JPS60246507A - Conductive molding material and method of producing molding using same - Google Patents

Conductive molding material and method of producing molding using same

Info

Publication number
JPS60246507A
JPS60246507A JP9639284A JP9639284A JPS60246507A JP S60246507 A JPS60246507 A JP S60246507A JP 9639284 A JP9639284 A JP 9639284A JP 9639284 A JP9639284 A JP 9639284A JP S60246507 A JPS60246507 A JP S60246507A
Authority
JP
Japan
Prior art keywords
resin
molding
metal
coating layer
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9639284A
Other languages
Japanese (ja)
Inventor
新井 重治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Fiber Glass Co Ltd
Original Assignee
Asahi Fiber Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Fiber Glass Co Ltd filed Critical Asahi Fiber Glass Co Ltd
Priority to JP9639284A priority Critical patent/JPS60246507A/en
Publication of JPS60246507A publication Critical patent/JPS60246507A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は導電性成形材料、特に射出成形ができるよう
な熱可塑性の1F電性成形材料およびそれを用いた成形
体の製造法に関覆るもので、この成形材料およびそれを
用いた成形体は帯電防止、電磁シールド等、導電性を要
求される分野で利用される。
[Detailed Description of the Invention] Industrial Field of Application This invention relates to conductive molding materials, particularly thermoplastic 1F conductive molding materials that can be injection molded, and methods for producing molded objects using the same. This molding material and molded articles using the same are used in fields that require electrical conductivity, such as antistatic and electromagnetic shielding.

従来の技柘 従来からプラスチックを主成分とする導電性成形材料が
提案されており、それには下記のようなものがある。
Conventional Techniques Conductive molding materials containing plastic as a main component have been proposed, including the following.

1)プラスチック成形品の表面に導電性塗料を塗布する
1) Apply conductive paint to the surface of the plastic molded product.

2)プラスチック成形品の表面に金属を溶射する。2) Spray metal onto the surface of the plastic molded product.

3)プラスチック表面を金属メッキする。3) Metal plating the plastic surface.

4)81電性カーボン、グラノアイ[〜をプラスチック
材料と複合化する。
4) Composite 81-electrocarbon, granoeye with plastic material.

5)金属粉、金属フレーク、金属繊維等をプラスチック
材料と複合化りる。
5) Composite metal powder, metal flakes, metal fibers, etc. with plastic materials.

6)金属被覆ガラス繊維の繊維長が成形体中で1.27
mm以上である成形材料。(特開昭5)4−90596
号〉 しかし、上記方法 1)〜3)は、使用中に表面の金属
層が剥前して導電性を失うという欠点があり、上記方法
4〉で製造されたものは導電性が充分でなく、体積抵抗
値が102〜103Ω−0ffl程度で、静電気の帯電
防止や金属メッキを容易にする程度の効果にとどまる。
6) The fiber length of the metal-coated glass fiber is 1.27 in the molded body.
A molding material having a diameter of mm or more. (Unexamined Japanese Patent Publication No. 5) 4-90596
However, methods 1) to 3) above have the disadvantage that the metal layer on the surface peels off during use and loses conductivity, and those manufactured using method 4 above do not have sufficient conductivity. The volume resistance value is about 102 to 103 Ω-0ffl, and the effect is limited to preventing static electricity and facilitating metal plating.

上記5)の方法でできる材料は、導電性はよいが、金属
成分の充填量を多くする必要があり、そのために材料の
密度が大きく、かつ、体積当りの価格が高くなるのが問
題であった。
The material made by method 5) above has good conductivity, but it requires a large amount of metal component to be filled, which causes the material to have a high density and a high price per volume. Ta.

6)の材料は、射出成形によって成形したとき、繊維長
が短くなりすぎ、その導電性が小さいのが問題である。
The problem with the material 6) is that when it is molded by injection molding, the fiber length becomes too short and its electrical conductivity is low.

発明が解決しようとする問題点 ところで、金属被覆ガラス繊維を熱可塑性樹脂に混合す
るとき、そのロービング(繊維束)を常法にしたがって
、所定の長さに切断すると各フィラメントが開繊された
状態になり、これを熱可塑性MA脂の原料ペレットと混
合することはできない。
Problems to be Solved by the Invention By the way, when metal-coated glass fiber is mixed with thermoplastic resin, when the roving (fiber bundle) is cut into a predetermined length according to a conventional method, each filament is in an opened state. Therefore, it cannot be mixed with raw material pellets of thermoplastic MA fat.

