JPS60244838A - Detector for degree of contamination of waste gas in continuous heat treating device for fabric - Google Patents

Detector for degree of contamination of waste gas in continuous heat treating device for fabric

Info

Publication number
JPS60244838A
JPS60244838A JP59100663A JP10066384A JPS60244838A JP S60244838 A JPS60244838 A JP S60244838A JP 59100663 A JP59100663 A JP 59100663A JP 10066384 A JP10066384 A JP 10066384A JP S60244838 A JPS60244838 A JP S60244838A
Authority
JP
Japan
Prior art keywords
infrared
contamination
infrared light
hydrocarbon
exhaust duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59100663A
Other languages
Japanese (ja)
Other versions
JPH0260258B2 (en
Inventor
Ryoso Matsumoto
松本 亮壮
Hiroaki Kumagai
博昭 熊谷
Mitsuru Kogure
充 木暮
Ikumitsu Yamada
山田 郁光
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
C-REN KK
MEITO SCI KK
Seiren Co Ltd
Original Assignee
C-REN KK
MEITO SCI KK
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by C-REN KK, MEITO SCI KK, Seiren Co Ltd filed Critical C-REN KK
Priority to JP59100663A priority Critical patent/JPS60244838A/en
Publication of JPS60244838A publication Critical patent/JPS60244838A/en
Publication of JPH0260258B2 publication Critical patent/JPH0260258B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/031Multipass arrangements

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Drying Of Solid Materials (AREA)
  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To apply IR absorption to detect the concn. of gaseous hydrocarbon by providing apertures to both side faces of a ventilation duct and disposing an IR emitting part, IR filter and IR detecting part therein. CONSTITUTION:The apertures 2, 2' are provided on both side faces of the ventilation duct 1. The IR emitting part 3 and the IR detecting part 5 disposed with the IR filter 4 in the front part are disposed in said apertures so as to face each other. The IR filter having no IR absorption by air and having good IR transmittance in a 3-4mu IR wavelength region where IR absorption by hydrocarbon is large is selected. The part 5 is constituted with an IR sensor, condenser optical system and amplifier. IR transmittable transparent plates 6, 6' are provided in order to protect the IR emitting part and IR detecting part against heat and contamination with hydrocarbon; further cold and clean air feed parts 8, 8' are provided and air purging is executed in order to protect the transparent plates.

Description

【発明の詳細な説明】 本発明は、乾燥機、ヒートセッター、テンター、ベーキ
ング、スチーマ−など布帛の連続熱処理装置の排ガスの
汚染度検知装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting the degree of contamination of exhaust gas from continuous heat treatment equipment for fabrics such as dryers, heat setters, tenters, bakers, and steamers.

従来、この種の連続熱処理装置においては合成繊維布帛
の寸法安定化を行う為、合成繊維の熱可塑性全利用し、
染色工程前後に200℃前後の熱風で加熱処理上行うが
、通常この熱風は連続的に処理装置外へ排気されており
多大な熱エネルギーの損失となっている。
Conventionally, in this type of continuous heat treatment equipment, in order to stabilize the dimensions of synthetic fiber fabrics, the thermoplastic properties of synthetic fibers are fully utilized.
Before and after the dyeing process, heat treatment is performed using hot air at around 200°C, but normally this hot air is continuously exhausted out of the processing equipment, resulting in a large loss of thermal energy.

この熱エネルギー損失を減少させる為には排気量を絞る
のがよいが絞り方によっては当該連続熱処理装置内全通
過する布帛に汚れが発生する場合がある。
In order to reduce this thermal energy loss, it is better to restrict the exhaust volume, but depending on the method of restriction, stains may occur on the fabric that passes through the continuous heat treatment apparatus.

本発明は、当該装置の排気の汚染度を検知し通過する布
帛に汚れ音発生させない程度に排気量全校り熱エネルギ
ー損失全最小とする為の検知装置全対象とするものであ
る。
The present invention is intended for all detection devices for detecting the degree of contamination of the exhaust gas of the device, and minimizing the thermal energy loss by calibrating the entire exhaust amount to an extent that no contamination noise is generated on the passing fabric.

本発明者等は布帛の汚染物質について検討した結果、紡
糸、コーニング、製織編時に使用される繊維油剤から発
生する炭化水素ガスが濃縮冷却結露し布帛上に滴下する
ものであることがわかった。
As a result of studying contaminants on fabrics, the present inventors found that hydrocarbon gas generated from textile oils used during spinning, corning, weaving and knitting condenses, condenses, and drips onto fabrics.

