JPS6024753A - Muting circuit - Google Patents

Muting circuit

Info

Publication number
JPS6024753A
JPS6024753A JP13238283A JP13238283A JPS6024753A JP S6024753 A JPS6024753 A JP S6024753A JP 13238283 A JP13238283 A JP 13238283A JP 13238283 A JP13238283 A JP 13238283A JP S6024753 A JPS6024753 A JP S6024753A
Authority
JP
Japan
Prior art keywords
circuit
signals
signal
phase
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13238283A
Other languages
Japanese (ja)
Other versions
JPH046293B2 (en
Inventor
Kenichi Sato
憲一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP13238283A priority Critical patent/JPS6024753A/en
Publication of JPS6024753A publication Critical patent/JPS6024753A/en
Publication of JPH046293B2 publication Critical patent/JPH046293B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/34Muting amplifier when no signal is present or when only weak signals are present, or caused by the presence of noise signals, e.g. squelch systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/22Demodulator circuits; Receiver circuits
    • H04L27/227Demodulator circuits; Receiver circuits using coherent demodulation
    • H04L27/2275Demodulator circuits; Receiver circuits using coherent demodulation wherein the carrier recovery circuit uses the received modulated signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Transmission Systems Not Characterized By The Medium Used For Transmission (AREA)

Abstract

PURPOSE:To cut off sound signals by obtaining precise muting action signals by detecting the receiving conditions in 4 phase DPSK demodulation circuit, in the voice digital stransmitter using carriers. CONSTITUTION:The 4 phase DPSK signals from an input terminal 16 are inputted in a demodulation circuit 18, also in a carrier regenerative circuit 41, and two kinds of carriers with a phase of pi/62 or -pi/2 will generate. After these carriers are multiplied with input signals by multiplying machines 34, 37, carrier components are removed by filters 35, 38 changed into 2-value signals, and digital signals are regenerated. The digital signals are restored to voice signals by a D/A conversion circuit via a decoder 19, and inputted via muting switches 30 to 33. The signals outputted from the low-pass filter 38 are identified in amplitude by an amplitude discrimination circuit 43, the signals outputted through an integrator 44 represent changes in demodulation signals amplitude generated by phase distortion. Under this condition, errors occur and therefore the muting switches 30 to 33 are turned off because of making a big noise.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は搬送波を利用した音声のディジタル通信装置に
於ける音声信号のミューティング回路に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to an audio signal muting circuit in an audio digital communication device using a carrier wave.

(ロ)従来技術 音声のディジタル通信方式としては、例えば「12GH
z帯衛星放送における音声信号に対する答申」(電技審
第4部会 1982年11月)に示されたPCM副搬送
波方式がわシ、該方式は第1図(a)(b) K示され
るように、音声入力端子(11(2)(3)(4)に入
力された音声信号をA/D変換器(5)によシデイジタ
ル信号に変換した後、誤シ訂正回路、スクランブル回路
等から成るエンコーダ(6)によシゴード化する。コー
ド化された信号は、4相DPSK(4相Diffor、
encialPhase ShiftKeying) 
回路(7)によシ副搬送波信号に変換された後、映像信
号入力端子(8)よシ入力された映像信号と加え合わさ
れ、周波数変調器(9)によシFM信号に変換される。
(b) Conventional technology As a voice digital communication system, for example, "12GH
The PCM subcarrier system was proposed in the ``Report on Audio Signals in Z-Band Satellite Broadcasting'' (Electrical Engineering Commission, 4th Division, November 1982), and the system is as shown in Figure 1 (a) (b). After converting the audio signal input to the audio input terminals (11(2), (3), and (4)) into a digital signal by the A/D converter (5), an error correction circuit, a scrambling circuit, etc. The encoder (6) converts the encoded signal into a 4-phase DPSK (4-phase Diffor,
(encialPhase Shift Keying)
After being converted into a subcarrier signal by the circuit (7), it is added to the video signal inputted through the video signal input terminal (8), and converted into an FM signal by the frequency modulator (9).

