JPS60246342A - Preparation of acrylic acid or methacrylic acid - Google Patents

Preparation of acrylic acid or methacrylic acid

Info

Publication number
JPS60246342A
JPS60246342A JP59100418A JP10041884A JPS60246342A JP S60246342 A JPS60246342 A JP S60246342A JP 59100418 A JP59100418 A JP 59100418A JP 10041884 A JP10041884 A JP 10041884A JP S60246342 A JPS60246342 A JP S60246342A
Authority
JP
Japan
Prior art keywords
acid
catalyst
selectivity
formaldehyde
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59100418A
Other languages
Japanese (ja)
Other versions
JPH0522692B2 (en
Inventor
Hiroshi Niitsuma
裕志 新妻
Tsutomu Ito
勉 伊藤
Toshiro Miki
三木 利郎
Shiro Kojima
児島 史郎
Takashiro Azuma
東 貴四郎
Hiroyuki Kato
博之 加藤
Yuichi Murakami
雄一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP59100418A priority Critical patent/JPS60246342A/en
Priority to EP85106163A priority patent/EP0164614B1/en
Priority to DE8585106163T priority patent/DE3561456D1/en
Priority to US06/736,621 priority patent/US4677225A/en
Publication of JPS60246342A publication Critical patent/JPS60246342A/en
Publication of JPH0522692B2 publication Critical patent/JPH0522692B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To prepare acrylic acid in high selectivity and yield, by catalytically reacting acetic acid or propionic acid with formaldehyde in the vapor phase in the presence of a solid acid catalyst having a moderately strong acid strength. CONSTITUTION:Acetic acid or propionic acid in the vapor phase is brought into contact with formaldehyde in the presence of a solid catalyst to give acrylic acid or methacrylic acid. In the process, a solid catalyst having acid sites exhibiting <=-3.0pKa, particularly within >=-8.2pKa and <=-3.0pKa range acid strength such as silica alumina is used as the catalyst exhibiting high activity, selectivity and conversion. The acid strength of acid sites even in an oxide or compound oxide having no acid site exhibiting within <=-3.0pKa range can be increased, and such catalyst can be used.

Description

【発明の詳細な説明】 (1)発明の目的 〔産業上の利用分野〕 本発明は酢酸またはプロピオン酸を固体触媒の存在下に
気相においてホルムアルデヒドと接触反応させてアクリ
ル酸またはメタクリル酸を製造する方法に関するもので
ある。
Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] The present invention relates to the production of acrylic acid or methacrylic acid by catalytically reacting acetic acid or propionic acid with formaldehyde in the presence of a solid catalyst in the gas phase. It's about how to do it.

〔従来の技術〕[Conventional technology]

従来、酢酸またはプロピオン酸と、ホルムアルデヒドと
の脱水縮合反応により、アクリル酸またはメタクリル酸
を製造する方法は知られており、その場合に有効な触媒
として下記のようなものが従業されてきた。
Conventionally, a method for producing acrylic acid or methacrylic acid by a dehydration condensation reaction between acetic acid or propionic acid and formaldehyde has been known, and the following catalysts have been used as effective catalysts in this case.

即ち、アルミナシリケートおよびシリカゲル上のアルカ
リまたはアルカリ土類水酸化物(特公昭45−2192
8)、照性シリカよりなる塩基性触媒(特開昭49−7
0919)、表面積の大きな塩基性触媒(特公昭57 
40130)、活性アルミナにアルカリ金属のカルボン
酸塩を担持させたもの(USP3051747)、メク
リン酸のアルカリ金属またはアルカリ土類金属塩をシリ
カゲルに担持させたもの(特公昭46−16728)、
アルカリ金属またはアルカリ土類金属塩を含むアルミノ
ンリケ 1・(USP324724B)などの塩基性触
媒、そのほかリン酸塩系触媒(特開昭57−12313
7)、バナジウム−アンチモン触媒(特開昭57−12
3138)、オルソリン酸バナジウム触媒(USP41
6543B)などである。
That is, alkali or alkaline earth hydroxides on alumina silicate and silica gel (Japanese Patent Publication No. 45-2192
8), basic catalyst made of luminescent silica (JP-A-49-7
0919), basic catalyst with large surface area (Special Publication No. 57
40130), an alkali metal carboxylate supported on activated alumina (USP 3051747), a silica gel supported on an alkali metal or alkaline earth metal salt of mechlic acid (Japanese Patent Publication No. 16728/1972),
Basic catalysts such as aluminone 1. (USP 324724B) containing alkali metal or alkaline earth metal salts, and other phosphate catalysts (Japanese Unexamined Patent Publication No. 57-12313
7), vanadium-antimony catalyst (JP-A-57-12
3138), vanadium orthophosphate catalyst (USP 41
6543B) etc.

以上の公知の触媒は、塩基性触媒もしくは塩基性成分を
有する触媒がほとんどである。これは、本反応を強塩基
の存在下で進行する下記クライゼン縮合と類似の反応と
してとらえているためであろう。
Most of the above-mentioned known catalysts are basic catalysts or catalysts having a basic component. This is probably because this reaction is considered to be similar to the Claisen condensation described below, which proceeds in the presence of a strong base.

〜クライゼン縮合反応 RCHO+R’ CH2C0OR” −RCH=CR’
 C0OR’ + 1120RCHOトR’ CH2C
OR“−1 RCH=CR’ COR“1I20 (iR,R’、R″は)Iまたはアルキル基〔発明が解
決しようとする問題〕 しかしながら、これらの触媒の活性は多くの場合、選択
率において十分ではなく、また選択率の高いものは転化
率が高くないというように、目的生成物の収率において
必ずしも充分ではなかった。
~ Claisen condensation reaction RCHO+R'CH2C0OR"-RCH=CR'
C0OR' + 1120RCHOTOR' CH2C
OR"-1 RCH=CR'COR"1I20 (iR, R', R" is) I or an alkyl group [Problem to be solved by the invention] However, the activity of these catalysts is often insufficient in terms of selectivity. Moreover, the yield of the desired product was not necessarily sufficient, as the conversion rate was not high even if the selectivity was high.

(2)発明の構成 〔問題点を解決するための手段〕 かかる公知方法の欠点を是正すべく、本発明者等は全く
異なった観点から検討をおこなった。
(2) Structure of the Invention [Means for Solving Problems] In order to correct the shortcomings of such known methods, the present inventors conducted studies from a completely different perspective.

