へ導かれ、下流系統へ送られる。
12 is a condensate inlet pipe, which serves as a zero population of condensate transferred from the higher pressure side upstream system.To the 6-pass filter 11, there is a pipe 13 branching from the condensate inlet pipe 1'2, and an inlet valve. 14, a flow meter 40, etc., a flow control valve 50, and a filter inlet pipe 15, and are led to the filter 11. Condensate d treated by the filter 11 passes through the filter outlet pipe 16, the outlet valve 17 and the pipe 18, is guided to the condensate outlet pipe 19, and is sent to the downstream system.

他のろ過器の系列も同様に、復水入口管12から分岐さ
れ、ろ過器11でろ過処刑後、復水出口管19に集めら
れる。
Similarly, other filter series are branched from the condensate inlet pipe 12, and after being filtered by the filter 11, the condensate is collected in the condensate outlet pipe 19.

ここでは、扁1系列を代表させて説明する。Here, the explanation will be made using the Bian 1 series as a representative.

本ろ過装置の下流側システムで必要とする流量 □の全
量をろ過器に通水することなく バイパス管路を経由し
て供給する一運用方法から、これらろ過器を系統に投入
する場合は、ろ過器を一塔ずつ順次投入し、必要数のろ
過塔数運転に移行させた後、バイパス弁21を閉止する
。また、ろ過装置を系統から切離し、全量バイパス運転
に移行する場合は、逆の手jIIによって達成される。
One method of operation is to supply the entire flow rate □ required by the downstream system of this filtration device via the bypass pipe without passing it through the filter. The filters are sequentially introduced one by one, and after the required number of filtration towers are operated, the bypass valve 21 is closed. Further, when the filtration device is disconnected from the system and transferred to full bypass operation, this is achieved by the reverse procedure jII.

従来、上記操作は、手動若しくは遠隔手動操作で行なわ
れていた。つ捷り、復水け、復水入口管12ぶら分岐す
る管20、バイパス弁21及び管22をへて復水出口管
19へ導かれており、このとき、1,2.・・・n系列
全てのろ過器の人口弁及び出口弁は、全て閉止状態とな
っている。この全量バイパス運転状態から、ろ過器篇1
を通水に入才する場合、入口弁14及び出口弁17を開
くが、本邦は一般に電動弁が使用さノ1ており、この開
操作は、手動、若しくは、遠隔手動で行なわれる。
Conventionally, the above operations have been performed manually or remotely. The condensate inlet pipe 12 is led to the condensate outlet pipe 19 through a branching pipe 20, a bypass valve 21 and a pipe 22, and at this time, 1, 2. ...The artificial valves and outlet valves of all the n-series filters are all closed. From this full bypass operation state, filter version 1
When starting water flow, the inlet valve 14 and the outlet valve 17 are opened, but in Japan, motorized valves are generally used, and this opening operation is performed manually or remotely.

扁1系列への通水が達成された後、やはり、一般に使用
されている電動磯駆動方式のバイパス弁21を手動若し
くは遠隔手動で開mi調整し、バイパス通水流量を減少
させる。
After the water flow to the first series is achieved, the bypass valve 21 of the generally used electric rock drive type is adjusted to open manually or remotely to reduce the flow rate of the bypass water flow.

以上の操作を繰り返すことによって、バイパス運転から
ろ過装置通水運転へ移行させる。
By repeating the above operations, the bypass operation is shifted to the filtration device water flow operation.

ろ過器の運転は、ろ過器入口管15に接続される差圧計
検出管26をへて得られるろ過器入口側圧力とろ過器出
口管16に接続される差圧計検出管27をへて得られる
ろ過器出口側圧力との差を差圧計28で検出し、この差
圧により監視する1、この運転監視に使用されるろ過器
差圧は、ろ材層での不純物捕促量により異なり、一定#
L量で運転される場合、第2図に示すように、処理時間
が長くなるにつれて上昇する傾向にあり、規定差圧ΔP
maxでろ過器の運転を停止し、目詰りしたろ材の除去
及び新ろ材のプリコートのために再生操作を行なう。
The operation of the filter is obtained through the filter inlet side pressure obtained through the differential pressure gauge detection pipe 26 connected to the filter inlet pipe 15 and the differential pressure gauge detection pipe 27 connected to the filter outlet pipe 16. The difference between the pressure on the outlet side of the filter and the pressure on the outlet side of the filter is detected by a differential pressure gauge 28, and the differential pressure is used for monitoring.
When operated at L amount, as shown in Fig. 2, it tends to increase as the processing time becomes longer, and the specified differential pressure ΔP
The operation of the filter is stopped at max, and a regeneration operation is performed to remove the clogged filter medium and pre-coat a new filter medium.

ここで、復水入口管12より各系列に分配される復水の
流量は、ろ過器回りの配管・弁構成をほぼ等しいものと
すると、差圧の小さいろ過系列の流量が増加し、逆に大
きい差圧の系列の流量が減少するように、各系列の差圧
が一定となるように分配されるので、第3図に示すよう
に、流量かばらつく結果となり、この運転を継続すると
、全てのろ過器差圧が規定差圧Δp maxに接近する
ことになる。
Here, the flow rate of condensate distributed to each series from the condensate inlet pipe 12 is such that if the piping and valve configurations around the filter are approximately equal, the flow rate of the filtration series with a small differential pressure will increase, and conversely As the flow rate in the series with a large differential pressure decreases, the differential pressure in each series is distributed to be constant, so as shown in Figure 3, the flow rate varies, and if this operation is continued, all The filter differential pressure will approach the specified differential pressure Δp max.

また、この流量アンバランスは、ろ過器の性能を左右す
るろ過速度が変動することにもなる。
Moreover, this flow rate imbalance also causes fluctuations in the filtration rate, which affects the performance of the filter.

ここで、ろ過速度とは、ろ材層を通過する原液の速度で
あり、下式により定義される。
Here, the filtration speed is the speed of the stock solution passing through the filter medium layer, and is defined by the following formula.

このように、ろ過装置は、全てのろ過器差圧が規定差圧
に接近することを防止し、かつ、性能を考慮した最適ろ
過速度範囲内で運転する必要があることより、等流量副
側)装置を設置している。
In this way, the filtration equipment must prevent all filter differential pressures from approaching the specified differential pressure and operate within the optimum filtration speed range considering performance, so ) equipment is installed.