この発明は、金属被覆したガラス繊維のロービングを切
断したとき、ガラス繊維がペレットの状態になるように
ガラス繊維を処理し、これを熱可塑性樹脂に対する配合
材料として用いる方法である。
This invention is a method of treating glass fibers so that when a metal-coated glass fiber roving is cut, the glass fibers become pellets, and the pellets are used as a compounding material for a thermoplastic resin.

問題点を解決するための手段 上記問題を解決するために、この発明は、(1) 金属
被覆層を有するガラス1ili雑の該金属被覆層の表面
に樹脂被覆層を有づ−る導電性成形材料ならびに、 (2) 金属被覆層を有するガラス繊維の該金属被覆層
の表面に樹脂を被覆したものを熱可塑性樹脂と混合して
成形することによって導電性成形材料を製造するように
した方法である。
Means for Solving the Problems In order to solve the above problems, the present invention provides (1) a conductive molding having a resin coating layer on the surface of the metal coating layer of a glass substrate having a metal coating layer; (2) A method for manufacturing a conductive molding material by mixing a glass fiber having a metal coating layer with a resin coated on the surface of the metal coating layer and molding the mixture with a thermoplastic resin. be.

上記方法について、更に説明丈ると、基体となるガラス
繊維はその径が2〜50μが適当であり、このガラス繊
維束の表面に付肴させる金属は例えばニッケル、アルミ
ニウム、パーマロイ等があげられ、その付着層は隔の厚
さが0.5〜30μになる程度が適当である。
To further explain the above method, the diameter of the glass fiber serving as the base is suitably 2 to 50 μm, and the metal to be attached to the surface of the glass fiber bundle includes, for example, nickel, aluminum, permalloy, etc. The thickness of the adhesion layer is suitably 0.5 to 30 .mu.m.

ガラス繊維束の金属被覆層の表面に被覆づるのに適当な
樹脂しては次のようなものがある。
The following resins are suitable for coating the surface of the metal coating layer of the glass fiber bundle.

エポキシ樹脂、フェノール樹脂のような熱硬化性樹脂お
よびポリスチレン系樹脂、例えば、アクリロニトリル−
ブタジェン−スチレン共重合体、ポリスチレン、アクリ
ロニトリル−スチレン共重合体、アクリロニトリル−ア
クリル酸エステル共重合体等々、また、ナイロン、ポリ
ブチレンテレフタレート、ポリプロピレン、ポリエチレ
ン等々の熱可塑性樹脂およびそれらの共重合体類。
Thermosetting resins such as epoxy resins, phenolic resins and polystyrene resins, e.g. acrylonitrile-
Butadiene-styrene copolymer, polystyrene, acrylonitrile-styrene copolymer, acrylonitrile-acrylic acid ester copolymer, etc., thermoplastic resins such as nylon, polybutylene terephthalate, polypropylene, polyethylene, etc., and copolymers thereof.

金属化されたガラス繊維束に対する上記樹脂の付II婿
は1〜・30%が適当である。
The ratio of the resin to the metallized glass fiber bundle is suitably 1 to 30%.

また、こうして処理したガラス繊維を混合する熱可塑性
樹脂は次のものが用いられる。
The following thermoplastic resins are used to mix the glass fibers treated in this way.

ポリスチレンおよびそれらの共重合体類、ポリオレフィ
ンおよびそれらの共重合体、ナイロン、熱可塑性ポリエ
ステル樹脂、ポリカーボネート、ポリフェニレンオキサ
イド系樹脂、ボリフエニレンサルフIイド樹脂等々。
Polystyrene and copolymers thereof, polyolefin and copolymers thereof, nylon, thermoplastic polyester resin, polycarbonate, polyphenylene oxide resin, polyphenylene sulfide resin, etc.

この発明の樹脂被覆金属化ガラス繊維を用いるときは、
熱可塑性樹脂とともに押し出し機によってベレットにし
て射出成形機に供給してもよいが、押し出し曙によるベ
レット化を省略して、熱可塑性樹脂とともに直接射出成
形することもできる。
When using the resin-coated metallized glass fiber of this invention,
Although it may be supplied to an injection molding machine by forming a pellet together with a thermoplastic resin using an extruder, it is also possible to omit the pelletizing process by extrusion and directly injection molding together with a thermoplastic resin.

