JPS60247640A - Formation of negative type resist pattern - Google Patents

Formation of negative type resist pattern

Info

Publication number
JPS60247640A
JPS60247640A JP10524484A JP10524484A JPS60247640A JP S60247640 A JPS60247640 A JP S60247640A JP 10524484 A JP10524484 A JP 10524484A JP 10524484 A JP10524484 A JP 10524484A JP S60247640 A JPS60247640 A JP S60247640A
Authority
JP
Japan
Prior art keywords
resist
pattern
layer
substrate
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10524484A
Other languages
Japanese (ja)
Inventor
Yasuhiro Yoneda
泰博 米田
Masashi Miyagawa
昌士 宮川
Kota Nishii
耕太 西井
Shunichi Fukuyama
俊一 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10524484A priority Critical patent/JPS60247640A/en
Publication of JPS60247640A publication Critical patent/JPS60247640A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/095Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having more than one photosensitive layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

PURPOSE:To enable a micropattern to be formed on a stepped substrate to be processed without impairing the substrate by using a resist of two-layer structure. CONSTITUTION:A negative type electron beam resist high in absorption of UV rays, especially, in 200-300nm is used for the upper resist, and another photoresist not sensitive to ionizing radiation, such as electron beams, but sensitive to UV rays is used for the lower resist. A resist prepared by adding a quinonediazide compd. to a cresol novolak resin is formed on the rugged surface of the substrate to be processed as the lower layer, and a polyarylacetylene resist as the upper layer is formed on the lower layer to prepare a two-layer type resist in coating said substrate with an electron beam resist to form a resist pattern high in aspect ratio. The upper resist is selectively exposed to ionizing radiation sna developed to form a pattern, and this pattern of the upper layer is transferred to the lower resist by exposing it to UV rays, and developed to form the same pattern.

Description

【発明の詳細な説明】 (a)産業上の利用分野 本発明は電離放射線用ネガ型レジストパターンの形成方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for forming a negative resist pattern for ionizing radiation.

IC,LSIなどの半導体素子を始めとし、電子回路素
子に微細なパターンを形成する方法として薄膜形成技術
と写真食刻技術(ホl−IJソグラフィ)とが使用され
ている。
2. Description of the Related Art Thin film formation technology and photolithography (hol-IJ lithography) are used as methods for forming fine patterns on electronic circuit elements, including semiconductor elements such as ICs and LSIs.

ここで写真食刻技術は被処理基板の上にスピンコード法
などの方法でホトレジストを?、lI!fflし、これ
にマスクを通して紫外線を照射して露光させるもので、
露光部が現像液に対して溶解度の差を生じるのを利用す
る。ここで像形成の型として光照射部が現像液に不溶と
なるネガタイプと可溶となるポジタイプとがある。
Photo-etching technology involves applying photoresist onto a substrate to be processed using a method such as a spin code method. ,lI! ffl and expose it to ultraviolet light through a mask.
The difference in solubility of the exposed area to the developer is utilized. Here, there are two types of image forming molds: a negative type in which the light irradiated part is insoluble in the developer, and a positive type in which the light irradiated part is soluble.

さて従来の紫外線露光によるパターン形成法では波長に
よる制限から1μm以上の線幅をもっパターンに限られ
、1μm以下の微細パターンの形成は困難である。
Now, the conventional pattern forming method using ultraviolet light exposure is limited to patterns having a line width of 1 μm or more due to wavelength limitations, and it is difficult to form fine patterns of 1 μm or less.

一方電子線、X線、イオンビームなどの電離放射線は波
長が紫外線に較べて遥かに小さいために1μm以下の微
細パターンの形成に適している。
On the other hand, ionizing radiation such as electron beams, X-rays, and ion beams have much smaller wavelengths than ultraviolet rays, and are therefore suitable for forming fine patterns of 1 μm or less.

ここで電子回路素子特にLSIなどの半導体素子は小形
化と高集積化が行われているため電子回路は微細化して
おり、電子線レジストを被処理基板上に被覆し電子ビー
ムを走査して露光し、これを現像して微細なレジストパ
ターンを作ることが行われている。
As electronic circuit elements, especially semiconductor elements such as LSI, are becoming smaller and more highly integrated, electronic circuits are becoming finer, and electron beam resist is coated on the substrate to be processed and exposed by scanning an electron beam. This is then developed to create a fine resist pattern.