即ち、酢酸とホルムアルデヒドとの反応において、本発
明者等は触媒が下記のような機構で反応に関与するもの
と考えて、酸点を有する種々の固体触媒に着目し検討を
進めた結果、この反応には適度に強い酸強度の酸点を有
する固体触媒が有効であり、また酸点の酸強度が弱い固
体触媒でも、ホウ素酸化物やリン酸化物などを添加して
触媒中の酸点の酸強度を高めることにより、容易に触媒
活性特に選択率を著しく向上させることができ、その結
果、目的物を良好な収率で製造可能であることを見いだ
し本発明を完成するに至った。
That is, in the reaction between acetic acid and formaldehyde, the present inventors believed that the catalyst was involved in the reaction through the following mechanism, and as a result of their studies focusing on various solid catalysts that have acid sites, they found that this A solid catalyst that has acid sites with moderately strong acid strength is effective for the reaction, and even if the acid site has a weak acid strength, the acid sites in the catalyst can be strengthened by adding boron oxides, phosphorus oxides, etc. The present inventors have discovered that by increasing the acid strength, the catalyst activity, particularly the selectivity, can be easily and significantly improved, and as a result, the desired product can be produced in good yield, leading to the completion of the present invention.

611とポルムアルデヒl゛との反応tJ31横II 
O12 1/ ・ ′外 II O、 リ LJ Q 即ち、本発明は、 酢酸またはプロピオン酸を、触媒の
存在下に気相においてホルムアルデヒドと接触反応させ
てアクリル酸またはメタクリル酸を製造する方法におい
て、酸強度がp Ka≦−3,0の酸点を有する固体触
媒を使用することを特徴とするアクリル酸またはメタク
リル酸の製造方法である。
Reaction between 611 and Polmaldehyde tJ31 horizontal II
That is, the present invention provides a method for producing acrylic acid or methacrylic acid by catalytically reacting acetic acid or propionic acid with formaldehyde in the gas phase in the presence of a catalyst. This is a method for producing acrylic acid or methacrylic acid, characterized by using a solid catalyst having an acid site with a strength of pKa≦-3.0.

〔固体触媒〕[Solid catalyst]

本発明で使用される固体触媒は通常の固体酸触媒をも含
むものである。
The solid catalyst used in the present invention also includes a conventional solid acid catalyst.

一般に固体酸触媒の表面には下記のような沢山の弱塩基
点とまばらな強酸点が存在し、全体としては中性近くに
なっていると考えられる。
Generally, the surface of a solid acid catalyst has many weak base points and sparse strong acid sites as shown below, and is considered to be nearly neutral as a whole.

触媒中の各酸点はすべて同じ酸強度を持っているわけで
なく、それらは種々の酸強度を有しており、酸強度分布
が存在していると考えられ、本発明において触媒活性を
有するのは、pKa≦−3,0の酸強度を示す酸点であ
る。ここで酸強度はpKaで示され、その値の小さい(
負の値の大きい)はど酸強度が強いことを示す。
Each acid site in the catalyst does not all have the same acid strength, but they have various acid strengths, and it is thought that an acid strength distribution exists, and in the present invention, the acid sites have catalytic activity. is an acid site exhibiting an acid strength of pKa≦−3.0. Here, the acid strength is indicated by pKa, and the smaller the value (
A large negative value) indicates strong acid strength.

触媒中の酸点の存在位置そのものは測定できないが、そ
の存在量は酸量として測定し算出することができ、本発
明における酸点の酸強度および酸量の値は、後述の参考
例に記載の方法、即ち所定のp K a値の範囲におい
て変色する指示薬を用いた滴定分析と、この分析結果か
ら算出される値である。
Although the location of the acid site in the catalyst itself cannot be measured, the amount present can be measured and calculated as the amount of acid, and the values of the acid strength and amount of acid at the acid site in the present invention are described in the reference example below. This method is a titration analysis using an indicator that changes color within a predetermined pK a value range, and a value calculated from the results of this analysis.

本発明において使用される固体触媒は、pKa≦−3,
0の酸強度を示す酸点を有するものであり、pKa>−
3,0の酸強度を示す極めて弱いといえる酸点や塩基点
は少ない触媒が好ましく全く無い触媒がさらに好ましい
。即ち、p K a≦ 3.0の酸強度を示す酸点を有
すれば、 ・般にいう固体塩基触媒でもよいが、固体酸
触媒の方が好ましいのである。
The solid catalyst used in the present invention has pKa≦−3,
It has an acid site that shows an acid strength of 0, and pKa>-
It is preferable to use a catalyst with few acid sites or basic sites, which can be said to be extremely weak and exhibit an acid strength of 3.0, and more preferably a catalyst with no acid sites at all. That is, as long as it has an acid site that exhibits an acid strength of pK a ≦ 3.0, - Although it may be a solid base catalyst, a solid acid catalyst is preferable.

これは、pKa>−3,Qの酸点が多い場合にはこれら
が本発明の転位反応に悪影響を与える恐れがあるからで
ある。
This is because if there are many acid sites with pKa>-3 and Q, these may have an adverse effect on the rearrangement reaction of the present invention.

次に酸量について述べる。酸量は触媒表面上の酸点の存
在量と見なすことがてき、 般にはこの値の大きい方が
触媒単位量当りの触媒活1’1が高いごとになり、値が
小さいと同し7量の原料物質を転化さ−Uるために大量
の触媒が必要で、反応塔を大きくしなければならない等
の点で経済的には不利となる。
Next, we will discuss the amount of acid. The amount of acid can be regarded as the amount of acid sites present on the catalyst surface, and generally speaking, the larger the value, the higher the catalytic activity per unit amount of catalyst, and the smaller the value, the higher the catalytic activity per unit amount of catalyst. This method is economically disadvantageous because a large amount of catalyst is required to convert a large amount of raw material, and the reaction tower must be large.

さらに本発明において反応に寄与するのはpK a≦−
340の酸強度を示す酸点なので、ごの範囲の酸強度を
示す酸量が多い程好適である。
Furthermore, in the present invention, what contributes to the reaction is pKa≦-
Since the acid site exhibits an acid strength of 340, it is preferable that the amount of acid exhibiting an acid strength in the range of 340 is as large as possible.