従来、サイドストリーム型式の復水系統に設置のろ過装
置では、各系列の等流継側脚弁50により各系列の流量
パラレス制量とろ過装置の設置される復水系統の流量制
酬lを行なっている。
Conventionally, in a filtration device installed in a side stream type condensate system, the equal-flow joint side leg valve 50 of each series controls the flow parallel control of each series and the flow rate rate l of the condensate system in which the filtration device is installed. I am doing it.

第4図は、制71441フローを示す。FIG. 4 shows the control 71441 flow.

復水系統の全体流掴−は、流量計41で検出され伝送器
101により、調節計102に送られる。
The overall flow rate of the condensate system is detected by a flow meter 41 and sent to a controller 102 by a transmitter 101.

また、設定器103には、復水系統の設定流量が電気信
号として入力されており、この設定信号を調節計102
へ送る。調節計102では、伝送器101よりの信号と
設定器103よシの信号をとり込み、渾1計41が設定
流量となるよう、1゜2・・・n系列の調節計へ設定信
号を送る。
Further, the setting flow rate of the condensate system is inputted to the setting device 103 as an electric signal, and this setting signal is input to the controller 102.
send to The controller 102 takes in the signal from the transmitter 101 and the signal from the setting device 103, and sends the setting signal to the controllers in the 1°2...n series so that the total 41 of each arm becomes the set flow rate. .

ここでは、扁1系列で代表させて説明する。Here, the description will be made using the flat 1 series as a representative.

流量計40により検出された流量は、伝送器106を介
して調節計105に送られる。調節側105では、調節
計102よりの設定信号と伝送器106よりの信号をと
シ入れ、等流創制仰弁5゜の開度信号として、変換器1
07に送る。
The flow rate detected by the flow meter 40 is sent to the controller 105 via the transmitter 106. On the control side 105, the setting signal from the controller 102 and the signal from the transmitter 106 are input, and the converter 1 receives the setting signal from the controller 102 and the signal from the transmitter 106 as an opening signal for the equal flow prevention valve 5°.
Send to 07.

変換器107では、電気信号が、等流量開開1弁50の
開度調整用空気信号に変換され、各系列が等流量になる
ように弁開間を調整する。
The converter 107 converts the electrical signal into an air signal for adjusting the opening of the equal flow rate opening/opening 1 valve 50, and adjusts the valve opening time so that each series has the same flow rate.

ここで、停止中のろ過器を運転に入れる場合は、この系
列の流量がoT/nであることから、調節計102から
の設定信号を調節計105へ入力すると等流量制御弁5
0が全開する方向となるため、弁のハンチング等の要因
となる。これを防止するため、入口弁14と出口弁17
の開信号を検出器108で検出し、−次遅れ演算器1o
9を介して調節計104へ入力する。調節計104は、
調節計102の設定信号が急激[調節計105へ入力さ
れるのを防止し、安定した運転が得られるように働く。
Here, when the stopped filter is put into operation, since the flow rate of this series is oT/n, when the setting signal from the controller 102 is input to the controller 105, the equal flow rate control valve 5
0 is the direction in which the valve is fully open, which may cause hunting of the valve. To prevent this, the inlet valve 14 and the outlet valve 17
The detector 108 detects the open signal of
9 to the controller 104. The controller 104 is
It works to prevent the setting signal of the controller 102 from being suddenly input to the controller 105 and to obtain stable operation.

このような等流量側斜装置により運転されているろ過装
置では、通常、ろ過器に予備を備えていることから、ろ
過器−基が規定差圧に達し、再生操作が必要となった場
合には、予備のろ過器を運転に入れた後、再生の必要な
ろ過器を停止する。
In a filtration device operated by such an equal flow rate side tilt device, the filter is usually equipped with a spare, so when the filter reaches the specified differential pressure and regeneration operation is required, After putting the spare filter into operation, stop the filter that requires regeneration.

つまり、ろ過器をn基設置しているろ過装置では、通常
、(n−1)基のろ過器で運転しており、−基予備とし
て待機している。ここで運転中のtn−1)基のろ過器
のうち一基が再生操作を必要とする場合、予備系列の人
口弁と出口弁を手動若しくは遠隔手動で開け、一時的に
n基運転とした後、再生の必要なろ過器の大口弁と出口
弁を閉じ、(n−11基運転とする。停止hLだろ過器
は、再生操作を行なった後、予備として待機させる。
In other words, in a filtration apparatus equipped with n filters, normally (n-1) filters are operated and -1 filters are on standby as a spare. If one of the tn-1 filters in operation requires regeneration, the artificial valve and outlet valve of the standby series are opened manually or remotely, and the n-unit operation is temporarily established. After that, the large mouth valve and outlet valve of the filter that needs to be regenerated are closed, and (n-11 units are operated.) After the regeneration operation is performed, the filter is kept on standby as a standby.

近年、火力・原子カプラントでは、合理化によりろ過器
の予備を削除する傾向にあり、下記の考慮、すべき問題
が生じてきている。
In recent years, thermal power and nuclear power plants have tended to eliminate spare filters due to rationalization, and the following issues have arisen that should be considered.

(1)ろ過器−基再生時、残りのfn−1)基で復水処
理した場合、性能を左右するろ過速匣が変化する。
(1) When the remaining fn-1) group is used for condensate treatment during filter group regeneration, the filtration speed box, which influences performance, changes.

■ ろ過器再生操作時、−基分の復水をバイパス運転し
た場合、バイパス管路には、流量制御装置が設置されて
いないので、一時的に復水系統の流量制置jが行なえな
くなる。
(2) During filter regeneration operation, if the -base condensate is operated by bypass, the flow rate of the condensate system cannot be controlled temporarily because a flow rate control device is not installed in the bypass line.

また、従来より、ろ過装置を系統に投入する場合、又は
切離す場合は、バイパス弁を手動若しくは遠隔手動で操
作していることから、操作が極めて煩雑となり、火力・
原子カプラントの復水系統のように、上流側にポンプを
設けている場合は、操作ミスによる上流側ポンプトリッ
プ等の要因を持っていた。又、サイドストリーム型式の
場合には、サイドストリーム系ポンプの過大流量運転と
なってしまう。
In addition, conventionally, when a filtration device is connected to or disconnected from the system, the bypass valve is operated manually or remotely, which makes the operation extremely complicated and
When a pump is installed on the upstream side, such as in the condensate system of an atomic coupler, there are factors such as upstream pump trips due to operational errors. Furthermore, in the case of a side stream type pump, the side stream pump may operate at an excessive flow rate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、並列に設置されたfJi数基のろ過器
を持つろ過装置とこのろ過装置と並列に設けられたバイ
パス管路に関して、ろ過器の投入・停止及びろ過器−基
の再生時などのバイパス装置運転においても、バイパス
装置の畑雑な手動操作を要さず、各ろ過器の通液流量と
バイパス流壁とを(9) 調整する流量制御装置を提供するにある。
The purpose of the present invention is to provide a filtration device having several fJi filters installed in parallel and a bypass pipe line installed in parallel with this filtration device, at the time of turning on/stopping the filter and regenerating the filter unit. It is an object of the present invention to provide a flow rate control device that adjusts the liquid flow rate of each filter and the bypass flow wall without requiring complicated manual operation of the bypass device even when operating a bypass device such as (9).