このFM信号は12GHz帯の送信機+1(lによシミ
波として、パラボラアンテナUυよシ送出される。該パ
ラボラアンテナαυよシ送出される電波は放送衛星じを
介して受信機で受信される。
This FM signal is transmitted as a smear wave by the 12 GHz band transmitter +1 (l) from the parabolic antenna Uυ.The radio waves transmitted from the parabolic antenna αυ are received by the receiver via the broadcasting satellite. .

受信側では受信用パラボラアンテナ1L31で受信され
た後、12GHz帯の受信機Iに供給され、中間周波信
号として、FM復調器(151に印加される。
On the receiving side, the signal is received by the receiving parabolic antenna 1L31, then supplied to the 12 GHz band receiver I, and applied to the FM demodulator (151) as an intermediate frequency signal.

該復調器によシ復調された信号は映像信号と4相DPS
Kの副搬送波信号とに分離され、それぞれ出力端子面、
およびtleより出力される。副搬送波信号については
、さらに4相DPSK復調回路(1によシ復調され、ベ
ースバンドのディジタル信号に戻された後、ディスクラ
ンブル回路、誤り訂正回路等からなるデコーダ19、そ
してD/A変換回路(21を通って元の音声信号に戻さ
れ、音声出力端子(21)[2冬C!!りC4よシ出力
される。
The signal demodulated by the demodulator is a video signal and a 4-phase DPS.
K subcarrier signals are separated into output terminal planes,
and output from tle. The subcarrier signal is further demodulated by a 4-phase DPSK demodulation circuit (1) and returned to a baseband digital signal, and then sent to a decoder 19 consisting of a descrambling circuit, an error correction circuit, etc., and a D/A conversion circuit. (The signal is returned to the original audio signal through the audio output terminal (21) and output from the audio output terminal (21) to the audio output terminal (21).

さて、斯かる音声のディジタル通信方式では、受信搬送
波信号レベルの低下に伴うFM復調後の副搬送波でのS
/N (信号対雑音比)低下の為、4相DPSK復調後
のディジタルデータ誤シが問題となる。該データ誤シは
第1図中)に於けるデコーダL9の誤シ訂正回路で成る
程度の訂正が可能ではあるが、データ誤シの頻度が増大
した場合、訂正もれが多発し、音声信号に強大な雑音が
発生する。該雑音は音声信号の最大出力レベルにまで達
する為、聴感上極めて有害であシ、斯かる対策として、
通常、ミューティング回路による出力音声信号の抑圧が
行なわれる。これを第2図によって簡単に説明する。4
相DPSK復調回路(18によシ復調されたディジタル
データは破線内曝で示されるデコーダに入力される。デ
コーダ1]では、まず、同期検出回路(ハ)によりデー
タに於けるフレームごとの同期信号が検出され、ディス
クランブル回路(4)によシデータのスクランブル状態
が解かれた後、誤り訂正回路(2′r)及び誤シ検出回
路C役に入力される。
Now, in such a voice digital communication system, the S on the subcarrier after FM demodulation due to the decrease in the received carrier signal level
/N (signal-to-noise ratio) drop, digital data errors after four-phase DPSK demodulation become a problem. Although it is possible to correct the data errors by using the error correction circuit of the decoder L9 (in Figure 1), if the frequency of data errors increases, corrections will be omitted frequently, and the audio signal will be A strong noise is generated. Since this noise reaches the maximum output level of the audio signal, it is extremely harmful to the sense of hearing, and as a countermeasure,
Usually, the output audio signal is suppressed by a muting circuit. This will be briefly explained with reference to FIG. 4
In the phase DPSK demodulation circuit (18), the digital data demodulated is input to the decoder indicated by the dotted line. is detected, and after the scrambled state of the data is released by the descrambler circuit (4), the data is inputted to the error correction circuit (2'r) and the error detection circuit C.