;4ミ発明で使用される触媒としては、後述の反応条件
下、即ち酢酸またはプロピオン酸とホルムアルデヒドの
供給モル比、これらの混合ガスの供給速度および反応温
度のそれぞれを後述する好ましい範囲において反応を行
う場合、pKa≦−3,0の酸強度を示す酸量が触媒1
g当り0.05mmo+以上である触媒が、反応の選択
率に加えて転化率をも高め得るため好ましくさらに好ま
しい触媒は0.1mmo1以上のものである。
4) The catalyst used in the present invention is capable of carrying out the reaction under the reaction conditions described below, that is, the molar ratio of supply of acetic acid or propionic acid to formaldehyde, the supply rate of these mixed gases, and the reaction temperature within the preferred ranges described below. When carried out, the amount of acid showing an acid strength of pKa≦-3.0 is the catalyst 1.
A catalyst having an amount of 0.05 mmol or more per g can increase not only the selectivity of the reaction but also the conversion rate, and therefore, a catalyst having a concentration of 0.1 mmol or more is preferred.

また触媒中の酸点の酸強度があまり強すぎると、反応の
選択率が悪くなる1頃向があるので、−11,35≦p
 K a≦−3,0の範囲さらに好ましくは、8.2≦
pKa≦−3,0の範囲の酸強度を示す酸点を有する固
体触媒の使用が好ましい。
Also, if the acid strength of the acid site in the catalyst is too strong, the selectivity of the reaction tends to deteriorate, so -11,35≦p
K a≦−3.0, more preferably 8.2≦
Preference is given to using solid catalysts having acid sites exhibiting an acid strength in the range pKa≦−3.0.

固体触媒のうちの固体酸触媒としては、Si、AI、T
i、Zr、Cd、Sn、Ga、Y。
Among the solid catalysts, solid acid catalysts include Si, AI, and T.
i, Zr, Cd, Sn, Ga, Y.

La等より選ばれた1種もしくは2種以上の元素の酸化
物を主成分とするものやゼオライト等が一般に挙げられ
るが、これらのうち酸強度がpKa≦−3,0の酸点を
有する固体触媒が本発明に用いられ、これらの固体酸触
媒の中でも、上記の酸強度を有するシリカアルミナが、
反応生成物の収率がよく好ましい。
Generally, zeolites, etc., which are mainly composed of oxides of one or more elements selected from La, etc. are used, and among these, solids having acid sites with an acid strength of pKa≦-3.0 Catalysts are used in the present invention, and among these solid acid catalysts, silica alumina having the above acid strength is
It is preferred because the yield of the reaction product is good.

またp)(a≦ 3.0の範囲の酸強度を示す酸点を有
しない酸化物や複合酸化物でも、それラニ13203 
換Wテ1〜s o ’yo <rMm%、以下同じ)の
ホウ素酸化物および/またはP2O5換算で1〜50%
のリン酸化物を含有さヒ、酸強度がpKa≦−3,0の
酸点を導入した固体触媒も使用できる。さらに、このp
Ka≦ 3゜0の酸強度を示す酸量が少なくて、触媒活
性が充分強くない触媒についても、これらの酸化物を含
有させ、所要の酸強度の酸点を導入することによって、
触媒活性を上げることができる。
In addition, even in oxides and composite oxides that do not have acid sites and exhibit an acid strength in the range of p) (a≦3.0,
boron oxide and/or 1 to 50% in terms of P2O5
A solid catalyst containing a phosphorus oxide having an acid site having an acid strength of pKa≦-3.0 may also be used. Furthermore, this p
Even for catalysts with a small amount of acid that exhibits an acid strength of Ka≦3゜0 and whose catalytic activity is not strong enough, by incorporating these oxides and introducing acid sites with the required acid strength,
Catalytic activity can be increased.

ホウ素酸化物やリン酸化物が触媒の50%を超えると、
触媒表面を不活性物質として覆ってしまい、一方1%に
満たないと、触媒に充分な酸強度や酌量が与えられない
ので、いずれも活性はさほど高まらず、逆に低下するこ
ともある。
If boron oxide or phosphorus oxide exceeds 50% of the catalyst,
The surface of the catalyst is covered with an inert substance, and if the amount is less than 1%, sufficient acid strength and extenuating amount will not be given to the catalyst, so the activity will not increase much and may even decrease.

触媒として用いる酸化物や複合酸化物に、ホウ素酸化物
やリン酸化物を添加し含有さ・lる方法としては、これ
ら添加物質の水溶液に酸化物や複合酸化物を含浸させる
含浸法、ハイドロゲルもしくは微粉末を湿った状態で練
り合わせる混練法、触媒原料化合物と添加目的物質の混
合水溶液から同時にゲル化させる共沈法など種々の公知
の方法が通用できる。
Methods for adding boron oxides and phosphorus oxides to oxides and composite oxides used as catalysts include impregnation methods in which an aqueous solution of these additives is impregnated with oxides and composite oxides, and hydrogel. Alternatively, various known methods can be used, such as a kneading method in which fine powders are kneaded in a wet state, and a coprecipitation method in which a mixed aqueous solution of the catalyst raw material compound and the target substance to be added is simultaneously gelled.

またホウ素酸化物の原料としては、ホウ酸、メクホウ酸
、ホウ酸アンモニウムなど、リン酸化物の原料としては
、リン酸、ビロリン酸、次亜リン酸、ポリリン酸、リン
酸アンモニウムなどさまざまなものを使用することがで
きる。
In addition, raw materials for boron oxide include boric acid, mekuboric acid, and ammonium borate, and raw materials for phosphoric oxide include phosphoric acid, birophosphoric acid, hypophosphorous acid, polyphosphoric acid, and ammonium phosphate. can be used.

ホウ素酸化物および/またはリン酸化物を含有させて酸
強度を高めた固体酸触媒としては、Si、AI、Ti、
Zrより選ばれた単独または複数の元素の酸化物よりな
るものが本発明において好ましく、シリカアルミナにホ
ウ素酸化物を添加した触媒、TiO2にホウ素酸化物お
よびリン酸化物の両方を添加した触媒が特に好ましい。
Solid acid catalysts containing boron oxide and/or phosphorus oxide to increase acid strength include Si, AI, Ti,
In the present invention, catalysts consisting of oxides of one or more elements selected from Zr are preferred, and catalysts in which boron oxide is added to silica alumina, and catalysts in which both boron oxide and phosphorus oxide are added to TiO2 are particularly preferred. preferable.

〔ホルムアルデヒ1−〕 ホルムアルデヒドとしては、ホルムアルデヒドそれ自体
だけでな(、ホルマリン、さらにホルムアルデヒドの重
合体である1リオキサンやバラホルムアルデヒドなども
使用することができ、本発明におけるホルムアルデヒド
とは、これらを総称するものである。
[Formaldehyde 1-] As formaldehyde, not only formaldehyde itself (formalin, but also formaldehyde polymers such as 1-lioxane and paraformaldehyde can be used. Formaldehyde in the present invention refers to these collectively. It is something.