作 用 ガラスm維の表面に形成された金属層は表面が微視的に
は粗面であるので、その表面には上記表面処理用の樹脂
が着き易い。したがって、この樹脂で表面処理をした金
属化ガラスm雑を束にしたロービング°は熱可塑性樹脂
に混合するために所定の長さに切断してもフィラメント
は開繊されず、ベレッl−の状態になっている。
Function: Since the surface of the metal layer formed on the surface of the glass m-fiber is microscopically rough, the above-mentioned surface treatment resin easily adheres to the surface. Therefore, even if the roving, which is made by bundling metallized glass and miscellaneous materials whose surface has been treated with this resin, is cut into a predetermined length for mixing with the thermoplastic resin, the filaments will not be opened and will remain in a beveled state. It has become.

しかも、このベレット状の粒状物を熱可塑性樹脂のベレ
ットに混合した復、例えば常法の射出成形すると、熱可
塑性樹脂との親和性が高いから充分に分散した状態にな
る。したがって押し出し機は不要である。
Moreover, when this pellet-like granular material is mixed with a pellet of thermoplastic resin and then, for example, injection molded by a conventional method, it becomes sufficiently dispersed because of its high affinity with the thermoplastic resin. Therefore, no extruder is required.

具体的に説明すると、例えば、金属化された、樹脂被覆
のないガラス繊N束を3m111〜6mmの長さに切断
したところ、完全に綿状化し、熱可塑性樹脂との複合化
は全くできなかった。
To explain specifically, for example, when N bundles of metallized glass fibers without resin coating were cut into lengths of 3 m 111 to 6 mm, they became completely flocculent and could not be combined with thermoplastic resin at all. Ta.

そこで、金属化されたガラス繊維束を樹脂溶液に含浸し
、溶媒除去後3mmに切断したところ、綿状物の発生も
なくペレット状で熱可塑性樹脂との混合が容易に行ない
彎る形状になった。この樹脂被覆金属化ガラスmNを熱
可塑性樹脂と混合し、直接射出成形したところ、予惣に
反して分散の良好な成形体が得られ、成形体中の平均繊
維長が短くても高い導電性を有、することがわかった。
Therefore, when metalized glass fiber bundles were impregnated in a resin solution and cut into 3 mm pieces after the solvent was removed, a pellet-like shape was formed that could be easily mixed with thermoplastic resin without producing flocs. Ta. When this resin-coated metallized glass mN was mixed with a thermoplastic resin and directly injection molded, a molded product with good dispersion was obtained, contrary to expectations, and the molded product had high conductivity even if the average fiber length in the molded product was short. It was found that there is.

また、この発明の導電性成形材料はBMG(3ulk 
fvloulding Compound )の製造に
用いることもできる。
Moreover, the conductive molding material of this invention is BMG (3ulk
It can also be used in the production of fvloulding compounds.

実施例 直径13μのフィラメント3000本を集束した水引き
ロービングを所定の方法でニッケルメッキをほどこした
ところ、モノフィラメントに平均膜厚さ 1.2μのニ
ッケル層を有する繊維が冑られた。
Example When a water-drawn roving made of 3,000 filaments with a diameter of 13 μm was nickel-plated using a predetermined method, a fiber having a nickel layer with an average thickness of 1.2 μm was formed on the monofilament.

この繊維束2本をアクリロニトリル−アクリル酸エステ
ル共重合体エマルジョン(固形分30wt%)に浸漬し
、2Il1mφのダイを通過させ乾燥させた。乾燥後3
11Ill長に切断したところ、樹脂分を20wt%含
む、全く綿のないペレット状樹脂被覆金属化ガラス繊維
を得た。
Two of these fiber bundles were immersed in an acrylonitrile-acrylic acid ester copolymer emulsion (solid content: 30 wt%), passed through a die of 2Il1mφ, and dried. After drying 3
When cut into a length of 11 Ill, pellet-shaped resin-coated metallized glass fibers containing 20 wt% of resin and completely free of cotton were obtained.

この樹脂被覆金属化ガラス繊維ペレットと熱可塑性樹脂
とを繊維含有率10容積%になるようにV−ブレンダー
で混合し、直接射出成形を行ない、31RIllX 1
2CIIX 12C1llの平板の成形体を得た。
The resin-coated metallized glass fiber pellets and a thermoplastic resin were mixed in a V-blender to a fiber content of 10% by volume, and directly injection molded.
2CIIX A flat plate molded body of 12C1ll was obtained.