データ誤シは該誤シ検出回路例によシ検出され、該検出
信号により誤り訂正回路(ロ)で訂正動作が行なわれる
と共に、データ誤シの頻度が大きい場合には、誤シ訂正
回路啼およびデータ抜き出し回路−を経て@D/A変換
器(至)よシ出力され名音声信号を、誤シ検出回路Q稀
によシ制御されるスイッチC30CIIIC37JC(
3K ヨ’) M断し、音声出力端子auaaqaa’
t’の出力状態を無信号状態にする。尚、前記誤シ検出
回路Q印は瞬時瞬時の誤シ検出機能と一定時間内の誤シ
頻度検出機能とを両方備えているものとする0 斯かるn9成によれば、データ誤シの頻度が大きくなっ
た場合、出力音声信号が出力端子で遮断される為、聴感
上有害な強大雑音を避けることが可能となる。しかし、
誤シ頻度が更に増大する受信状態、例えば同期検出回路
(ハ)での同期信号検出さえ困難な状態となった場合は
、誤り検出回路間での検出誤りが生じ、従って該誤シ検
出信号にょシ動作するスイッチ131 pυcla(3
3の動作にも誤シが生じる為、強大雑音が音声出力端子
則困(ハ)(2)に出方される可能性がでてくる。
Data errors are detected by the error detection circuit, and the error correction circuit (b) performs a correction operation based on the detection signal, and if the frequency of data errors is high, the error correction circuit performs a correction operation. The audio signal outputted from the D/A converter (to) through the data extraction circuit and the data extraction circuit is output to the switch C30CIIIC37JC (which is controlled by the error detection circuit Q).
3K Yo') M disconnect, audio output terminal auaaqaa'
Set the output state of t' to a no-signal state. It is assumed that the error detection circuit Q mark has both an instantaneous error detection function and an error frequency detection function within a certain period of time.According to the n9 configuration, the frequency of data errors is When the output signal becomes large, the output audio signal is blocked at the output terminal, making it possible to avoid loud noises that are harmful to the auditory senses. but,
In a reception state where the frequency of false alarms increases further, for example, when even the synchronization detection circuit (c) has difficulty detecting the synchronization signal, a detection error occurs between the error detection circuits, and therefore the false detection signal switch 131 pυcla(3
Since errors also occur in the operation of step 3, there is a possibility that strong noise will be output to the audio output terminal.

(ハ) 目 的 本発明は斯かる問題を解決するべく、誤シ頻度が極めて
多い受信状態に於いても誤動作することなく、出力端子
への音声信号の遮断を可能にする所謂音声出力信号のミ
ューティング回路を提供するものである。
(c) Purpose In order to solve this problem, the present invention provides a so-called audio output signal that makes it possible to cut off the audio signal to the output terminal without malfunctioning even in a reception state where errors occur extremely frequently. This provides a muting circuit.

に)構 成 本発明では前述の第2図に示すデコーダIの誤シ検出回
路關の誤シ検出信号にょシミューディング回路を動作さ
せる方法ではなく、第2図に於ける4相DPSK復調回
路Uでの受信状態を検出することによシ正確なミューテ
ィング動作信号を得るよう構成している。
2) Configuration In the present invention, the simulating circuit is not operated by the erroneous detection signal of the erroneous detection circuit of the decoder I shown in FIG. The configuration is such that an accurate muting operation signal can be obtained by detecting the reception state at.

(ホ)実施例 第3図に従って本発明の一実施例を説明する。(e) Examples An embodiment of the present invention will be described with reference to FIG.