〔反応の条件〕[Reaction conditions]

酢酸またはプロピオン酸とホルムアルデヒドの供給モル
比は1:1〜15:1が好ましい。
The molar ratio of acetic acid or propionic acid to formaldehyde is preferably 1:1 to 15:1.

なお、ホルムアルデヒドの重合体を原料とする場合の量
は単量体に換算されるものとする(以下同じ)。
In addition, when a formaldehyde polymer is used as a raw material, the amount shall be converted into a monomer (the same shall apply hereinafter).

このモル比がl:1に満たないと、ホルムアルデヒi′
の分解が起こりやすく、モル比が15:1を超えると、
他の原料である酸の分解による損失が多くなりやすく、
また反応液から目的生成物を回収分離することが面倒に
なる。
If this molar ratio is less than 1:1, formaldehyde i'
decomposition easily occurs, and when the molar ratio exceeds 15:1,
Loss due to decomposition of other raw materials, acid, is likely to be large.
Moreover, it becomes troublesome to recover and separate the target product from the reaction solution.

酸とホルムアルデヒドは混合ガスとして供給され、触媒
上の空間速度(SV)は、300〜5000ml/hr
/m1−Ca L、の範囲が好ましい。SVがこの好ま
しい上限値を超えると転化率が小さくなり、一方下限値
に満たないと選択率が小さくなる。
Acid and formaldehyde are supplied as a mixed gas, and the space velocity (SV) on the catalyst is 300 to 5000 ml/hr.
The range of /m1-Ca L is preferable. If the SV exceeds this preferred upper limit, the conversion rate will be low, while if it is below the lower limit, the selectivity will decrease.

反応温度は200〜500℃の範囲が好ましい。500
℃を超えると酸の分解などにより選択率が低下しやすく
、200℃未満だと反応が遅く転化率が非常に小さくな
りやすいので実用的ではない。
The reaction temperature is preferably in the range of 200 to 500°C. 500
If it exceeds 200°C, the selectivity tends to decrease due to decomposition of the acid, and if it is less than 200°C, the reaction tends to be slow and the conversion rate tends to be very low, which is not practical.

〔参考例、実施例および比較例〕[Reference Examples, Examples and Comparative Examples]

以下に参考例、実施例および比較例を挙げて本発明を説
明するが、本発明の範囲を限定する、ものではない。ま
た本明細書における転化率、選択率および収率の定義は
下記のとおりである。
The present invention will be explained below with reference to reference examples, working examples, and comparative examples, but these are not intended to limit the scope of the present invention. Furthermore, the definitions of conversion rate, selectivity, and yield in this specification are as follows.

消費したホルムア ルデヒドのモル数 転化率(%)−−−−−−−−−−一−−−−−−−−
−−−×lOO供給したホルムア ルデヒドのモル数 生成したAAまたはMAまたは M A AまたはMMAのモル数 選択率(%)−−−−−−−−−−−−−−−−−×1
00消費したホルムアルデヒド のモル数 転化率(%)×選択率(%) 収¥=(%> = −、−、、、、、−−−−、−−−
−−−−、−、、、−00 但し、AAはアクリル酸、MAはアクリル酸メチル、M
AAはメタクリル酸、MMAはメタクリル酸メヂルを示
し、MAおよびM M Aはポルマリン中に含まれるメ
タノールが生成アクリル酸またはメタクリル酸と反応し
た結果化しる生産物である。
Number of moles of formaldehyde consumed Conversion rate (%)
---×lOO Number of moles of formaldehyde supplied Number of moles of AA or MA or MA produced A or MMA Selectivity (%)
00 Moles of formaldehyde consumed Conversion rate (%) x Selectivity (%) Yield = (%> = -, -, ,,,, ----, ----
-----, -,,, -00 However, AA is acrylic acid, MA is methyl acrylate, M
AA stands for methacrylic acid, MMA stands for methyl methacrylate, and MA and MMA are the products resulting from the reaction of the methanol contained in Polmarine with the produced acrylic acid or methacrylic acid.

一参考例一 本発明における触媒の酸点の酸強度測定は、文献(田部
ら「触媒」11 210〜216(’1969))記載
の方法に従って実施した。以下にその方法について述べ
る。
Reference Example 1 The acid strength measurement of the acid site of the catalyst in the present invention was carried out according to the method described in the literature (Tabe et al. "Catalyst" 11 210-216 ('1969)). The method will be described below.

■触媒を乳ばちですりつぶし、100メノンユ通過品を
、500°Cにおいて空気流中で2時間焼成する。
■ Grind the catalyst with a pestle, and calcinate the 100 menonyu product at 500°C in a stream of air for 2 hours.

■焼成後、直ちにデンケ−り に入れ室温近くまで冷却
し、密封して保管する。
■After firing, immediately place in a container to cool to near room temperature, and store tightly closed.

■使用する指示薬の種類に応じた数の50m■三角フラ
スコにトルエンを約IQmlずつ入れる。トルエンは金
属ナトリウムを用いて予め脱水蒸溜したものを使用した
■Pour approximately IQml of toluene into 50m Erlenmeyer flasks, depending on the type of indicator used. Toluene was previously dehydrated and distilled using metallic sodium.

■各三角フラスコに■の焼成ずみ触媒Wg (約0.2
〜0.3g)を秤量して投入する。
■In each Erlenmeyer flask, ■calcined catalyst Wg (approximately 0.2
~0.3g) and add it.

■予め調製した各指示薬の0.1%トルエン溶液を、そ
れぞれの三角フラスコに0.3ml程度加える。触媒は
直ちに酸性色もしくは塩基性色を呈する。なお、使用し
た指示薬は表1に示すとおりである。
(2) Add approximately 0.3 ml of a 0.1% toluene solution of each indicator prepared in advance to each Erlenmeyer flask. The catalyst immediately exhibits an acidic or basic color. Note that the indicators used are as shown in Table 1.