(b)従来の技術 小形化と高築積化が行われているLSIやVLSIなど
の半導体素子では配線パターンの立体交叉やコンタクト
ホールの形成などが行われているために基板の表面には
段差のある凹凸が多く、このような基板面にアスペクト
比(高さ7幅)の大きな微細パターンを作ることは困難
である。
(b) Conventional technology Semiconductor devices such as LSI and VLSI, which are being made smaller and more stacked, have three-dimensional intersections in wiring patterns and the formation of contact holes, so there are steps on the surface of the substrate. It is difficult to create a fine pattern with a large aspect ratio (7 heights and 7 widths) on such a substrate surface.

これを解決する方法として二層構造レジスト法が最近開
発され使用されている。
A two-layer resist method has recently been developed and used as a method to solve this problem.

第1図(A)乃至(D)はこれによりネガ型レジストパ
ターンを形成する工程を示すもので、段差のある被処理
基板1の上に有機樹脂を厚く被覆して平坦化層2の形成
を行いその上にネガ型の電子線レジスト層3を形成し、
かかる二層構造のレジストによりパターン形成を行う。
FIGS. 1(A) to 1(D) show the process of forming a negative resist pattern using this method, in which a planarizing layer 2 is formed by coating a substrate 1 with steps with a thick layer of organic resin. A negative electron beam resist layer 3 is formed thereon.
Pattern formation is performed using such a two-layer resist.

すなわち同図(、A)に示すように電子線4の照射によ
り電子線レジスト層3を部分的に感光させた後、これを
現像して同図(B)に示すようなレジストパターン5を
作り、次ぎに同図(0)に示すように全面にリアクティ
ブイオンエツチング(略称RIE)やプラズマエツチン
グを施して平坦化層2のエツチングを行う。
That is, as shown in the figure (A), the electron beam resist layer 3 is partially exposed by irradiation with the electron beam 4, and then developed to form a resist pattern 5 as shown in the figure (B). Next, as shown in FIG. 3(0), the planarization layer 2 is etched by performing reactive ion etching (abbreviated as RIE) or plasma etching on the entire surface.

ここでレジストパターン5はマスクとして作用するため
に同図(D)に示すように平坦化層2ば選択的にエツチ
ングされ、被処理基板1の一ヒにレジストパターンが形
成される。
Since the resist pattern 5 acts as a mask, the flattening layer 2 is selectively etched as shown in FIG.

かかる二層レジストについて今まで発表された主な構成
を述べると平坦化層のエツチングには酸素プラズマを使
用し、レジスト層としてクロロメチル化ポリジフェニル
シロキサン、1−リメチルシリルスチレンとクロロメチ
ルスチレンとの共重合体〔略称P (Sift−CMS
 ) ) 、ポリジメチルシロキサン(略称PDMS)
などのネガ型レジストが使用されている。
The main configurations of such two-layer resists that have been announced so far are as follows: Oxygen plasma is used for etching the flattening layer, and chloromethylated polydiphenylsiloxane, 1-limethylsilylstyrene and chloromethylstyrene are used as the resist layer. copolymer [abbreviation P (Sift-CMS
) ), polydimethylsiloxane (abbreviated as PDMS)
Negative resists such as are used.

(C)発明が解決しようとする問題魚 介までに発表されている二層構造レジストは一1二層を
構成するレジスト層に電子線なとの電離放射線を選択的
に照射してのら現像して図(B)に示すようなネガパタ
ーンを作り、次ぎに酸素プラズマを用いて工・7チング
を行い図(D)のようなレジストパターンが作られてい
る。
(C) Problems to be Solved by the Invention The two-layer resist that has been announced up to now is developed by selectively irradiating the resist layers constituting the first and second layers with ionizing radiation such as an electron beam. A negative pattern as shown in Figure (B) is then made using oxygen plasma, and etching is then carried out using oxygen plasma to produce a resist pattern as shown in Figure (D).