入力端子tteから入力されだ4相D I) S K信
号は破線内a8で示される4相DPSK復調回路に入力
される。まず、4相DPSKi号がキャリア再生回路(
Carrier Regenerator C1rcu
it)Kl)に入力され、該回路で、位相が一定値+π
4または一π/2である2種類のキャリアが再生される
The 4-phase DISK signal inputted from the input terminal tte is inputted to a 4-phase DPSK demodulation circuit indicated by a8 within the broken line. First, the 4-phase DPSKi number is the carrier regeneration circuit (
Carrier Regenerator C1rcu
it) Kl), and in this circuit, the phase is a constant value +π
Two types of carriers are regenerated: 4 or 1π/2.

該再生されたキャリアは乗算器θ仰7)によ)それぞれ
人力4相DPSK信号と乗算されろ。#被乗算信号はそ
れぞれローパスフィルタ(イ)關によ)キャリア成分及
びキャリア周波数の2倍の成分が除去された後、それぞ
わゼロクロス識別器(ト)り■によシ識別されることに
より、2値信号に変換される。
The regenerated carriers are each multiplied by a human-powered 4-phase DPSK signal by a multiplier θ (7). # After the carrier component and the component twice the carrier frequency are removed from the multiplicable signal by a low-pass filter (A), each signal is identified by a zero-cross discriminator (T). , converted into a binary signal.

この2系列の2値信号はデータ再生回路(CqdeRe
generator C1rcuit)、(41によシ
元のディジタルデータが再生される。この時のピットク
ロックはゼロクロス識別器G9の出力信号を受けてタイ
ミング再生回路(Retlmlng C1rcuit)
(4,2)によりM生される。前記ディジタルデータは
前述同様にデコーダ(1うに入力された後、D/A変換
回路四により音声信号に復元され、スイッチ(至)01
)G→(ハ)ケ介して出力端子121)@123124
)よシ出力される。
These two series of binary signals are processed by a data reproducing circuit (CqdeRe
The original digital data is reproduced by the generator C1rcut) and (41).The pit clock at this time is generated by the timing regeneration circuit (Retlmlng C1rcut) in response to the output signal of the zero-cross discriminator G9.
M is generated by (4,2). The digital data is input to the decoder (1) in the same manner as described above, and then restored to an audio signal by the D/A conversion circuit (4) and then sent to the switch (to) (01).
) G→(c) Output terminal 121) @123124
) will be output.

而して該スイッチ(3(粕J)(3a C33)t−1
:音声信号のミューティングスイッチでアシ、ローパス
フィルタ(至)!出力される信号の振幅を識別する振幅
識別器(43の出力信号を積分器(4(イ)によシ平滑
した信号によシ開閉されるよう構成されている。
Then, the switch (3 (lees J) (3a C33) t-1
: Use the muting switch for the audio signal, and use the low-pass filter (to)! It is configured to be opened and closed by a signal obtained by smoothing the output signal of an amplitude discriminator (43) by an integrator (4 (a)) for identifying the amplitude of an output signal.

本発明によるミューティング動作をさらに第4図に」:
って説明すると、第6図に於ける乗算器C(7)のキャ
リアと4相DPSK信号が通常の位相関係、即ちπ/4
の場合は被乗算信号のローパスフィルタ(至)通過後の
信号は第4図(a)に示す波形となシ、その振幅はほぼ
一定値(vh)をとる。即ち、4相D P、S K信号
を5(t)%又該信号とπ/4の位相関係を持つキャリ
ア信号をC(t)とし、これら信号はそれぞれ(1)式
および(2)式で表わされるものとすると、それらの乗
算結果は、(3)式で表わされる。尚、ωCはキャリア
周波数、lは0,1,2.3の4位相状態を表わす。
The muting operation according to the present invention is further shown in FIG. 4.
To explain this, the carrier of multiplier C(7) in FIG. 6 and the 4-phase DPSK signal have a normal phase relationship, that is, π/4.
In this case, the signal after the multiplicable signal has passed through the low-pass filter has the waveform shown in FIG. 4(a), and its amplitude takes a substantially constant value (vh). That is, let the 4-phase D P, S K signal be 5(t)%, and let the carrier signal having a phase relationship of π/4 with this signal be C(t), and these signals can be expressed by equations (1) and (2), respectively. The result of their multiplication is expressed by equation (3). Note that ωC represents a carrier frequency, and l represents four phase states of 0, 1, and 2.3.