表1 変色 指示薬 共役酸のpKa 塩基性−酸性p−N1tro
toluene −11,35無色−黄Anthraq
uinone −8,2無色−黄Benzalacet
ophenone −5,6無色−黄Diclnnam
alacetone −3,0黄−一−赤4−Benz
eneazodiphenylamine +1.5 
黄−紫p−Dimethylaminoazobenz
ene +3.3 黄−赤Methyl Red +4
.8 黄−赤■酸性色を呈したものにつぃ′乙予め調製
をしたN/Ion−ブチルアミンのトルエン溶液を、マ
イクロビユレットを用いて滴下し、酸性色の呈色の無い
状態までの滴定量(ml)を測定する。滴下の間隔は2
4時間程度がける。
Table 1 Color change indicator pKa of conjugate acid Basic-acidic p-N1tro
toluene -11,35 colorless - yellow Anthraq
uinone -8,2 colorless - yellow Benzalacet
ophenone -5,6 colorless-yellow Diclnnam
alacetone -3,0 yellow-1-red 4-Benz
eneazodiphenylamine +1.5
Yellow-Purple p-Dimethylaminoazobenz
ene +3.3 Yellow-Red Methyl Red +4
.. 8. Yellow-red ■Those exhibiting an acidic color B. Add a previously prepared toluene solution of N/Ion-butylamine dropwise using a microbiulet, and titrate until no acidic color develops. Measure the volume (ml). The interval between drops is 2
It takes about 4 hours.

なお、用いたN/ion ブチルアミンの1〜ルエン溶
液のファクター <f> は、フェノルフタレインを指
示薬とするN/10シユウ酸標準溶液の滴定により決定
した。
Note that the factor <f> of the 1-toluene solution of N/ion butylamine used was determined by titration of an N/10 oxalic acid standard solution using phenolphthalein as an indicator.

■酸量は次のように算出した。■The amount of acid was calculated as follows.

pKa=αの指示薬を使用したときの滴定量をVmlと
すると、pKa≦αの酸量A (mmof/g Cat
、)は次のようになる。
If the titration amount when using an indicator with pKa=α is Vml, the acid amount A with pKa≦α (mmof/g Cat
, ) becomes as follows.

f ×■ A = −−、−、、、−−−−−−−10×W ここで、Wは触媒量(g)、fはファクターである。f ×■ A = −−, −, , −−−−−−10×W Here, W is the amount of catalyst (g), and f is a factor.

上記のようにして種々のpKaの指示薬を用いr!!量
を測定するごとによって、触媒の酸強度分布を知ること
ができる。
Using various pKa indicators as described above, r! ! By measuring each amount, the acid strength distribution of the catalyst can be determined.

実施例1 前述した参考例の方法に従って測定したpKa≦−3,
0の酸量が0.37mmo 17gCa t、であるシ
リカアルミナ(AI203含量13%)を32〜48ノ
、シュにふるい、その約1gを触媒として反応管につめ
、N2気流中400℃に昇温してから1時間後に、酢酸
とホルマリン(試薬特級)の気相反応を開始した。
Example 1 pKa≦-3, measured according to the method of the reference example described above.
Silica alumina (AI203 content 13%) with an acid content of 0.37 mmo 17 g Cat was sieved 32 to 48 times, about 1 g of it was packed into a reaction tube as a catalyst, and the temperature was raised to 400°C in a N2 stream. One hour after that, a gas phase reaction between acetic acid and formalin (special grade reagent) was started.

但し、酢酸/ホルムアルデヒドのモル比5/1、反応温
度350℃、空間速度2300m1/hr/m1−Ca
t、であった。反応混合ガスの供給開始後30〜90分
の間の生成物をガスクロマトグラフにより分析した。そ
の結果、ホルムアルデヒド転化率89%、AAil択率
60%、MA選沢率2%、AA+MA収率55%であっ
た。
However, the molar ratio of acetic acid/formaldehyde is 5/1, the reaction temperature is 350°C, and the space velocity is 2300 m1/hr/m1-Ca.
It was t. The products produced within 30 to 90 minutes after the start of supply of the reaction mixture gas were analyzed by gas chromatography. As a result, the formaldehyde conversion rate was 89%, the AAil selection rate was 60%, the MA selection rate was 2%, and the AA+MA yield was 55%.

なお、MAの生成はホルマリン中のメタノールに起因し
ておりその生成量は少ない。
Note that the production of MA is due to methanol in formalin, and the amount produced is small.

実施例2 シリカアルミナ(AI203含量28%、pKa≦ 3
. 00)酸量が0.32mmol/gCat、)を触
媒とし、空間速度を1850ml/’hr/ml Ca
t、とした以外は、実施例1と同様の条件で酢酸とホル
マリンの反応を行った。 その結果、ホルムアルデヒド
′転化′j!78%、AAjp択¥−51%、MAi3
沢率2%、へA+MA収率41%であった。
Example 2 Silica alumina (AI203 content 28%, pKa≦3
.. 00) The acid amount is 0.32 mmol/g Cat, ) is used as a catalyst, and the space velocity is 1850 ml/'hr/ml Ca
The reaction between acetic acid and formalin was carried out under the same conditions as in Example 1, except that the reaction time was t. As a result, formaldehyde ′conversion′j! 78%, AAjp selection ¥-51%, MAi3
The yield was 2% and the A+MA yield was 41%.

実施例3 実施例2のシリカアルミナ(A I2 o3 含量28
%)を、B2O3換算濃度12%のホう酸水溶液に含浸
させ、湯浴中で蒸発乾固し、110℃で一晩乾燥したあ
き、400 ’cにおいて2時間、空気流中で焼成して
、13203 m持触媒を調製した。
Example 3 Silica alumina of Example 2 (A I2 o3 content 28
%) was impregnated in an aqueous solution of boric acid with a B2O3 concentration of 12%, evaporated to dryness in a hot water bath, dried overnight at 110 °C, and calcined at 400 °C for 2 hours in a stream of air. , 13203 m-supported catalyst was prepared.

この触媒はpKa≦ 3.0における酸量゛が0.35
mmo 17g−Ca L、であった。この触媒を用い
て実施例2と同様の条件で酢酸とホルマリンの反応を行
ったところ、ポルノ、アルデヒド転化率58%、AA選
択率8(H石、MA選択率3%、AAIMA収率48%
であった。
This catalyst has an acid content of 0.35 at pKa≦3.0.
mmo 17g-Ca L. When acetic acid and formalin were reacted using this catalyst under the same conditions as in Example 2, the conversion rate of porn and aldehyde was 58%, the AA selectivity was 8 (Hite, MA selectivity was 3%, and the AAIMA yield was 48%).
Met.

実施例4 pl〈a≦−3゜OにおけるIllが0.0]mmoI
/g Cat、であるT I02に、実施例3の方法に
準じて、B2O3換算濃度10%で、P2O5換算濃度
15%のホウ酸とリン酸の混合水溶液を用いてB2O3
とP2O5を含有させた。
Example 4 pl<Ill at a≦−3°O is 0.0] mmol
/g Cat, according to the method of Example 3, using a mixed aqueous solution of boric acid and phosphoric acid with a concentration of 10% in terms of B2O3 and 15% in terms of P2O5.
and P2O5.