1mは成形体中によく分散しており、その平均繊維長I
t O,3Il1mであったにもかかわらず体積固有抵
抗は0,5Ω−cmであった。
1 m is well dispersed in the molded body, and its average fiber length I
Even though tO,3Il1m, the volume resistivity was 0.5Ω-cm.

効 果 以上説明したようにこの発明によれば金属化ガラスII
Nを熱可塑性樹脂中に充分分散させることができ、した
がって軽量で電気抵抗が小さい成形体を容易につくるこ
とができる。
Effects As explained above, according to this invention, metallized glass II
N can be sufficiently dispersed in the thermoplastic resin, and therefore a molded article that is lightweight and has low electrical resistance can be easily produced.

Claims (2)

【特許請求の範囲】[Claims] (1)金属被覆層を有するガラス繊維の該金属被覆層の
表面に樹脂被覆層を有する導電性成形材料。
(1) A conductive molding material having a resin coating layer on the surface of the metal coating layer of glass fiber having a metal coating layer.
(2)金属被覆層を有するガラス繊維の該金属被覆層の
表面にlsI脂を被覆し1=ものを熱可塑性樹脂と混合
して成形することを特徴とする導電性成形体の製造法。
(2) A method for producing a conductive molded article, which comprises coating the surface of the metal coating layer of a glass fiber having a metal coating layer with lsI fat, mixing the mixture with a thermoplastic resin, and molding the mixture.
JP9639284A 1984-05-16 1984-05-16 Conductive molding material and method of producing molding using same Pending JPS60246507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9639284A JPS60246507A (en) 1984-05-16 1984-05-16 Conductive molding material and method of producing molding using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9639284A JPS60246507A (en) 1984-05-16 1984-05-16 Conductive molding material and method of producing molding using same

Publications (1)

Publication Number Publication Date
JPS60246507A true JPS60246507A (en) 1985-12-06

Family

ID=14163686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9639284A Pending JPS60246507A (en) 1984-05-16 1984-05-16 Conductive molding material and method of producing molding using same

Country Status (1)

Country Link
JP (1) JPS60246507A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332853A (en) * 1977-05-09 1982-06-01 International Business Machines Corporation Conductive plastic with metalized glass fibers retained in partial clumps
JPS5922710A (en) * 1982-07-30 1984-02-06 Toshiba Chem Corp Manufacture of electroconductive molding material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4332853A (en) * 1977-05-09 1982-06-01 International Business Machines Corporation Conductive plastic with metalized glass fibers retained in partial clumps
JPS5922710A (en) * 1982-07-30 1984-02-06 Toshiba Chem Corp Manufacture of electroconductive molding material

Similar Documents

Publication Publication Date Title
US3709773A (en) Glass reinforced injection molding pellet
JPS5941246A (en) Fiber reinforced composite material
EP0337487A1 (en) Electroconductive polymer composition
JPS60221460A (en) Reinforced material
US5213736A (en) Process for making an electroconductive polymer composition
US5948518A (en) Electrically conductive shaped articles
JPS60246507A (en) Conductive molding material and method of producing molding using same
JPS6337142A (en) Production of electrically conductive resin composition
EP0304435B1 (en) Electrically conductive material for molding
JPH04212810A (en) Granule for molding, its manufacture and its use in manufacturing molded product
GB2179045A (en) Method for making molded polymer articles conductive
JPH01284000A (en) Composite element containing metallized fiber and manufacture of electromagnetic shielding molded product by employing the element
JPH0159884B2 (en)
JPS61287963A (en) Elongated molding fine particle and injection molding using the same
JPS6286055A (en) Electromagnetic wave shielding material
JPS60179204A (en) Manufacture of chip for shielding electromagnetic wave composition
JPS63218309A (en) Electrically conductive resin composition and molded item made thereof
JPH11117179A (en) Metal-coated carbon fiber chopped strand, its production and fiber-reinforced thermoplastic resin composition and molded article produced by using the strand
JPS60162604A (en) Manufacture of conductive pellet
JPH01271439A (en) Electrically-conductive plastic molding material
JPH06315932A (en) Conductive resin molded piece
JPS61209120A (en) Manufacture of electrically conductive termoplastic resin molding
JP2573555B2 (en) Synthetic resin composition
JP2004027097A (en) Thermoplastic resin composition
JPS6319543B2 (en)