5(t)−Acos(ωCt+Zπ/2)・・・・・・
 (1)C(t)=Bcos(ωat+π/4) ・・
・・・・ (2)S (t)・C(t)= (Acos
(ωc t+lπ:/2))(B(!08R−121!
+1 + −()+ c o 5−7−π)・・・・・・(3
)(3)式に於けるキャリア周波数の2倍成分を除去す
ると、その結果は(4)式で表わされる。即ちS (t
) −C(t) = −AB cos□Tc−−−−−
−(4)4 (4)式に於いてA=B=1とし、/=0.1,2゜3
を代入すると、(4)式で表わされる信号の振幅は11
5となることがわかる。即ち、前述の(vh)は1//
Tとなる。
5(t)−Acos(ωCt+Zπ/2)・・・・・・
(1) C(t)=Bcos(ωat+π/4)...
... (2) S (t)・C(t)= (Acos
(ωc t+lπ:/2))(B(!08R-121!
+1 + -()+ c o 5-7-π)・・・・・・(3
) When the double component of the carrier frequency in equation (3) is removed, the result is expressed as equation (4). That is, S (t
) −C(t) = −AB cos□Tc---
-(4)4 In equation (4), A=B=1, /=0.1,2°3
Substituting , the amplitude of the signal expressed by equation (4) is 11
It can be seen that the value is 5. That is, the above (vh) is 1//
It becomes T.

一方、キャリア信号の位相を4相DPSK信号に対して
π/2とした場合は、同様の計算によシ(5)式で表わ
される結果となる。
On the other hand, when the phase of the carrier signal is set to π/2 with respect to the four-phase DPSK signal, a similar calculation results in the result expressed by equation (5).

5(t)・C(t)=(Acos(ωct+7π/2)
)(Bcos(0+l!−1 C08−π) 曲・・(5) (5)式に於いて、キャリアの2倍成分を除去した後、
A−B=1とし、J=0,1,2.5を代入すると、(
5)式で表わされる信号の振幅は1となる。
5(t)・C(t)=(Acos(ωct+7π/2)
)(Bcos(0+l!-1 C08-π)...(5) In equation (5), after removing the double carrier component,
When A-B=1 and J=0, 1, 2.5 are substituted, (
The amplitude of the signal expressed by equation 5) is 1.

この位相状態に於けるローパスフィルタ(至)の出力の
信号を第4図(b)に示す。即ち振幅Vh/は1となる
The output signal of the low-pass filter (to) in this phase state is shown in FIG. 4(b). That is, the amplitude Vh/ is 1.

さて、第4図(b)に示す状態は第3図に於いてキャリ
ア再生回路(Carrier Regenerator
)(4υでの再生キャリアの位相ズレによって生じるも
のであり、且つ該位相ズレは受信状態の悪化によシ4相
DPSK信号のS/Nが低下し、キャリア再生回路(4
υでの位相ロックがはずれることによる。
Now, the state shown in FIG. 4(b) is the carrier regenerator circuit (Carrier Regenerator) in FIG.
) (This is caused by the phase shift of the reproduced carrier at 4υ, and this phase shift is caused by the deterioration of the reception condition, the S/N of the 4-phase DPSK signal decreases, and the carrier recovery circuit (4υ)
This is due to loss of phase lock at υ.