この触媒はpKa≦−3,0における酸量が0.10m
mo 17g−−−Ca t、であった。この触媒を用
いて実施例1と同様の条件で酢酸とホルマリンの反応を
行ったところ、ホルムアルデヒド転化率44%、八人選
択率80%、MA選択率3%、AA+MA収率37%で
あった。
This catalyst has an acid content of 0.10 m at pKa≦-3.0.
mo 17g---Cat. When acetic acid and formalin were reacted using this catalyst under the same conditions as in Example 1, the formaldehyde conversion rate was 44%, the eight-member selectivity was 80%, the MA selectivity was 3%, and the AA+MA yield was 37%. .

実施例5〜8 Ti02に混練法によりリン酸化物をP2 o5換算で
8%含有させた触媒にさらに実施例3と同様にして、ホ
ウ素酸化物を8203換算15%含有させた。
Examples 5 to 8 In the same manner as in Example 3, the catalyst was made to contain 8% of phosphorus oxide in terms of P2 o5 using a kneading method in Ti02, and was further made to contain 15% of boron oxide in terms of 8203.

この触媒はpKa≦−3,0における酌量が0.18m
mo 17g−Ca t、であった。この触媒を用いて
実施例1と同様の前処理を行い、続いて酢酸とホルマリ
ンを反応させた。その結果および反応条件を表2に示す
This catalyst has an extenuating capacity of 0.18m at pKa≦-3.0
mo 17g-Cat. The same pretreatment as in Example 1 was performed using this catalyst, and then acetic acid and formalin were reacted. The results and reaction conditions are shown in Table 2.

表2 実施例9 市販のγ−A1203に、実施例3と同様にして、ホウ
素酸化物をB2 o−、換算で10%含有させた。
Table 2 Example 9 Commercially available γ-A1203 was made to contain 10% of boron oxide in terms of B2 o- in the same manner as in Example 3.

この触媒はpKa≦−3,0における酸量が0、I O
mmo 17g−Ca t、であった。この触媒を用い
て実施例1と同様の条件で酢酸とホルマリンの反応を行
ったところ、ホルムアルデヒド転化率38%、AA選択
率71%、MA選択率2%、AA+MAAl28%であ
った。
This catalyst has an acid content of 0 at pKa≦-3,0, I O
mmo 17g-Cat. When acetic acid and formalin were reacted using this catalyst under the same conditions as in Example 1, the formaldehyde conversion rate was 38%, the AA selectivity was 71%, the MA selectivity was 2%, and AA+MAAl was 28%.

実施例10 混練法によりAl2O]に、ホウ素酸化物をB、203
換算で15%含有さu′た触媒に、実施例3と同様にし
て、さらにホウ素酸化物をB20コ換算で12%含有さ
せた。
Example 10 Boron oxide was added to Al2O by kneading method B, 203
In the same manner as in Example 3, the catalyst containing 15% u' in terms of B20 was further added with 12% boron oxide in terms of B20.

この触媒はpKa≦ 3.0における酸量が0.1 O
mmo 17g−−Ca t、であった。この触媒を用
いて実施例1と同様の条件で酢酸とホルマリンの反応を
行ったところ、ホルムアルデヒド転化¥A43%、AA
選択率64%、MA選択率1%、AA+MAAl28%
であった。
This catalyst has an acid content of 0.1 O at pKa≦3.0.
mmo 17g--Cat. When acetic acid and formalin were reacted using this catalyst under the same conditions as in Example 1, formaldehyde conversion was 43%.
Selection rate 64%, MA selection rate 1%, AA+MAAl 28%
Met.

実施例11 混練法によりAl2O3に、リン酸化物をB20、換算
で12%含有させた触媒に、実施例3と同様にして、さ
らにホウ素酸化物をB2 oコ換算で10%含有させた
Example 11 A catalyst prepared by mixing Al2O3 and containing 12% of phosphorous oxide in terms of B20 was further made to contain 10% of boron oxide in terms of B20 in the same manner as in Example 3.

この触媒はpKa≦ 3.0における酸量が0.5Qm
mo l/(、Ca t、であった・この触媒を用いて
実施例1と同様の条件で酢酸とホルマリンの反応を行っ
たところ、ホルムアルデヒド転化率43%、AA選択率
69%、MA選択率2%、A A + Mへ収率31%
であった。
This catalyst has an acid content of 0.5Qm at pKa≦3.0.
mol/(, Cat) When acetic acid and formalin were reacted using this catalyst under the same conditions as in Example 1, the formaldehyde conversion rate was 43%, the AA selectivity was 69%, and the MA selectivity was 2%, yield 31% to A A + M
Met.

実施例12 混練法により調製したT i 02 −A ] 203
(Ti02含量14%)に実施例3と同様にして、ホウ
素酸化物を8203換算で10%含有さ・lた。
Example 12 T i 02 -A prepared by kneading method] 203
(Ti02 content: 14%) was treated in the same manner as in Example 3 to contain 10% of boron oxide in terms of 8203.

この触媒はp K a≦−3,0における酸量が0.3
3mmo 17g −Ca t、であった。この触媒を
用いて実施例1と同様の条件で酢酸とホルマリンの反応
を行ったところ、ホルムアルデヒド転化率38%、AA
選択率64%、MA選択率2%、へへ十MA収率25%
であった。
This catalyst has an acid content of 0.3 at pK a≦-3,0.
It was 3mmo 17g-Cat. When acetic acid and formalin were reacted using this catalyst under the same conditions as in Example 1, the formaldehyde conversion rate was 38%, and the AA
Selectivity 64%, MA selectivity 2%, heheju MA yield 25%
Met.

実施例13 混練法により調製したZ B02−T i 02 (Z
r02含量50%)に実施例3の方法に準じて、ピロリ
ン酸水溶液より、リン酸化物をB20、換算で15%含
有させた。
Example 13 Z B02-T i 02 (Z
According to the method of Example 3, phosphoric oxide was added to B20 (15% in terms of B20) from an aqueous pyrophosphoric acid solution.