又、これらの炭化水素ガスは主に3〜4μの赤外波長域
に−CH3,−CH2−の伸縮振動に基づく吸収帯?持
つパラフィン系炭化水素及びその化合物であることがわ
かった。
Also, these hydrocarbon gases mainly have an absorption band in the 3-4 μ infrared wavelength region based on the stretching vibration of -CH3, -CH2-. It was found that these are paraffinic hydrocarbons and their compounds.

一般に、炭化水素ガス体の濃度検知装置としては、水素
炎イオン化検知器全応用したガスクロマトグラフ、赤外
線吸収全応用したもの、可視光及び紫外光吸収全応用し
たもの、レーザー光によるラマン散乱音応用したもの等
がある。
In general, concentration detection devices for hydrocarbon gases include gas chromatographs that use hydrogen flame ionization detectors, devices that use infrared absorption, devices that use visible and ultraviolet absorption, and devices that use Raman scattered sound using laser light. There are things etc.

従来、実用されている炭化水素濃度検知装置の多くは水
素炎イオン化検知器?応用したもの及び赤外線吸収全応
用したものである。
Conventionally, most of the hydrocarbon concentration detection devices in practical use are hydrogen flame ionization detectors. This is a fully applied infrared absorption system.

前者は、水素炎中に有機物質が混入してくると炭素全中
心としたイオン七発生しそのイオンの数は有機物質の量
に比例する事全原理とし、後者は炭化水素による赤外線
吸収?原理とするものである。炭化水素分子による赤外
線吸収は気相における定量分析においてもLamber
C−Beerの法則が成立し、入射赤外線強度IO2透
過赤外線強度I、赤外線吸光度E、赤外線吸光係数に、
炭化水素濃度Cとすると次の式が成立する。
The former is based on the principle that seven carbon-centered ions are generated when organic substances are mixed into a hydrogen flame, and the number of ions is proportional to the amount of organic substances, and the latter is based on the principle that infrared rays are absorbed by hydrocarbons. This is the principle. Infrared absorption by hydrocarbon molecules is also used in quantitative analysis in the gas phase.
C-Beer's law is established, and the incident infrared intensity IO2 transmitted infrared intensity I, infrared absorbance E, and infrared extinction coefficient are:
When the hydrocarbon concentration is C, the following equation holds true.

O E = l og −7−= K−C 赤外線吸光係数Kk求める為には、濃度既知の炭化水素
試料での赤外線吸光度をめれば算出でき、赤外線吸光係
数がわかれば成る赤外線吸光度における炭化水素の絶対
濃度がわかる。
O E = l og -7-= K-C To determine the infrared absorption coefficient Kk, it can be calculated by calculating the infrared absorbance of a hydrocarbon sample with a known concentration. The absolute concentration of

しかしいずれも検知装置中にサンプルガス會導入させる
方法?とっておシ、応答速度が遅い事・導入管のメンテ
ナンス(炭化水素の冷却結露)の問題でプロセス計器と
して充分な性能を持つものがない。
However, in either case, is there a way to introduce the sample gas into the detection device? Especially, there is no one with sufficient performance as a process instrument due to slow response speed and problems with maintenance of the inlet pipe (condensation due to cooling of hydrocarbons).

本発明者等は上記の難点を解消すべく検討した結果、プ
ロセス計器として充分な性能金偏え、赤外線吸収を応用
した炭化水素ガス濃度検知装置全発明するに到った。
The inventors of the present invention have conducted studies to solve the above-mentioned problems, and as a result, they have invented a hydrocarbon gas concentration detection device that utilizes infrared absorption and has sufficient performance as a process instrument.

尚、炭化水素粒子の紫外線によるレーリー散乱を応用し
た炭化水素ガス検知装置も検討したが、この方式は粒子
の大きさによる影響が大きく炭化水素ガス濃度検知装置
としては適性がない事が判明した。
We also considered a hydrocarbon gas detection device that applied Rayleigh scattering of hydrocarbon particles due to ultraviolet rays, but this method was found to be unsuitable as a hydrocarbon gas concentration detection device due to the large effect of particle size.