4相DPSKを利用した受信機に於いては、この状態に
よシ発生するエラーが強大雑音を引き起こす。従って、
位相ズレによる復調信号振幅の変化を検出することによ
シ、スイッチC3I C31)C36c!3を開にすれ
ば、前記雑音を避けることができる。実際の動作では、
常時第4図(b)に示す信号が得られるわけではなく、
第4図(&)と第4図(b)に示す信号及びその中間的
振幅を有する信号が混在する為、第3図に示す振幅識別
器(431のスレッショルドVtは、次式で示す値とす
るのが望ましい。
In a receiver using 4-phase DPSK, errors caused by this state cause strong noise. Therefore,
By detecting the change in the demodulated signal amplitude due to the phase shift, the switch C3I C31) C36c! 3, the above noise can be avoided. In actual operation,
The signal shown in FIG. 4(b) is not always obtained,
Since the signals shown in FIG. 4(&) and FIG. 4(b) and signals with intermediate amplitudes exist, the threshold Vt of the amplitude discriminator (431) shown in FIG. It is desirable to do so.

vh(vt<vhl −−−−−−(6)尚、第6図で
は振幅識別器(41への入力信号はローパスフィルタ(
至)の出力としているが、これはローパスフィルタc1
9の出力でもよいことは言うまでもない。また本発明を
4相の位相変調方式によシ説明したが、2相の場合でも
応用可能である。
vh (vt<vhl --- (6) In FIG. 6, the input signal to the amplitude discriminator (41) is passed through a low-pass filter (
), but this is the output of the low-pass filter c1
It goes without saying that an output of 9 may be sufficient. Furthermore, although the present invention has been described using a four-phase phase modulation method, it is also applicable to a two-phase modulation method.

(へ)効 果 このように本発明によれば、キャリア再生回路での位相
四ツクはずれを起こした場合、その位相ロックはずれの
状態が検出され、音声信号がミューティング回路によシ
遮断される。通常のデイジタル通信方式に於いては受信
信号レベルの低下に伴うS/Nの悪化によりキャリア再
生回路が正常に動作しなく表り、正常でない動作状態が
復潤後の音声信号に強大雑音を発生させるが、本発明の
音声信号のミューティyグ回路によれば、受信状態が極
端に悪化しても聴感上有害な強大雑音を完全に避けるこ
とができる。
(F) Effect As described above, according to the present invention, when a phase shift occurs in the carrier regeneration circuit, the phase lock state is detected and the audio signal is blocked by the muting circuit. . In normal digital communication systems, the carrier regeneration circuit does not operate normally due to the deterioration of S/N due to the decrease in the received signal level, and the abnormal operating state causes strong noise in the audio signal after regeneration. However, according to the audio signal muting circuit of the present invention, even if the reception condition becomes extremely poor, it is possible to completely avoid the intense noise that is harmful to the audibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は音声のディジタル通信方式を説明するためのブ
ロック回路図、第2図は音声信号のミューティング方法
の従来例、第6図は本発明による音声信号のミューティ
yグ回路を示すブロック回路図、第4図は本発明の動作
説明図である。 uIll−A力端子、C3!Oar) 、、、乗算回路
、c(!51Cl11)−L P F、o(19G3!
I・・・ゼロクロス識別回路、(40・・・データ再生
回路、(4I)・・・キ・ヤリア再生回路、(421・
・・タイミング再生回路、(4階・・・振幅識別回路、
(44)−・・積分回路。 第8図 第4図
Fig. 1 is a block circuit diagram for explaining a digital audio communication system, Fig. 2 is a conventional example of an audio signal muting method, and Fig. 6 is a block circuit diagram showing an audio signal muting circuit according to the present invention. 4 are explanatory diagrams of the operation of the present invention. uIll-A power terminal, C3! Oar) ,,,multiplying circuit, c(!51Cl11)-L P F,o(19G3!
I... Zero cross identification circuit, (40... Data regeneration circuit, (4I)... Carrier regeneration circuit, (421...
...timing regeneration circuit, (4th floor...amplitude identification circuit,
(44)--Integrator circuit. Figure 8 Figure 4

Claims (1)