然しこのようなドライエツチングを行うとエツチングか
過度に進行して被処理基板の損傷を起こし易い。
However, when such dry etching is performed, the etching progresses excessively and tends to damage the substrate to be processed.

そこで本発明は化学的な方法により平坦化層をエツチン
グする新しい二階構造レジストの構成を提供する。
Therefore, the present invention provides a new two-story resist structure in which the planarization layer is etched by a chemical method.

、転 (d)間誤解決するための手段 本発明は上部レジストとして紫外線特に2007’J至
300nmで光吸収の大きなネガ型の電子線レジストを
使用し、一方下部しシストとして電子線などの電離放射
線には感光しないが紫外線に良く感光するホトレジスト
を選定して使用する。
In the present invention, a negative type electron beam resist with high light absorption in ultraviolet rays, especially from 2007'J to 300 nm, is used as the upper resist, while the lower resist is exposed to ionizing radiation such as electron beams as a cyst. Select and use a photoresist that is not sensitive to ultraviolet light but is sensitive to ultraviolet light.

すなわち本発明は顕著な凹凸を持つ被処理基板−ヒに電
子線レジストを被覆してアスペクト比の大きなネガパタ
ーンを形成するにあたり、該被処理基板上にクレゾール
ノボラック樹脂にキノンジアジド化合物を加えたレジス
トを上層とし、ボリアリールアセチレン系レジストをF
層として二層のレジスト層を作り、電離放射線で」二層
部レジストを選択露光し現像してパターンを形成した後
に紫外線露光して上層部パターンを下層部し・シストに
転写し、現像してパターンを形成することにより実現す
る。
That is, in the present invention, when forming a negative pattern with a large aspect ratio by coating an electron beam resist on a substrate to be processed which has significant irregularities, a resist made by adding a quinone diazide compound to a cresol novolac resin is applied on the substrate to be processed. The upper layer is a polyarylacetylene resist.
A two-layer resist layer is created, the two-layer resist is selectively exposed to ionizing radiation, developed to form a pattern, and then exposed to ultraviolet rays to transfer the upper layer pattern to the lower cyst, which is then developed. This is achieved by forming a pattern.

(e)作用 先に述べたように上部の電子線レジスト層は紫外線に対
し強い吸収をもち、商感度であることが必要であり、数
多くのネガ型電子線レジストから紫外線透過率の少ない
材料を選定した結果ボリアリールアセチレンが最も透過
率が低いことを見いだした。
(e) Function As mentioned above, the upper electron beam resist layer must have strong absorption of ultraviolet rays and be commercially sensitive. As a result of selection, it was found that polyarylacetylene had the lowest transmittance.

例えば膜厚0.48μmでPMM^用コールドミラーの
反射光に対して透過率11%、またP旧PK用コール1
−′ミラーに対し16%の低い透過率を示し、上部の電
子線レジストとして適している。
For example, with a film thickness of 0.48 μm, the transmittance is 11% for the reflected light of the cold mirror for PMM^, and the cold mirror for PMM^ has a transmittance of 11%.
It exhibits a low transmittance of 16% relative to the -' mirror and is suitable as an upper electron beam resist.

また下部の平坦化層に用いるレジストはポジ特性を示す
ホトレジストであれば何れでも良い筈であるが、一般に
遠紫外線でポジ特性を示すレジストは電子線に対しても
ポジ特性を示し、電子線感度が高すぎると上部レジスト
のパターンニングの際に感光してしまい目的のパターン
は形成できない。
In addition, the resist used for the lower planarization layer should be any photoresist that exhibits positive characteristics, but in general, resists that exhibit positive characteristics under deep ultraviolet rays also exhibit positive characteristics against electron beams, and are sensitive to electron beams. If it is too high, the upper resist will be exposed to light during patterning, making it impossible to form the desired pattern.

従って上部レジストのパターンニングの際の露光に対し
非感光性であることが必要であり、また紫外線感度のよ
いことが必要である。
Therefore, it is necessary to be insensitive to exposure during patterning of the upper resist, and it is also necessary to have good sensitivity to ultraviolet rays.