この触媒はpKa≦−3,0における酸量が0.12m
mo 17g−−−Ca t、であった。この触媒を用
いて実施例1と同様の条件で酢酸とホルマリンの反応を
行ったところ、ホルムアルデヒド転化率55%、AA選
択率66%、MA選択率3シロ、へへ〜IMA収率38
%であった。
This catalyst has an acid content of 0.12 m at pKa≦-3.0.
mo 17g---Cat. When acetic acid and formalin were reacted using this catalyst under the same conditions as in Example 1, the formaldehyde conversion rate was 55%, the AA selectivity was 66%, the MA selectivity was 3, and the IMA yield was 38%.
%Met.

実施例14 混練法により調製したZ r 02−A I203(Z
 r 02含量20%)に実施例3と同様にし。
Example 14 Z r 02-A I203 (Z
r02 content 20%) as in Example 3.

て、ホウ素酸化物をB203tj!!算で10%含有さ
せた。
Then, use boron oxide as B203tj! ! The total content was 10%.

この触媒はpKa≦−3,0における酸量が0、 32
mmo ] ]/g−−Cat、であった。この触媒を
用いて実施例1と同様の条件で酢酸とホルマリンの反応
を行ったところ、ホルムアルデヒじ転化率38%、ΔΔ
選択率47%、M A選択率2%、AA+MA収率20
%であった。
This catalyst has an acid content of 0, 32 at pKa≦-3,0.
mmo ] ]/g--Cat. When acetic acid and formalin were reacted using this catalyst under the same conditions as in Example 1, the formaldehyde conversion rate was 38%, ΔΔ
Selectivity 47%, MA selectivity 2%, AA+MA yield 20
%Met.

実施例15 X型ゼオライトを、N1−14CI水溶液を用いてプロ
トン型にした触媒(pKa≦ 3.0における酌量が0
.63mmol/g Cat。
Example 15 A catalyst in which X-type zeolite was made into a proton type using an N1-14CI aqueous solution (the extenuating amount at pKa≦3.0 was 0)
.. 63 mmol/g Cat.

)を用いて実施例1と同様の条(1で酢酸とホルマリン
の反応を行った。
) The reaction between acetic acid and formalin was carried out in the same manner as in Example 1 (1).

その結果、ホルムアルデヒド転化¥−39%、AA選択
率36%、MA選択率2%、AΔ!MΔ収率15%であ
った。
As a result, formaldehyde conversion ¥-39%, AA selectivity 36%, MA selectivity 2%, AΔ! The MΔ yield was 15%.

実施例16 実施例1のシリカアルミナ(A]203含量13%)を
触媒として、酢酸とトリオキ号ンの反応をおこなった。
Example 16 A reaction between acetic acid and trioquine was carried out using the silica alumina (A) 203 content of 13% of Example 1 as a catalyst.

但し、酢酸/ l・リオキサンのエル比は5/1、反応
温度350℃、空間速度450m1/hr/m1−Ca
 t、であり、iiJ処理方法は、実施例1と同様であ
る。
However, the el ratio of acetic acid/l-lioxane is 5/1, the reaction temperature is 350°C, and the space velocity is 450 m1/hr/m1-Ca.
t, and the iiJ processing method is the same as in Example 1.

その結果トリオキサン転化率72%、ΔΔ選択率53%
、AA収率38%であった。
As a result, trioxane conversion rate was 72% and ΔΔ selectivity was 53%.
, the AA yield was 38%.

実施例17 実施例2のシリカアルミナ(AI203含量28%)を
触媒として、実施例15と同様の条件で酢酸とトリオキ
サンの反応をおこなったところ、トリオキサン転化率4
8%、AΔ選択率61%、へA収率29%であった。
Example 17 When acetic acid and trioxane were reacted under the same conditions as in Example 15 using the silica alumina of Example 2 (AI203 content 28%) as a catalyst, the trioxane conversion rate was 4.
8%, AΔ selectivity 61%, and HeA yield 29%.

実施例18 混練法によりTiO2に、リン酸化物をP2O、換算で
8!I6含有させた触媒に、実施例4と同様にして、ホ
ウ酸とリン酸の混合水溶液よりさらに、ホウ素酸化物を
B2O3換算で15%、リン酸化物をP2O5換算で1
0%を含有させた。
Example 18 Using the kneading method, TiO2 is converted to P2O, and phosphorus oxide is converted to P2O, which is 8! In the same manner as in Example 4, boron oxide was added to the I6-containing catalyst by 15% in terms of B2O3, and phosphorus oxide was added to 15% in terms of P2O5 from the mixed aqueous solution of boric acid and phosphoric acid.
It contained 0%.

この触媒はpKa≦−3,0におりる酌量が0.45m
mo 17g−−Ca t、であった。この触媒を用い
プロピオン酸とホルマリンの反応を行った。但し、プロ
ピオン酸/ホルムアルデヒドのモル比は5/l、反応温
度350℃、空間速度2500m l/h r/m l
−Ca t、であり、前処理方法は実施例1と同様であ
る。
This catalyst has an extenuating capacity of 0.45m to satisfy pKa≦-3.0.
mo 17g--Cat. Using this catalyst, propionic acid and formalin were reacted. However, the molar ratio of propionic acid/formaldehyde is 5/l, the reaction temperature is 350°C, and the space velocity is 2500ml/hr/ml.
-Cat, and the pretreatment method is the same as in Example 1.

その結果、ホルムアルデヒド転化率62%、MAA選択
率56%、MMA選択率2%、MAAIMMA収率37
%であった。
As a result, formaldehyde conversion rate was 62%, MAA selectivity was 56%, MMA selectivity was 2%, and MAAIMMA yield was 37%.
%Met.

比較例1〜4 表3に示した各触媒を用いて酢酸とホルマリンの反応を
おこなった。但し、酢酸/ホルマリンのモル比は5、反
応温度350°Cであり、空間速度およびそれぞれの触
媒のpKa≦ 3゜0における酸量、反応結果を表3に
示した。
Comparative Examples 1 to 4 Acetic acid and formalin were reacted using each catalyst shown in Table 3. However, the molar ratio of acetic acid/formalin was 5, the reaction temperature was 350°C, and Table 3 shows the space velocity, acid amount and reaction results at pKa≦3°0 of each catalyst.

表3 fil単位: mmo l/g−Ca t。Table 3 fil unit: mmol/g-Cat.

(2)単位: m l / h r / m ]−Ca
 t 。
(2) Unit: ml/hr/m]-Ca
t.

比較例5 13.3≦pKa≦+4.8の酸強度の酸点のみを有し
、かつこの酸強度における酸量が0゜07mmol/g
 Cat、であるX型ゼオライトを触媒として、実施例
1と同様の条件で酢酸とホルマリンの反応を行った。
Comparative Example 5 It has only acid sites with an acid strength of 13.3≦pKa≦+4.8, and the amount of acid at this acid strength is 0°07 mmol/g
A reaction between acetic acid and formalin was carried out under the same conditions as in Example 1 using Cat.X type zeolite as a catalyst.