即ち本発明は布帛の連続処理装置の排気ダクトにおける
排ガスの汚染度?連続的に検知する装置において、排気
ダクトの両側面に開口部欠設け、そこに赤外発光部、赤
外フィルター及び赤外検知部を配置してなる布帛の連続
熱処理装置の排気ダクトにおける排ガスの汚染度検知装
置全提供するものである。
In other words, the present invention improves the degree of contamination of exhaust gas in the exhaust duct of continuous processing equipment for fabrics. In a device that continuously detects exhaust gas in the exhaust duct of a continuous heat treatment device for fabric, the exhaust duct has an opening on both sides and an infrared light emitting section, an infrared filter, and an infrared detection section are arranged there. All contamination level detection devices are provided.

本発明装置に供する排ガスは炭化水素を主体に含み10
0−220℃の温度を有する。
The exhaust gas supplied to the device of the present invention mainly contains hydrocarbons.
It has a temperature of 0-220°C.

本発明の検知装置は、排気ダクトの両側面に開口部を設
け、赤外発光部と赤外受光部?対向設置すること全基本
構成とする。
The detection device of the present invention has openings on both sides of the exhaust duct, an infrared light emitting part and an infrared light receiving part. All basic configurations are to be installed facing each other.

尚、赤外受光部は赤外フィルターと赤外検知部より構成
されるものとする。
Note that the infrared light receiving section is composed of an infrared filter and an infrared detection section.

第1図により詳述すると、排気ダクト(1)の両側面に
開口部(2,2:)v設は赤外発光部(3)と、前部に
赤外フィルター(4)上記した赤外検知部(5権対向す
る様に設置する。
To explain in detail with reference to Fig. 1, the openings (2, 2:) on both sides of the exhaust duct (1) are equipped with an infrared light emitting part (3), and an infrared filter (4) in the front part. Detection unit (installed so that the five powers are facing each other.

赤外発光源としては赤外発光ダイオード、赤外発光ラン
プ例えばタングステンランプ、及び水銀灯赤外発光発熱
体例えば炭化ケイ素焼結体や酸化ジルコニウム(含酸化
イツトリウム、酸化トリウム)の焼結体、その他ニクロ
ム線を巻いたものや炭素アークがある。赤外フィルター
としては色ガラスフィルター、多層膜干渉フィルターが
あるが、フィルターとしては、空気による赤外吸収がな
くかつ炭化水素による赤外吸収の大きい3〜4μの赤外
波長域において赤外透過率の良好なもの全選択する。
Examples of infrared light sources include infrared light emitting diodes, infrared light emitting lamps such as tungsten lamps, and mercury lamps. There are wire-wound ones and carbon arcs. Infrared filters include colored glass filters and multilayer interference filters, but filters have infrared transmittance in the 3-4μ infrared wavelength range, where there is no infrared absorption by air and where infrared absorption by hydrocarbons is large. Select all the good ones.

赤外検知部(5)は赤外センサー、集光系光学材料、増
幅器から構成される。赤外センサーは大別すると量子型
と熱型がある。量子型は赤外線全光量子としてとらえそ
のエネルギーによる電離作用の結果としての電気伝導度
の変化ケとらえるものである。
The infrared detection section (5) is composed of an infrared sensor, a condensing optical material, and an amplifier. Infrared sensors can be roughly divided into quantum type and thermal type. The quantum type captures the total infrared light quantum and captures the change in electrical conductivity as a result of the ionization effect due to its energy.

量子型センサーにはPbS、 Pb5e、 PbTe、
 InSb、 HaCdre (DLうな結晶fヒ合物
半導体會利用したものと、Ge : Arb + Ge
 :Hg 、 Ga:A8 のように母体に不純物全混
入させ゛た結晶体音利用した光伝導セルであるが、これ
らのタイプのものは一般に特定赤外波長に対して非常に
高い検出感度全示し時定数も小さいが使用時に冷却を必
要とする為用途は特殊なものに限られる。
Quantum sensors include PbS, Pb5e, PbTe,
InSb, HaCdre (DL) using crystalline compound semiconductors, Ge: Arb + Ge
:Hg, Ga:A8, etc. are photoconductive cells that utilize crystalline bodies with all impurities mixed into the matrix, but these types generally exhibit very high detection sensitivity for specific infrared wavelengths. Although it has a small time constant, it requires cooling during use, so its use is limited to special applications.