そこで耐ドライエツチング性にも優れているノボラソク
キノンジアジト系遠紫外線レジストを使用した。
Therefore, we used a novolazoquinonediazide-based deep ultraviolet resist, which has excellent dry etching resistance.

(f)発明φ実施例 m−クレゾールノボラック樹脂(重量平均分子量Mw 
=1.3 ×10’ +分散度8.6)とビスフェノー
ルAジナフトキノンジアジドスルホン酸エステルの15
重量%とをシクロヘキサノンに溶解し調製したレジスト
液をシリコンウェハ上に1.5μmの膜厚に塗布し80
℃で30分に互って加熱乾燥を行った。
(f) Invention φ Example m-Cresol novolac resin (weight average molecular weight Mw
= 1.3 × 10' + dispersity 8.6) and 15 of bisphenol A dinaphthoquinonediazide sulfonic acid ester
A resist solution prepared by dissolving % by weight in cyclohexanone was applied onto a silicon wafer to a thickness of 1.5 μm.
Drying was performed by heating at ℃ for 30 minutes.

この上にポリアリルアセチレン(Mw −5,0X10
 、分散度2.5)とテトラフロ上ヒスフェノールAジ
スルホニルアジド安息香酸エステル9重量%とをキシレ
ンに熔解し、調製したレジストを0.5μmの膜厚に塗
布し、60℃で15分にわたって加熱乾燥した。
On top of this, polyallylacetylene (Mw -5,0X10
, dispersion degree 2.5) and 9% by weight of hisphenol A disulfonyl azide benzoate on tetrafluor were dissolved in xylene, the prepared resist was applied to a film thickness of 0.5 μm, and heated at 60° C. for 15 minutes. Dry.

このようにして作製した二層構造レジストを3゜μC/
cnlの電子線露光量にてパターンニングした後、上部
レジスト層をキシレン現像液に75秒間浸漬して現像し
た。
The two-layer resist produced in this way was heated to 3゜μC/
After patterning with an electron beam exposure amount of cnl, the upper resist layer was developed by immersing it in a xylene developer for 75 seconds.

次ぎに遠紫外ランプとコールドミラー(IIMIPK用
Next, a far ultraviolet lamp and a cold mirror (for IIMIPK).

反射率の最大強度が約280nm )を用い、2(]m
J / cnlの露光量にて全面露光した。
The maximum intensity of reflectance is about 280 nm), and 2 (] m
The entire surface was exposed at an exposure amount of J/cnl.

次にシソプレイ社製のアルカリ現像液マイクロポジット
MF312と水との1:2容量比の現像液に120秒間
浸漬し、次ぎに水で30秒リンスすることにより下部レ
ジストを現像した。
Next, the lower resist was developed by immersing it in a developer containing an alkaline developer Microposit MF312 (manufactured by Shisoplay Co., Ltd.) and water at a volume ratio of 1:2 for 120 seconds, and then rinsing with water for 30 seconds.

上記の処理プロセスにより1μmのライン・アンド・ス
ペースのネガパターンを形成することができた。
Through the above treatment process, a 1 μm line and space negative pattern could be formed.

なお、この実施例で使用した一ヒ部の電子線レジスト層
の光透過率は膜厚0.5μmの場合16%で、下部のレ
ジストを感光させない。
The light transmittance of one part of the electron beam resist layer used in this example is 16% when the film thickness is 0.5 μm, and the resist underneath is not exposed to light.

また、より短波長の光に対して透過率は更に低くなり2
20nmを最大反射率にもつコールドミラーを用いた場
合、透過率は11%となる。
In addition, the transmittance becomes even lower for light with shorter wavelengths.
When a cold mirror with a maximum reflectance of 20 nm is used, the transmittance is 11%.