〔発明の概要〕[Summary of the invention]

本発明は、複数基のろ過器に並列に設置されたバイパス
管路に流量計、流量制御弁及びその制御装置を加えるこ
とにより、ろ過器の投入・停止及びろ過器−基の再生時
などのバイパス運転においても、各ろ過器の通水流量と
バイパス流量とを開開lすることにより、復水系統の流
量を一定に保ち、安定した運転をするようにしたもので
ある。
The present invention adds a flow meter, a flow control valve, and its control device to a bypass pipe installed in parallel to a plurality of filters. Even in bypass operation, the flow rate of the condensate system is kept constant by opening and opening the water flow rate of each filter and the bypass flow rate, thereby ensuring stable operation.

〔発明の実施例〕[Embodiments of the invention]

発明の実施例を第5図に説明する。 An embodiment of the invention will be explained with reference to FIG.

ろ過器に復水を通し、処理水を下流系統へ移送する原理
及びバイパス管路の運用は、従来方式と変らない。
The principle of passing condensate through a filter and transferring treated water to the downstream system and the operation of the bypass pipe are the same as in the conventional system.

すなわち、復水は、復水入口管12より分岐する管13
、大口弁14、流量計40等流量ttill呻弁50及
びろ過器入口管15をへてろ過器11へ導かれ、ろ過処
理後、ろ過器出口管16がら出口弁17、管18をへて
復水出口管19へ集められ、下流系統へ送られる。
That is, the condensate flows through the pipe 13 branching from the condensate inlet pipe 12.
, a large mouth valve 14, a flow meter 40, a constant flow rate till valve 50, and a filter inlet pipe 15 to be led to the filter 11. After filtration, the water is returned through the filter outlet pipe 16, an outlet valve 17, and a pipe 18. The water is collected into the water outlet pipe 19 and sent to the downstream system.

(10) また、ろ過器に復水を通水することなく、バイパス管路
運転を行なう運用からろ過器を順次投入する場合及び逆
にろ過器を順次停止し、バイパス管路運転に移行する場
合は、ろ過器の入口弁、出口弁を手動若しくは、遠隔手
動で操作する。
(10) Also, when the filters are sequentially turned on from bypass pipe operation without passing condensate through the filter, and conversely, when the filters are stopped sequentially and transferred to bypass pipe operation. The inlet and outlet valves of the filter are operated manually or remotely.

ここで、従来と異なる点は、バイパス管路横取として、
流量計42、流量制商1弁51及びその制釧装置を設け
、バイパス運転時にも、流創制酬jが可能なようにした
ことである。
Here, the difference from the conventional method is that the bypass pipe is intercepted.
A flow meter 42, a flow rate regulating valve 51, and a regulating device thereof are provided to enable flow rate regulation even during bypass operation.

すべてのろ過器の入口弁と出口弁が閉状態で、全量バイ
パス運転を行なっている場合について説1明する。′a
量計41で検出の流量は、伝送器101により調節計1
02へ送られる。筐た、設定器103には、復水系統で
流す必要のある設定流量が信号として入力されており、
調節計102へ送られる。調節計102では伝送器10
1の信号と設定器103の信号とをとり入れ、流量計4
1の流量指示が設定流量となるよう、バイパス流険制呻
装置及び1.2・・・n 系列の流計開開1装置へ制御
信号を送る。ここで、1,2.・・・n系列のろ過11
1) 器入口弁と出口弁が閉止状態であることから、調節計1
02よりの信号は、調節計123のみに送られることに
なる。調節計123では、調節計102よりの信号と、
流量計42で検出され伝送器124で送られた信号をと
り入れ、流輌側脚弁51の開度信号として変換器125
に伝送する。
A case will be described in which the inlet valves and outlet valves of all the filters are closed and full bypass operation is performed. 'a
The flow rate detected by the meter 41 is transmitted to the controller 1 by the transmitter 101.
Sent to 02. The set flow rate that needs to flow in the condensate system is input as a signal to the setting device 103 in the housing.
The signal is sent to the controller 102. In the controller 102, the transmitter 10
1 signal and the signal from the setting device 103, the flow meter 4
A control signal is sent to the bypass flow control device and the flowmeter opening device 1 of the 1.2...n series so that the flow rate instruction No. 1 becomes the set flow rate. Here, 1, 2. ...n series filtration 11
1) Since the inlet and outlet valves are closed, controller 1
The signal from 02 will be sent only to controller 123. The controller 123 receives the signal from the controller 102 and
The signal detected by the flow meter 42 and sent by the transmitter 124 is taken in and sent to the converter 125 as an opening signal for the flow leg valve 51.
to be transmitted.

変換器125で(r;1.電気信号が流量制御弁51の
開度調整用空気信号に変換され、流旬泪42の指示が設
定流量となるよう弁開庶を調整する。
The converter 125 converts the electrical signal into an air signal for adjusting the opening of the flow rate control valve 51, and adjusts the valve opening so that the instruction from the flow rate control valve 42 becomes the set flow rate.

つ捷り、全量バイパス運転の場合は、流量計41と流量
計42が設定器103に入力されている設定流量になる
ように制菌される。
In the case of separation and full bypass operation, sterilization is performed so that the flow meters 41 and 42 reach the set flow rate input to the setting device 103.

ここで、調節泪102からの信号を調節計123へ急激
に送ると流量制自1弁は、全閉状態から全開状態へ急倣
に移行1〜、弁の・・ンチング等の要因となり、−次遅
れ演、μ器122を設け、調節計102の信号が急激K
i節計123へ入力されるのを防止し7流叶制向1弁5
1の開速度を遅くする。
Here, if the signal from the control valve 102 is suddenly sent to the controller 123, the flow rate control valve 1 suddenly shifts from the fully closed state to the fully open state 1~, causing the valve to... Next, a μ device 122 is provided, and the signal of the controller 102 suddenly becomes K.
Preventing input to the i-meter 123 7 flow control 1 valve 5
1. Slow down the opening speed.