その結果ホルムアルデヒド転化率31%、へへ選択率3
.3%、MA選択率01%、AA+MA収率1%であっ
た。
As a result, the formaldehyde conversion rate was 31%, and the hehe selectivity was 3.
.. 3%, MA selectivity 01%, and AA+MA yield 1%.

(3)発明の効果 本発明における固体触媒はその活性が極めて高く、これ
を用いることによって、反応の選択率、転化率ともに良
好で、従って高収率で、酢酸またはプロピオン酸とホル
ムアルデヒドから、アクリル酸またはメタクリル酸を得
ることができる。
(3) Effects of the invention The solid catalyst of the present invention has extremely high activity, and by using it, the selectivity and conversion rate of the reaction are both good. acid or methacrylic acid can be obtained.

特許出願人 東亜合成化学工業株式会社 手続補正書 昭和59年 7月 40 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第100418号 2、発明の名称 アクリル酸またはメタクリル酸の製造方法3、補正をす
る者 事件との関係 特許出願人 住所 東京都港区西新橋1丁目14番1号4、補正の対
象 明細書の発明の詳細な説明の欄 5、 7ii正の内容 (1)明細書第30頁8行目に rMA選択選択率01占Jるを rMAii択率0%」と補正する。
Patent Applicant Toagosei Kagaku Kogyo Co., Ltd. Procedural Amendment July 40, 1980 Manabu Shiga, Commissioner of the Patent Office1, Indication of the Case 1982 Patent Application No. 1004182, Name of the Invention Manufacture of acrylic acid or methacrylic acid Method 3, Relationship with the case of the person making the amendment Patent applicant address: 1-14-1-4 Nishi-Shinbashi, Minato-ku, Tokyo Column 5, detailed description of the invention in the specification to be amended, 7ii Correct contents (1) ) On page 30, line 8 of the specification, correct the rMA selection rate of 01 to ``rMAii selection rate of 0%''.

Claims (1)

【特許請求の範囲】[Claims] 1、酢酸またはプロピオン酸を、触媒の存在下に気相に
おい”ζホルムアルデヒドと接触反応させてアクリル酸
またはメタクリル酸を製造する方法におい゛C1酸強度
がpKa≦−3,0の酸点を有する固体触媒を使用する
ことを特徴とするアクリル酸またはメタクリル酸の製造
方法。
1. In the method of producing acrylic acid or methacrylic acid by contacting acetic acid or propionic acid with formaldehyde in the gas phase in the presence of a catalyst, C1 has an acid site with an acid strength of pKa≦-3.0. A method for producing acrylic acid or methacrylic acid, characterized by using a solid catalyst.
JP59100418A 1984-05-21 1984-05-21 Preparation of acrylic acid or methacrylic acid Granted JPS60246342A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59100418A JPS60246342A (en) 1984-05-21 1984-05-21 Preparation of acrylic acid or methacrylic acid
EP85106163A EP0164614B1 (en) 1984-05-21 1985-05-20 Process for the production of acrylic acid or methacrylic acid
DE8585106163T DE3561456D1 (en) 1984-05-21 1985-05-20 Process for the production of acrylic acid or methacrylic acid
US06/736,621 US4677225A (en) 1984-05-21 1985-05-21 Process for the production of acrylic acid or methacrylic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100418A JPS60246342A (en) 1984-05-21 1984-05-21 Preparation of acrylic acid or methacrylic acid

Publications (2)

Publication Number Publication Date
JPS60246342A true JPS60246342A (en) 1985-12-06
JPH0522692B2 JPH0522692B2 (en) 1993-03-30

Family

ID=14273429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100418A Granted JPS60246342A (en) 1984-05-21 1984-05-21 Preparation of acrylic acid or methacrylic acid

Country Status (1)

Country Link
JP (1) JPS60246342A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305363A (en) * 2002-02-15 2003-10-28 Toyota Central Res & Dev Lab Inc Catalyst carrier and catalyst for exhaust gas treatment
WO2013022095A1 (en) * 2011-08-11 2013-02-14 住友化学株式会社 Production method for methacrylic acid compound, and catalyst

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003305363A (en) * 2002-02-15 2003-10-28 Toyota Central Res & Dev Lab Inc Catalyst carrier and catalyst for exhaust gas treatment
WO2013022095A1 (en) * 2011-08-11 2013-02-14 住友化学株式会社 Production method for methacrylic acid compound, and catalyst

Also Published As

Publication number Publication date
JPH0522692B2 (en) 1993-03-30

Similar Documents

Publication Publication Date Title
US4464539A (en) Process for producing α,β-unsaturated carboxylic acids or esters thereof
JPH01288339A (en) Solid-acid catalyst and its production
JPH0532323B2 (en)
CA1163618A (en) Methacrolein oxidation catalysts and their use
JPS5826329B2 (en) Seizouhou
CA2801279C (en) A mixed oxide catalyst and a process for the production of ethylenically unsaturated carboxylic acids or esters
JPS60246342A (en) Preparation of acrylic acid or methacrylic acid
JPH0621100B2 (en) Method for producing acrylic acid or methacrylic acid
JPS582232B2 (en) Method for producing acrylonitrile
JPS61118344A (en) Production of acrylic acid or methacrylic acid
CA1059498A (en) Production of maleic aahydride
JPS6226245A (en) Production of acrylic acid or methacrylic acid
JPS5912758A (en) Catalyst for preparing methacrylic acid
JPS6366146A (en) Production of acrylic acid or methacrylic acid
JP2805042B2 (en) Ethanol production method
JP3328734B2 (en) Method for producing phenoxy-substituted benzonitrile
JPS5927217B2 (en) Production method of catalyst for methacrylic acid production
JPH08295687A (en) Production of citraconic anhydride
JPS62221651A (en) Production of acrylic acid or methacrylic acid
US6649774B2 (en) Catalysts and processes for the conversion of succinates to citraconates or itaconates
CN107531607A (en) Method for lactate to be dehydrated into acrylic acid or acrylates
JPH05301842A (en) Production of lower fatty acid ester
UA142510U (en) METHOD OF OBTAINING ACYLIC ACID SYNTHESIS CATALYST IN GAS PHASE
JPS5844659B2 (en) Manufacturing method of pyrrole
JPS632951A (en) Production of methyl methacrylate