(g)発明の効果 以上述べたように本発明に係る二層構造レジストを使用
することにより、段差のある被処理基板への微細パター
ンの形成を基板に損傷を与えることなく行うことが可能
となる。
(g) Effects of the Invention As described above, by using the two-layer resist according to the present invention, it is possible to form a fine pattern on a substrate to be processed with steps without damaging the substrate. Become.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)乃至(D)は本発明に係る二層レジストの
現像工程を示す。 図において 1は被処理基板、 2は平坦化層、 3は電子線レジスト層、4は電子線。 第10 (Cン (D)
FIGS. 1A to 1D show the development process of a two-layer resist according to the present invention. In the figure, 1 is a substrate to be processed, 2 is a flattening layer, 3 is an electron beam resist layer, and 4 is an electron beam. 10th (Cn(D)

Claims (1)

【特許請求の範囲】[Claims] 顕著な凹凸を持つ被処理基板上に電子線レジストを被覆
してアスペクト比の大きなネガパターンを形成するにあ
たり、該被処理基板上にクレゾールノボラック樹脂にキ
ノンジアジド化合物を加えたレジストを下層とし、ボリ
アリールアセチレン系レジストを上層として二層のレジ
スト層を作り、電離放射線で上層部レジストを選択露光
し現像してパターンを形成した後に紫外線露光して上層
部パターンを下層部レジストに転写し、現像してパター
ンを形成することを特徴とするネガ型レジストパターン
の形成方法。
When forming a negative pattern with a large aspect ratio by coating an electron beam resist on a substrate with noticeable irregularities, a resist made of a cresol novolak resin and a quinonediazide compound is used as a lower layer on the substrate, and a polyaryl resin is applied to the substrate. Two resist layers are made with an acetylene resist as the upper layer, the upper resist is selectively exposed to ionizing radiation and developed to form a pattern, and then exposed to ultraviolet light to transfer the upper pattern to the lower resist and developed. A method for forming a negative resist pattern, the method comprising forming a pattern.
JP10524484A 1984-05-24 1984-05-24 Formation of negative type resist pattern Pending JPS60247640A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10524484A JPS60247640A (en) 1984-05-24 1984-05-24 Formation of negative type resist pattern

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10524484A JPS60247640A (en) 1984-05-24 1984-05-24 Formation of negative type resist pattern

Publications (1)

Publication Number Publication Date
JPS60247640A true JPS60247640A (en) 1985-12-07

Family

ID=14402234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10524484A Pending JPS60247640A (en) 1984-05-24 1984-05-24 Formation of negative type resist pattern

Country Status (1)

Country Link
JP (1) JPS60247640A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282732A (en) * 1987-05-14 1988-11-18 Agency Of Ind Science & Technol Resist material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63282732A (en) * 1987-05-14 1988-11-18 Agency Of Ind Science & Technol Resist material

Similar Documents

Publication Publication Date Title
US5652084A (en) Method for reduced pitch lithography
JP4852360B2 (en) Method for forming a base layer composition, lithographic structure, material layer or material element comprising a heterocyclic aromatic structure used in a multilayer lithography process on a substrate
JP2009534870A (en) How to shorten the minimum pitch in a pattern
JPH07261393A (en) Negative resist composition
US7078348B1 (en) Dual layer patterning scheme to make dual damascene
JP3373147B2 (en) Photoresist film and pattern forming method thereof
EP0134789A1 (en) Bilevel ultraviolet resist system for patterning substrates of high reflectivity.
US6420101B1 (en) Method of reducing post-development defects in and around openings formed in photoresist by use of non-patterned exposure
JPS60247640A (en) Formation of negative type resist pattern
JPH07335519A (en) Formation of pattern
JPH0786127A (en) Formation of resist pattern
JPH02282746A (en) High resolution photoresist
KR19990072893A (en) Process for forming photoresist patterns
JPH0334053B2 (en)
Brunsvold et al. Resist technology for submicrometer optical lithography
JPS61116838A (en) Formation of resist pattern
WO1983003485A1 (en) Electron beam-optical hybrid lithographic resist process
JP2714967B2 (en) Method of forming resist pattern
JPH02132448A (en) Formation of pattern
JPH0318179B2 (en)
JPH042183B2 (en)
JP2692227B2 (en) Method of forming resist pattern
TW202238276A (en) Lithography method
JPH02156244A (en) Pattern forming method
JPH04338960A (en) Resist pattern forming method