また、バイパス管路を運転する場合は、ろ過器投入・停
fト時及びろ過器再生時であり、ろ過器が(12) 全塔運転されていることは々いことから、ろ過器全塔運
転時は、バイパス流量制御装置が運転されないようにす
る必要がある。つ1す、調節計102よりの信号が入力
される調節計123の上流側に接続器120を設け、ろ
過器が一塔以上停止中であることを検出器121で検出
し、停止浴がある場合は接続器120が作用し、調節計
102の信号を調節計123へ送るようにする。
In addition, when operating the bypass line, it is necessary to operate the filter when the filter is turned on, stopped, and when the filter is regenerated, and since it is rare for the filter to be operated in the entire tower (12), During operation, it is necessary to ensure that the bypass flow control device is not operated. 1. A connector 120 is provided upstream of the controller 123 into which the signal from the controller 102 is input, and the detector 121 detects that one or more filters are stopped, and there is a stop bath. In this case, the connector 120 operates and sends the signal from the controller 102 to the controller 123.

このようなバイパス運転状態からろ過器を一塔投入する
場合、う過器の入口弁と出口弁を手動若しくは、淳隔す
動操作で開けたことを検出器108で検出し、調節剖1
04へ送る。調節計104では、ろ過器人口弁14と出
口弁17が開である条件によりろ過器の開山(回路が作
用するように働く。
When one filter is added from such a bypass operating state, the detector 108 detects that the inlet and outlet valves of the filter are opened manually or by a separating operation, and the adjustment mechanism 1 is activated.
Send to 04. The controller 104 operates to open the filter (circuit) depending on the condition that the filter population valve 14 and the outlet valve 17 are open.

これにより、ろ過器一系列とバイパス管路の運転となる
。この場合、調節計102からの信号は、調節計105
と調節計123に流量制御信号として送られ、ろ過器一
系列とバイパス管路が等流量とガるように作用する。つ
まり、全体流量をnFm3/Hとすると、ろ過器一系列
とバイパス管路に(]3) rr、−F、、s7□、すつ分配される。
This results in the operation of one series of filters and the bypass pipeline. In this case, the signal from controller 102 is
This is sent to the controller 123 as a flow rate control signal, and acts to maintain equal flow rates between the filter series and the bypass pipe line. In other words, if the total flow rate is nFm3/H, then (]3) rr, -F, s7□ is distributed to one series of filters and the bypass pipe.

ここで、ろ過器での処理流量は、性能を左右するろ過速
度とる拐層表面積の積によりめられ、過大流量を流し、
ろ過速度が変動することは、性能低下の要因となる。つ
まり、ろ過器の処理容量をp m3/Hとすると、ろ過
器の通液流量は、極力Fm3/I(で連続して運転した
ほうが、安定した性能が得られる。
Here, the flow rate processed by the filter is determined by the product of the filtration speed and the surface area of the filter layer, which determines the performance.
Fluctuations in filtration rate are a factor in performance deterioration. In other words, if the processing capacity of the filter is p m3/H, stable performance can be obtained by continuously operating the filter at a flow rate of Fm3/I (as much as possible).

このため、ろ過系列運転とバイパス運転とが併用運転さ
れている場合は、ろ過器の処理流量゛は、P m”/H
を越えないように設定指示回路を設ける。
Therefore, when filtration series operation and bypass operation are operated together, the processing flow rate of the filter is P m”/H
Provide a setting instruction circuit to ensure that the

つ捷り、設定器110には、流量がp m”/Hを越え
ないよう設定信号が入力されている。設定器110の出
力は、接続器111に送られており、検出器112で、
バイパス流量制御装置の流量制御弁51が開であること
を検出した場合のみ、設定器110の信号が調節計10
4に入力されるように′□する。調節計104では、調
節計102の設定信号と設定器110よりの信号とをと
p入れ、画描する系列の流量計で検出の流量がFm3/
Hを(14) 越えないように調節計105への信号をMS整する。
A setting signal is input to the setting device 110 so that the flow rate does not exceed pm''/H.The output of the setting device 110 is sent to the connector 111, and the detector 112
Only when it is detected that the flow control valve 51 of the bypass flow control device is open, the signal of the setting device 110 is output to the controller 10.
’□ so that it is input to 4. The controller 104 inputs the setting signal from the controller 102 and the signal from the setting device 110, and the flow rate detected by the flow meter of the series to be drawn is Fm3/
Adjust the signal to the controller 105 so that it does not exceed H (14).

この制御により、ろ過器の系列は、Pm3/nの流量゛
に制御されることとなる。ことで、ろ過装置の設置され
る復水系統の設定流量n J+’ m’!/Hit、設
定器103より設定流せ信号として調節計102へ入力
されているため、通水運転中のろ過器一系列とバイパス
管路の二系列でnpimS/H流す必要がある。
Through this control, the filter series is controlled to a flow rate of Pm3/n. Therefore, the set flow rate of the condensate system where the filtration device is installed is n J+'m'! /Hit is input to the controller 102 as a setting flow signal from the setting device 103, so it is necessary to flow npimS/H in two series: one series of filters during water flow operation and one series of bypass pipes.

このように、ろiff器は、F rnVt(に匍1呻さ
れているので残りのt n−1) Fn+/Hを、バイ
パス流量制御装置で流すよう調節計123は働き、変換
器125を介して流量割出1弁51の開度調整を行なう
In this way, the filter 123 operates to cause the filter to flow FrnVt (remaining tn-1 since 1 liter is added to Fn+/H) through the bypass flow rate controller, and the filter 123 flows through the converter 125. Then, the opening degree of the flow rate indexing valve 1 51 is adjusted.

とのようにして、ろ過器を二基、三基と順次投入してい
く場合は、上述の動作を繰返すこととなり、最後のn塔
目を投入後は、すべてのろ過器の入口弁と出口弁が開と
なり、検出器121で検出していた。ろ過器の入口弁と
出口弁が一塔分以上閉であるという条件が解除され、調
節計102の信号は、調節計123へ送られないよう、
接続器102が作用し、バイパス流量制向1装置は、運
転(15) を停止する。
If you sequentially introduce two or three filters in this way, the above operation will be repeated, and after the last n-th column is introduced, the inlet valve and outlet of all filters will be turned on. The valve was opened and detected by the detector 121. The condition that the inlet and outlet valves of the filter are closed for one column or more is canceled, and the signal from the controller 102 is not sent to the controller 123.
The connector 102 is activated and the bypass flow rate control 1 device stops operating (15).