熱型は、赤外線全熱とし、てとらえその熱エネルギーに
よる温えるものである。熱型センサーとしては次の様な
ものがある。
Thermal type uses the total heat generated by infrared rays, and uses that thermal energy to warm the body. Thermal sensors include the following:

■ 熱起電力?利用した熱電対列(サーモパイル)があ
り、これはEi−8b、B1−MoやIn5b−Te等
の薄膜熱電対列を用いている。■ 熱による電気抵抗変
化ケ利用した抵抗微熱計(′7F:ロメータ)がちへこ
れにはNi + Pi 、 Arbなどの金属薄片全用
いるものやNi 、Mn 、 Coなどの酸化物音適当
に混合して焼結した半導体を用いるもの等がある。■ 
熱による小室内のガス圧の変化を利用した一種の気体温
度計である気体セルにューマテイツクセル)があ広その
中には不活性ガス例えばキセノン、ヘリウム全周い熱に
よるガス圧変化を光学的変化としてとらえるゴーレイセ
ルと、電気容量変化としてとらえるマイクロホン検知器
等がある。■ 熱による電荷発生(焦電効果)を利用し
た焦電型センサー(パイロ)があり、これにはPbTi
03(チタン酸鉛) r LiNbO3,LiTa03
(リチウム酸タンタル)、TGs(三硫化グリシン)、
sty、pmtどの単結晶又はセラミックやFVF2(
ポリフッfヒピニリデン)などの高分子フィルムを用い
るものがある。
■ Thermoelectromotive force? There is a thermopile utilized, which is a thin film thermopile such as Ei-8b, B1-Mo or In5b-Te. ■Resistance thermometer ('7F: Rometer) that utilizes changes in electrical resistance due to heat.This uses a thin metal flake such as Ni + Pi or Arb, or an appropriate mixture of oxides such as Ni, Mn, or Co. There are some that use sintered semiconductors. ■
There is a wide variety of gas thermometers (gas cells and pneumatic cells) which are a type of gas thermometer that uses changes in gas pressure in a small chamber due to heat. There are Golay cells, which detect this as an optical change, and microphone detectors, which detect it as a change in capacitance. ■ There is a pyroelectric sensor (pyro) that uses charge generation due to heat (pyroelectric effect).
03 (Lead titanate) r LiNbO3, LiTa03
(tantalum lithium oxide), TGs (glycine trisulfide),
sty, pmt etc. single crystal or ceramic or FVF2 (
Some use polymer films such as poly(fluorinated).

集光系光学材料として赤外センサーの前部に赤外透過レ
ンズ例えば石英レンズやシリコンレンズ等會用いるか、
赤外センサーを逆向きにしてその後部に白金、金、銀、
アルミ、クロム。
Either use an infrared transmitting lens such as a quartz lens or a silicon lens in front of the infrared sensor as an optical material for the condensing system.
Platinum, gold, silver,
Aluminum, chrome.

ニッケル等の金属全蒸着し鏡面とした赤外反射凹面鏡を
用いる。
An infrared reflecting concave mirror with a mirror surface made of metal such as nickel is fully vapor-deposited.

本発明者等は赤外発光部及び赤外受光部ケ熱及び炭化水
素汚染から保護する手段も検討した。第2図により詳述
すると、赤外発光部及び赤外受光部の前に赤外透過透明
板(6,6’)例えば石英ガラス等を設置する。更に、
その透明板(6,6’)’に熱及び炭化水素汚染から保
護する為透明板(6,6’)の前部に冷清浄送気部(8
,8’)h設はエアーパージを行なう。冷清浄送気体と
しては空気又は不活性ガス例えば窒素ガス等會用いる。
The inventors also investigated means for protecting the infrared light emitting section and the infrared light receiving section from heat and hydrocarbon contamination. To explain in detail with reference to FIG. 2, an infrared transmitting transparent plate (6, 6') such as quartz glass or the like is installed in front of the infrared light emitting section and the infrared light receiving section. Furthermore,
In order to protect the transparent plate (6, 6')' from heat and hydrocarbon contamination, a cold clean air supply part (8
, 8') Perform air purge. Air or an inert gas such as nitrogen gas is used as the cold clean gas.

又、非測定時あるいは冷清浄送気停止時にはシャッター
(2,2’)によシ測定ロ會遮蔽し、炭化水素等による
赤外透過透明板(6,6’)の汚染を防止して測定精度
の保持を可能とした。又、ガス流体の微量検出方法には
いろいろな方法が考えられるが、ガス流体の測定間隔?
大きくするすなわち光路長を長くすることが最も良い。
In addition, when not measuring or when cold clean air supply is stopped, the measurement area is shielded by the shutter (2, 2') to prevent contamination of the infrared transmitting transparent plate (6, 6') with hydrocarbons, etc. This made it possible to maintain accuracy. Also, there are various methods for detecting trace amounts of gas fluid, but what about the measurement interval of gas fluid?
It is best to increase the optical path length.