【特許請求の範囲】[Claims] Ll) ディジタル信号により変調された被変調波信号
からキャリアを再生する為のキャリア再生回路と、該回
路によシ再生されたキャリアと被変調波信号を乗算する
為の乗算回路と、該乗算回路の出力に接続されたローパ
スフィルタと、該ローパスフィルタの出力信号を2・値
信号に変換する為のゼロクロス識別回路と、該識別回路
の出力を受けてディジクルデータを復号する為の復号回
路と、該復号回路の出力に接続されたディジタル・アナ
ログ変換回路と、該ディジタル・アナログ変換回路の出
力端と出力端子間に接続されるスイッチ回路と、前記ロ
ーパスフィルタの出力信号の振幅を識別する為の振幅識
別回路と、該識別回路に接続される積分回路とを備え、
前記積分回路の出力によシ前記スイッチ回路を開閉制御
することを特徴とするディジタル通信装置の音声信号ミ
ューティング回路。
Ll) A carrier regeneration circuit for regenerating a carrier from a modulated wave signal modulated by a digital signal, a multiplication circuit for multiplying the carrier regenerated by the circuit and the modulated wave signal, and the multiplication circuit. a low-pass filter connected to the output of the low-pass filter, a zero-cross identification circuit for converting the output signal of the low-pass filter into a binary signal, and a decoding circuit for receiving the output of the identification circuit and decoding digital data. , a digital-to-analog conversion circuit connected to the output of the decoding circuit, a switch circuit connected between the output terminal and the output terminal of the digital-to-analog conversion circuit, and the amplitude of the output signal of the low-pass filter. an amplitude discrimination circuit, and an integration circuit connected to the discrimination circuit,
An audio signal muting circuit for a digital communication device, characterized in that opening and closing of the switch circuit is controlled by the output of the integrating circuit.
JP13238283A 1983-07-19 1983-07-19 Muting circuit Granted JPS6024753A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13238283A JPS6024753A (en) 1983-07-19 1983-07-19 Muting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13238283A JPS6024753A (en) 1983-07-19 1983-07-19 Muting circuit

Publications (2)

Publication Number Publication Date
JPS6024753A true JPS6024753A (en) 1985-02-07
JPH046293B2 JPH046293B2 (en) 1992-02-05

Family

ID=15080074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13238283A Granted JPS6024753A (en) 1983-07-19 1983-07-19 Muting circuit

Country Status (1)

Country Link
JP (1) JPS6024753A (en)

Also Published As

Publication number Publication date
JPH046293B2 (en) 1992-02-05

Similar Documents

Publication Publication Date Title
JPS5932015B2 (en) Impulsive noise removal method
US5535245A (en) Modulation/demodulation circuit for a digital signal recorder/reproducer
JPH0824356B2 (en) Acoustic channel circuit of digital television receiver
EP0111937B1 (en) Privacy signal transmission system
US4979052A (en) Digital signal magnetic recording/reproducing apparatus
JP3108364B2 (en) Data demodulator
JP3244428B2 (en) Data demodulator
EP0643511B1 (en) Synchronization circuit for subcarrier signal
US4606048A (en) Radio communication system
GB2144004A (en) FM discriminator circuits
EP0206203B1 (en) Recording and reproducing apparatus using a modulator/demodulator for Offset Quadrature Differential Phase-Shift Keying
JPS6024753A (en) Muting circuit
US5841815A (en) Data receiver for correcting a phase of a received phase-modulated signal
JP3865628B2 (en) RDS decoder
JP2696948B2 (en) Carrier recovery circuit
JP2795761B2 (en) MSK signal demodulation circuit
JP2995344B2 (en) Digital decoding circuit
KR950003667B1 (en) Minimum shift keying modulator and demodulator using bfsk demodulating method
JPH05316154A (en) Carrier recovery circuit
JPS63135044A (en) Demodulator for phase shift modulation wave
JPH0149069B2 (en)
JP2001069185A (en) Intercom transmission system
GB2386483A (en) RDS decoder
JPH10163901A (en) Rds receiver
JPH02174484A (en) Satellite broadcast receiver