捷だ、ろ過器の運転を停止する場合は、前述の投入時の
逆の動作となる。
If you want to stop the operation of the filter, the operation is the reverse of the above-mentioned operation.

つ寸り、停止するろ過器の入口弁と出口弁を閉じること
により、この系列は、運転を停止し7、バイパス装置の
検出器121が働き、接続器120が作用して、バイパ
ス流量fllJ 醐l装置が凍転に入り、停止したろ過
器塔数分の流−1着をバイパス装置で処理することにな
る。
By closing the inlet and outlet valves of the filter that is to be stopped, this series is stopped, and the bypass device detector 121 is activated, the connector 120 is activated, and the bypass flow rate is increased. 1 equipment enters freezing rotation, and the flow equivalent to the number of stopped filter towers is processed by the bypass equipment.

とこで、残りの運転中のろ過器は、流慴制(財)弁51
が開さ、ろ過器設定通酸MY、 mはJ、1m3/Hと
々る」;うに制(財)される。
By the way, the remaining filters in operation are 51
is opened, the filter setting is MY, m is J, 1m3/H is set.

以上の投入・停止時の開山[け、ろ過器に予備をもた々
いろ過装置で、ろ過器−塔の再生が必要となった場合も
1.上述の投入・停止操作により対r5−。
The above-mentioned opening at the time of loading and shutting down [1. By the above-mentioned start/stop operation, vs. r5-.

可能であり、実用上の問題はない。It is possible and there are no practical problems.

本実施例によれは、バイパス運転時にも、ろ過器の通水
流−1dとバイパス管路の流計制画が行なえ、ろ過器の
投入・停止操作時に、バイパス弁の頃雑な手動若しくけ
、遠隔手動操作がなくなり、また、(16) バイパス運転時にも、復水系統の全体流量制御が行なえ
、ろ過装置が含まれる復水系統の運転安定性の向上が図
れる。
According to this embodiment, even during bypass operation, the water flow through the filter -1d and the flow plan of the bypass pipe can be planned, and when the filter is turned on and off, the bypass valve can be operated by hand or manually. (16) Even during bypass operation, the entire flow rate of the condensate system can be controlled, and the operational stability of the condensate system including the filtration device can be improved.

第6図は、本発明の第二の実施例であり、バイパス装置
の構成として、流準制師弁52と弁53とを並列に設置
介シた場合を示す。つまり、バイパス装置の容量が多く
、−個の流量制御弁で制四1できない場合、弁53と部
分容重の流量制fit弁52を設け、運転ろ過器塔数に
応じて、弁53を自動で閉止させるものとし、流量の微
調整は、流量調整弁52で行なう。
FIG. 6 shows a second embodiment of the present invention, in which a flow regulating valve 52 and a valve 53 are installed in parallel as a configuration of a bypass device. In other words, if the bypass device has a large capacity and cannot be controlled by - number of flow rate control valves, a valve 53 and a partial capacity flow rate control fit valve 52 are installed, and the valve 53 is automatically controlled depending on the number of filter towers in operation. The flow rate adjustment valve 52 is used to finely adjust the flow rate.

例えば、バイパス装置の弁容量として、流量制御弁52
を50係容量とシフ、弁53を50係宕量とした場合に
ついて説明する。
For example, as the valve capacity of the bypass device, the flow control valve 52
A case will be described in which the valve 53 is set to have a 50-coupling capacity and the valve 53 has a 50-coupling capacity.

第7図は、全量バイパス運転状態からろ過器を投入する
場合の流量制御弁52と弁53の弁開度の例である。つ
まり、ろ過器−塔投入毎に、バイパス管路の流量は、ろ
過器−塔の通水流量に当たるFm’/Hの流量が減少す
る。この制呻け、流量制御弁52が絞り込まれることに
より行なわtl、、(17) n基のろ過器のうち、n /2 基が投入された時点で
、流−叶側脚弁は、e含ぼ全閉に近いb係開度となる。
FIG. 7 shows an example of the valve opening degrees of the flow rate control valve 52 and the valve 53 when the filter is turned on from the full bypass operating state. That is, each time the filter-tower is charged, the flow rate of the bypass pipe decreases by Fm'/H, which corresponds to the water flow rate of the filter-tower. This control is performed by narrowing down the flow rate control valve 52. (17) When n/2 of the n filters are turned on, the flow-leaf leg valves, including e, The opening degree is close to fully closed.

′この弁開度h4に達した時、弁53を閉止するよう、
流量制ill弁52にリミットスイッチを設ける。これ
により、弁53に1全閉となるように働き、流量制御弁
52け、バイパスで処理する必要のある流量15C1流
帽)を流すよう開度調整され、再び残りのろ過器を順次
投入する毎に絞り込壕れ全てのる過器を投入した時点で
全閉となり、バイパス流創開開1装置6”の運転は停止
する。
'When this valve opening degree h4 is reached, the valve 53 is closed.
A limit switch is provided in the flow control ill valve 52. As a result, the valve 53 is fully closed, the flow rate control valve 52 is adjusted to allow a flow rate of 15C (15C) which needs to be processed by bypass, and the remaining filters are sequentially turned on again. When all of the filters are put in, they are completely closed and the operation of the bypass flow opening and opening device 1 6'' is stopped.

第8図は、全てのろ過器が運転されている状態から、ろ
過器を停止Fする場合を示し、流1制酎1弁52の弁開
度a%にリミットスイッチを設け、これにより、弁53
を開くようにしてしたものであり、この操作は、基本的
には、前述の投入時の逆である。
FIG. 8 shows a case where the filters are stopped from a state in which all the filters are in operation. 53
This operation is basically the reverse of the above-mentioned insertion.

面、このような構成の場合、弁53を中間開度運用の可
能な弁とすることにより、流量制師弁52の容量を小さ
くすることも可能である。
On the other hand, in the case of such a configuration, it is also possible to reduce the capacity of the flow rate limiter valve 52 by making the valve 53 a valve that can be operated at an intermediate opening degree.

第三の実施例を第9図に示す。A third embodiment is shown in FIG.