第3図によシ詳述するとダクト(1)の両側面開口部(
2,2’)に前述金属音蒸着し鏡面とした赤外反射平面
鏡(9,9’)i複数個配置し赤外発光部と受光部との
間欠多重光路とする。但し、多重光路方式とした場合は
実際の炭化水素濃度に対しての検出量は多重倍となる事
に注意する。
Referring to Fig. 3 in detail, the openings on both sides of the duct (1) (
A plurality of infrared reflecting plane mirrors (9, 9')i having mirror surfaces formed by the above-described metal acoustic vapor deposition are arranged in 2, 2') to form intermittent multiple optical paths between the infrared light emitting part and the light receiving part. However, if a multiple optical path method is used, it should be noted that the detected amount will be multiple times the actual hydrocarbon concentration.

かかる構成ケ有する本発明装置音用いることにより布帛
の連続熱処理装置における排ガスの汚染度全、簡単に、
信頼性よく検知できる。
By using the sound of the apparatus of the present invention having such a configuration, the degree of contamination of exhaust gas in a continuous heat treatment apparatus for fabrics can be easily reduced.
Can be detected reliably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本構造図、第2図は装置上熱及び炭
化水素付着より保護する為の周辺機材?設置する場合の
構造図、第3図は多重光路系とする場合の構造図である
、1・・・・・・排気ダクト、2,2′・・・・・・排
気ダクト開口部、3・・・・・・赤外発光部、 4・・
・・・・干渉フィルター、 5・・・・・・赤外検知部
、6.6’・・・・・・透明保護板、7.7’・・・・
・・シャッター、8.8′・・・・・・冷清浄不活性ガ
ス送気部、 9,9′・・・・・・赤外反射平面鏡。 出願人 メイトサイエンス株式会社 同 セーレン株式会社 \ 代理人 弁理士 用瀬 民泊 、; ゝ、ノ 同 弁理士 斉 藤 武 彦、7 1 、(4 人・ −〆
Figure 1 is a basic structural diagram of the present invention, and Figure 2 is peripheral equipment to protect the equipment from heat and hydrocarbon adhesion. Fig. 3 is a structural diagram when installing a multiple optical path system. 1... Exhaust duct, 2, 2'... Exhaust duct opening, 3. ...Infrared light emitting section, 4...
...Interference filter, 5...Infrared detection section, 6.6'...Transparent protection plate, 7.7'...
...Shutter, 8.8'...Cold clean inert gas supply section, 9,9'...Infrared reflecting plane mirror. Applicant Mate Science Co., Ltd. Seiren Co., Ltd. Agent Patent attorney Minpaku Youse; Patent attorney Takehiko Saito, 71, (4 people)

Claims (1)

【特許請求の範囲】 1、布帛の連続熱処理装置の排気ダクト(1)における
排ガスの汚染度を連続的に検知する装置において、排気
ダクト(1)の両側面に開口部(2,2’)t−設け、
そこに赤外発光部(3)、赤外フィルター(4)及び赤
外検知部(5)全配置すること奮特徴とする布帛の連続
熱処理装置における排ガスの汚染度検知装置。 2、前記赤外フィルターの赤外線透過波長域を3〜4μ
の範囲内とする特許請求第1項記載の検知装置。 3、゛前記排気ダクト(1)に配置する赤外発光部(3
)、赤外フィルター(4)及び/又は赤外検知部(5)
、全熱及び炭化水素付着より保護すΣ透明板(6,6つ
及び/又はシャッター(7、7’)及び/又は冷清浄不
活性ガス送気部(8,8’)k配置することを特徴とす
る特許請求第1項記載の検知装置。 4、前記排気ダクト(1)の側面開口部(2、2’)間
に鏡面(9,9’)を複数個配置し、赤外発光部(3)
、赤外受光部間で多重光路とし光路長ケ長くすることを
特徴とする特許請求第1項又は第3項記載の検知装置。
[Claims] 1. In a device for continuously detecting the degree of contamination of exhaust gas in an exhaust duct (1) of a continuous heat treatment device for fabrics, openings (2, 2') are provided on both sides of the exhaust duct (1). t-provided;
A contamination level detection device for exhaust gas in a continuous fabric heat treatment apparatus, characterized in that an infrared light emitting section (3), an infrared filter (4), and an infrared detection section (5) are all arranged therein. 2. The infrared transmission wavelength range of the infrared filter is 3 to 4μ.
The detection device according to claim 1, which falls within the range of. 3. Infrared light emitting section (3) disposed in the exhaust duct (1)
), infrared filter (4) and/or infrared detection section (5)
, Σ Transparent plates (6, 6 and/or shutters (7, 7') and/or cold clean inert gas supply parts (8, 8') to protect against total heat and hydrocarbon adhesion are recommended. The detection device according to claim 1, characterized in that: 4. A plurality of mirror surfaces (9, 9') are arranged between the side openings (2, 2') of the exhaust duct (1), and an infrared light emitting part is provided. (3)
The detection device according to claim 1 or 3, characterized in that multiple optical paths are formed between the infrared light receiving sections and the optical path length is increased.
JP59100663A 1984-05-21 1984-05-21 Detector for degree of contamination of waste gas in continuous heat treating device for fabric Granted JPS60244838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59100663A JPS60244838A (en) 1984-05-21 1984-05-21 Detector for degree of contamination of waste gas in continuous heat treating device for fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59100663A JPS60244838A (en) 1984-05-21 1984-05-21 Detector for degree of contamination of waste gas in continuous heat treating device for fabric