(18) 本実施例の特徴は、第5図における実施例に対して、ろ
過装置バイパス流量調節計123と、ろ過装置流量調節
計105のレンジが相違する場合にろ過装置を一定流量
で運転する場合に好適である。
(18) The feature of this embodiment is that, in contrast to the embodiment shown in FIG. Suitable for cases where

第9図において、系統流量を流量計41で検出し、伝送
器101によって系統流量の調節計102が入力される
。調節計102には、系統ρY、Mの設定器205のn
−pm”/Hが設定されており、入力値との比較により
、各つ水戸通塔11の流W調節計105に出力する。ゆ
水濾通塔11が全塔停止り中でバイパス配管22のみで
運転中の時、バイパスラインの流量調節計123により
流輩制呻を行なうが、復水濾過塔11の全ての入口弁4
及び出口弁17が閉じている状態で、接続器120には
系統流量n −F m3//Hが設定器103により入
力されている。この設定は、−次遅水穎算器122を通
シて、ローセレクタにn、 Fm3/I、が入力されバ
イパスR,tZ節計123によってバイパス弁51を制
御し、系統流量をn−Fm3/HVC保つ。一方、(1
9) 41の復水ろ通塔11を運転に投入しようとする時に大
口弁14、出目弁17を開くと接続器111には、Om
”/H以下を設定している設定器207からFmVnを
最大流砂制限値として設定している設定器110に切換
り一次遅水演算を介して、ランプ状に設定流量がOm3
/′、11からト1mVIIにローセレクタ202に入
力される。ローセレクタ202には調節計102より、
J〕・F m”/Hが同時に入力されているが、低価の
Fm3/+(を選択し、ろ通塔の流@調節謂105に出
力し、ろ通塔11の流量をFm”/Hに制商1する。一
方、加算器203には、ろ過塔人口弁14、出口弁17
が全て閉じていたので設定器207VcよりOm”/n
以下が人力されていたが投入して扁1塔よりFm3/i
+が入力される。
In FIG. 9, the system flow rate is detected by a flow meter 41, and inputted to a system flow rate controller 102 by a transmitter 101. The controller 102 has a setter 205 for the system ρY, M.
-pm"/H is set, and by comparison with the input value, it is output to the flow W controller 105 of the Mito passing tower 11. When the Mito passing tower 11 is completely stopped, the bypass piping 22 When in operation, the flow rate controller 123 of the bypass line performs flow control, but all inlet valves 4 of the condensate filtration tower 11
With the outlet valve 17 closed, the system flow rate n −F m3//H is input to the connector 120 by the setting device 103. In this setting, n, Fm3/I, is input to the low selector through the -th slow water meter 122, and the bypass valve 51 is controlled by the bypass R, tZ meter 123, so that the system flow rate is n-Fm3. / Maintain HVC. On the other hand, (1
9) When the large mouth valve 14 and the outlet valve 17 are opened when the condensate filtration tower 11 of No. 41 is to be put into operation, the connector 111 is filled with Om.
The setting device 207, which is set to ”/H or less, is switched to the setting device 110, which is setting FmVn as the maximum quicksand limit value.
/', 11 to t1mVII is input to the low selector 202. From the controller 102 to the low selector 202,
J]・F m"/H are input at the same time, but the low-cost Fm3/+( is selected and outputted to the flow of the filtration tower @ adjustment so-called 105, and the flow rate of the filtration tower 11 is changed to Fm"/H. Add 1 to H. On the other hand, the adder 203 includes the filtration tower population valve 14 and the outlet valve 17.
were all closed, so from the setting device 207Vc Om”/n
The following items were manually operated, but they were added to Fm3/i from the 1st tower.
+ is input.

減算器204は、加算器203よすのFms/1.1が
入力さn設定器205よりの系統流量設定n・Fm3/
Hが入力され、(11−1)・I”n’71T (r、
ローセレクタ201に入力する。ローセレクタ2(11
は−(n 1)・Fmゾ11 と、設定器103よりの
P In 3./’ l」 と比較し7、低値のI n
−11・li”m3nを、(20) 流量調節計123に出力j−バイパス弁51を制剃する
。この結果、バイパスライン22は、In−1)・Fm
VHで運転し、JI6.1ろ通塔11をF m ’!/
[rで運転し、系統流量けn−p m VHで変化しな
い。
The subtracter 204 receives the input Fms/1.1 from the adder 203 and the system flow rate setting n・Fm3/ from the n setting device 205.
H is input, (11-1)・I”n'71T (r,
Input to row selector 201. Low selector 2 (11
is -(n 1)・Fmzo11 and P In 3 from the setting device 103. /'l''7, lower value I n
-11・li"m3n, (20) Output j to the flow rate controller 123. The bypass valve 51 is controlled. As a result, the bypass line 22 becomes In-1)・Fm
Operate with VH and F m'! JI6.1 filtration tower 11! /
[Operation at r, system flow rate n-p m VH does not change.

このようにして順次ろ通塔を投入する。全ろ過バイパス
ライン22け加算器203と減算器204の演算により
Oms//IIで運転される。同時に、すべ山く てのろ過塔出入口弁が閉ル議と、接続器120の設定は
、n、Fm3/Hの設定器103から、OmVH以下の
設定器206に切換り、調節計123に出力し0m3/
HYCする。このようにろ通塔の投入、運転体外を行な
う場合に、ろ通塔の運転流量ならびに、系統流量を常に
一定に保つことができる。
In this way, the filter towers are introduced one after another. The entire filtration bypass line is operated at Oms//II by the operation of the 22-digit adder 203 and the subtracter 204. At the same time, the filtration tower inlet/outlet valve at the top is closed, and the setting of the connector 120 is switched from the n, Fm3/H setting device 103 to the OmVH or less setting device 206, and the output is output to the controller 123. Shi0m3/
HYC. In this way, when the filtration tower is turned on and removed from operation, the operating flow rate of the filtration tower and the system flow rate can always be kept constant.

本実施例は、設定器205,206の設定流量を最適値
に選定する事によって、ろ通塔の設備塔数が予備機のM
無にかかわらず、好適な運転を提供することができる。
In this embodiment, the number of installed filter towers can be reduced to M
Suitable operation can be provided regardless of whether or not the vehicle is in use.

寸だ、第13図は上述の本実施例の全復水ろ購(21) 塔11の自動投入方法をブロック図で示す。Figure 13 shows the total condensate filter (21) of this embodiment mentioned above. The automatic charging method of the tower 11 is shown in a block diagram.

第四の実施例を第10図によって説明する。The fourth embodiment will be explained with reference to FIG.

本実施例は第9図における実施例に対してバイパスライ
ン22に設置していた流量計42と、伝送器124を削
除したものであるが、バイパスラインの流量変化1]が
犬きく流部検出の精度が劣化する事を防止する。
This embodiment is different from the embodiment shown in FIG. 9 by omitting the flow meter 42 installed in the bypass line 22 and the transmitter 124, but it is possible to detect the flow part where the flow rate change 1 in the bypass line is Prevent the accuracy from deteriorating.

第10図において 第9図における流量計42と、伝送
器124を削除1〜、加算器211により復水ろ通塔1
1の運転流量を合算し、減算器212に入力し、流量計
41、伝送器101によって検出した系統流量も同時に
減算器212に入力し、その差を算出する事によってバ
イパスライン22の流部を算出し、その機能を満足させ
たものである。
In FIG. 10, the flow meter 42 and transmitter 124 in FIG.
1, and input it to the subtracter 212, and simultaneously input the system flow rate detected by the flow meter 41 and the transmitter 101 to the subtracter 212, and calculate the difference to calculate the flow part of the bypass line 22. It is calculated and satisfies its function.

第五の実施例を第11図によって説明する。The fifth embodiment will be explained with reference to FIG.

本実施例は第9図における実施例に対して、バイハスラ
イン22の制呻弁51と並列に弁53を設けたものであ
り、流量制呻弁510口径が大口径弁を採用しないで良
い長所がある。
This embodiment differs from the embodiment shown in FIG. 9 in that a valve 53 is provided in parallel with the relief valve 51 of the bypass line 22, and has the advantage that the flow rate relief valve 510 does not need to have a large diameter valve. be.

(22) 流1°制仰弁5Jに開度検出器221を股tW t、、
流量制御弁51が低開度になった場合に、開昨検出器2
21を検出し、開度割出1装置222により弁53を閉
じ、制御弁51が大開度になった場合、開度検出器22
1により検出し、開度制量装置222により、弁53を
開き、弁53と、制御弁51の運転状態は、第7図、第
8図に示すものと同様であり、他の運転法、側倒1法は
第9図のものと同様である。
(22) Connect the opening detector 221 to the flow 1° control valve 5J.
When the flow rate control valve 51 has a low opening, the opening detector 2
21 is detected, the valve 53 is closed by the opening degree indexing device 222, and when the control valve 51 reaches a large opening degree, the opening degree detector 22
1, the opening control device 222 opens the valve 53, and the operating conditions of the valve 53 and the control valve 51 are the same as those shown in FIGS. 7 and 8, and other operating methods, Side fall method 1 is similar to that shown in Figure 9.

第六の実施例を第12図によって説明する。The sixth embodiment will be explained with reference to FIG.

本実施例は系統流量の制7i111を、等流量割面1弁
50及び、流量制御弁51で行なわない場合の例である
。ハイセレクター232によって等流世制(財)弁50
が最大開度になっているろ通塔11、すなわち、塔の差
圧が最大で、流量が最小であるろ通塔11を検出し、最
大開度調節計231に入力し、他の塔差圧の小さい、運
転流−〜の小さいろ通塔11の流量n周節計105に最
小流蓋で運転さnている塔の流量と同一の流量となるよ
うに出力する。これによって各ろ通塔の流量を等しくし
ている。
This embodiment is an example in which the system flow rate control 7i111 is not performed by the equal flow rate dividing surface 1 valve 50 and the flow rate control valve 51. By high selector 232, equal flow world system (goods) valve 50
The filter tower 11 with the maximum opening, that is, the tower differential pressure is the maximum and the flow rate is the minimum, is detected and inputted to the maximum opening controller 231, and other tower differentials are detected. The flow rate n of the filtration tower 11 with low pressure and low operating flow is outputted to the period meter 105 so as to be the same flow rate as the flow rate of the tower operated with the minimum flow lid. This makes the flow rate of each filtration tower equal.

(23) このような制御を行なっている場合に、加算器203に
よって各ろ通塔11の流量°を検出合計し、減算器20
4Vr−出力する。減■器204は、流量計41、伝送
器101で検出した系統流量か入力され、差分を流杯゛
調節計123に出力し、バイパスラインのηれ枡を流f
I′制(財)弁51により制餌1する。
(23) When performing such control, the adder 203 detects and totals the flow rate ° of each filter tower 11, and the subtracter 20
4Vr-output. The reducer 204 receives the system flow rate detected by the flowmeter 41 and the transmitter 101, outputs the difference to the flow rate controller 123, and changes the bypass line's flow rate to the flow rate.
The I′ system (goods) valve 51 controls feeding.

流喰計401−1間接的に流量を計測する装置又は圧力
を検出する装置であっても、運転法は、他の運転法と変
わらない。
Even if the flow meter 401-1 is a device that indirectly measures the flow rate or a device that detects pressure, the operating method is the same as other operating methods.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ろ過装置のバイパス運転時にも、ろ過
装置が設値される系統の流禁制倒1が可能となり、系統
のポンプの堝犬#L@゛運転を防止できる。また、ろ過
器の投入・停止時、・順雑なバイパス弁の操作がなくな
り、ろ過器の入口弁と出口弁の操作のみとなり、運転帆
の負担を軽減できる。
According to the present invention, even when the filtration device is in bypass operation, it is possible to prevent the flow of the system in which the filtration device is set, and it is possible to prevent the pumps in the system from operating in an uncontrolled manner. In addition, when turning on and stopping the filter, the complicated operation of the bypass valve is eliminated, and only the inlet and outlet valves of the filter need to be operated, reducing the burden on the operator.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のる1尚装ft’1回り系統図、第2図は
ろ過器の処理時間と差圧の関係図、第3図は1重量制醐
1を行なわない場合の各系列浦4量と座圧の関係(24
) 図、第4図は流量制御弁の偏向j系統図、第5図にバイ
パス管路に流量計と流幇制両弁を役物した場合の制御系
統図、第6図はバイパス流1°制仰装fitの弁構成を
バイパス弁と流量側倒弁と並列にした場合の制御系統図
、第7図はろ過器投入時におけるバイパス弁流量制御弁
の開度とろ過器運転塔数の関係図、第8図はろ過器停止
時におけるバイパス弁流量制御弁の開度とろ過器運転塔
数の関係図、第9図ないし第12図は他の実施例の系統
図、第13図は第9図の実施例における制御ブロック図
である。 41.42・・・流量計、51・・・流量開開l弁、1
(11゜106.124・・・伝送器、102,104
,105゜123・・・調節計、103,110・・・
設定器、107゜125・・・変換器、108,112
,121・・・検出器、109・・・−次遅れ演嘗器、
111,120・・・接続器、122・・・−次遅れ演
算器。 代理人 弁理士 高橋明夫 (25) −dVガI7駅ヒ 町 、JVゴ■ω魁仝事 第1頁の続き 0発 明 者 上 野 健 東京都千代田区神作所内 0発 明 者 野 中 節 雄 東京都千代田区神作所
Figure 1 is a diagram of the conventional system for one rotation of the 1st ft' system, Figure 2 is a diagram of the relationship between filter processing time and differential pressure, and Figure 3 is a diagram of each series of filtration systems when 1 weight control is not performed. Relationship between 4 quantities and seating pressure (24
), Figure 4 is a flow control valve deflection j system diagram, Figure 5 is a control system diagram when a flow meter and a flow control valve are used as accessories in the bypass pipe, and Figure 6 is a bypass flow 1° A control system diagram when the control system fit valve configuration is arranged in parallel with a bypass valve and a flow rate side valve. Figure 7 shows the relationship between the opening degree of the bypass flow rate control valve and the number of filter operating towers when the filter is turned on. Figure 8 is a diagram showing the relationship between the opening degree of the bypass valve flow rate control valve and the number of operating columns of the filter when the filter is stopped, Figures 9 to 12 are system diagrams of other embodiments, and Figure 13 is the 10 is a control block diagram in the embodiment of FIG. 9; FIG. 41.42...Flowmeter, 51...Flow rate opening/closing valve, 1
(11゜106.124...transmitter, 102,104
, 105° 123... Controller, 103, 110...
Setting device, 107°125...Converter, 108, 112
, 121...detector, 109...-next lag performer,
111, 120...Connector, 122...-Next delay calculator. Agent Patent Attorney Akio Takahashi (25) -dV Ga I7 Station Town, JV Go Male Kamisakusho, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】 1、原水を導く入口管系と処理水の出口管系との間に並
列に配置した複数基のろ過器の各系列毎に、流量側斜装
置と系列毎の流量アンバランスを是正する流量側1fl
ll弁を設置し、前記ろ過器入口管系から分岐し、前記
出口管系に合流して前記原水の一部又は、全1をバイパ
スし得るろ過器バイパス管を設備したろ過装置において
、 前記バイパス管の流量側間を行なう流量側e4I弁とこ
の弁を調整する流量制量装置を設け、原水全流量を計測
する流量計と、この流量計で計測された流量をろ過器各
系列の前記流量制仰装置と前記バイパス管流吋制呻装置
とに分配する指令を与える流葉制却装置とから構成され
、前記流量制仰装置は、運転中の前記ろ過器の各系列毎
の流f1′調整を行なうことを特徴とする流量制御装置
[Claims] 1. For each series of multiple filters arranged in parallel between the inlet pipe system for introducing raw water and the outlet pipe system for treated water, a flow rate side slope device and a flow rate amplifier for each series are provided. Flow rate side 1fl to correct the balance
11 valve, and a filter bypass pipe that branches from the filter inlet pipe system and joins the outlet pipe system to bypass part or all of the raw water, the bypass A flow rate side e4I valve that connects the flow rate side of the pipe and a flow rate control device that adjusts this valve are installed, a flow meter that measures the total flow rate of raw water, and the flow rate measured by this flow meter is used as the flow rate of each filter series. It is composed of a control device and a flow control device that gives a command to be distributed to the bypass pipe flow control device, and the flow control device is configured to adjust the flow f1' for each series of the filters during operation. A flow rate control device characterized by performing the following.
JP59104597A 1984-05-25 1984-05-25 Flow rate controlling device Pending JPS60248214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59104597A JPS60248214A (en) 1984-05-25 1984-05-25 Flow rate controlling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59104597A JPS60248214A (en) 1984-05-25 1984-05-25 Flow rate controlling device

Publications (1)

Publication Number Publication Date
JPS60248214A true JPS60248214A (en) 1985-12-07

Family

ID=14384834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59104597A Pending JPS60248214A (en) 1984-05-25 1984-05-25 Flow rate controlling device

Country Status (1)

Country Link
JP (1) JPS60248214A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168637A1 (en) * 2010-01-14 2011-07-14 Culligan International Company System and method for controlling multiple sized water softening tanks

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110168637A1 (en) * 2010-01-14 2011-07-14 Culligan International Company System and method for controlling multiple sized water softening tanks
JP2011143403A (en) * 2010-01-14 2011-07-28 Culligan Internatl Co System and method for controlling multiple-sized water softening tanks
US8231791B2 (en) * 2010-01-14 2012-07-31 Culligan International Company System and method for controlling multiple sized water softening tanks
AU2011200150B2 (en) * 2010-01-14 2013-06-13 Culligan International Company A System and Method for Controlling Multiple Sized Water Softening Tanks

Similar Documents

Publication Publication Date Title
JP2789548B2 (en) Multi-stage membrane control device and method
US4230437A (en) Compressor surge control system
EP1228289A2 (en) Method and system for suppressing and controlling slug flow in a multi-phase fluid stream
WO2006067105A1 (en) Method, system, controller and computer program product for controlling the flow of a multiphase fluid
WO1990000155A1 (en) Ultra-pure water supply piping arrangement apparatus
CN1178861A (en) Measuring device for voltage control instrument used for two phase separation in oil well
JPS60248214A (en) Flow rate controlling device
JPS59154118A (en) Filter
JPH04313107A (en) Mass flow controller
JP3540627B2 (en) Distributing valve control device
US6296451B1 (en) Process and installation for the regulation of a central unit for the production of medical vacuum
JPS61116081A (en) Pump control device
CN215939908U (en) Flow control system of reactor inlet
CN112112584B (en) Gas pressure maintaining and distributing device and method for gas filling drilling
JPS63107716A (en) Filter flow rate control device
CN214582796U (en) Nitrogen flow control and dustproof device for rocket launching platform
JPH01218612A (en) Controller for filters
JP4423653B2 (en) Aquarium water level control device and aquarium water level control method
CN106895263B (en) A kind of Product oil measuring adjusting method
CN207566912U (en) A kind of water process spoil disposal control system
JPH04148101A (en) Controlling method for steam drum water level at time of switching of feed water control valve
CN111733929A (en) Intelligent constant-pressure water supply system
CN118371073A (en) Production cleaning system and cleaning method for buffer equipment
JPH1124755A (en) Water supply plate controller
SU1698879A1 (en) Method of controlling a group of parallel-operating ion-exchange reactors to rectify fluids when filling with resin