Publications (2)

Publication Number Publication Date
JPS60244838A true JPS60244838A (en) 1985-12-04
JPH0260258B2 JPH0260258B2 (en) 1990-12-14

Family

ID=14280029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59100663A Granted JPS60244838A (en) 1984-05-21 1984-05-21 Detector for degree of contamination of waste gas in continuous heat treating device for fabric

Country Status (1)

Country Link
JP (1) JPS60244838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009032205A3 (en) * 2007-09-05 2009-05-14 Ge Analytical Instr Inc Carbon measurement in aqueous samples using oxidation at elevated temperatures and pressures

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536790A (en) * 1978-06-26 1980-03-14 Measurex Corp Gas measuring device with calibration means* and method of measuring gas
JPS5653447A (en) * 1979-08-29 1981-05-13 Econics Corp Flue gas analyzer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5536790A (en) * 1978-06-26 1980-03-14 Measurex Corp Gas measuring device with calibration means* and method of measuring gas
JPS5653447A (en) * 1979-08-29 1981-05-13 Econics Corp Flue gas analyzer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009032205A3 (en) * 2007-09-05 2009-05-14 Ge Analytical Instr Inc Carbon measurement in aqueous samples using oxidation at elevated temperatures and pressures
US8101418B2 (en) 2007-09-05 2012-01-24 Ge Analytical Instruments Carbon measurement in aqueous samples using oxidation at elevated temperatures and pressures
US8101420B2 (en) 2007-09-05 2012-01-24 Ge Analytical Instruments Carbon measurement in aqueous samples using oxidation at elevated temperatures and pressures
US8101419B2 (en) 2007-09-05 2012-01-24 Ge Analytical Instruments Carbon measurement in aqueous samples using oxidation at elevated temperatures and pressures
US8101417B2 (en) 2007-09-05 2012-01-24 Ge Analytical Instruments Carbon measurement in aqueous samples using oxidation at elevated temperatures and pressures
US8114676B2 (en) 2007-09-05 2012-02-14 Ge Analytical Instruments Carbon measurement in aqueous samples using oxidation at elevated temperatures and pressures

Also Published As

Publication number Publication date
JPH0260258B2 (en) 1990-12-14

Similar Documents

Publication Publication Date Title
US7351976B2 (en) Monitoring system comprising infrared thermopile detector
US5130544A (en) Optical gas analyzer
US5852308A (en) Micromachined inferential opto-thermal gas sensor
CA1036384A (en) Non-dispersive multiple gas analyzer
US6317212B1 (en) Gas analyzer
US3539804A (en) Fluid analysis by infrared absorption
US3692415A (en) Photometric analyzer employing fiber optic light transmitting means
JPH08184553A (en) Chemical detection system of optical base
JPH0231820B2 (en)
EP0732580A2 (en) Apparatus for automatic identification of gas samples
US7265369B2 (en) Method and system for detecting chemical substance
US6191421B1 (en) Gas analyzer using infrared radiation to determine the concentration of a target gas in a gaseous mixture
US20040206906A1 (en) Compensated infrared absorption sensor for carbon dioxide and other infrared absorbing gases
JPS6312938A (en) Gas analyzer and gas analyzing method
US5731583A (en) Folded optical path gas analyzer with cylindrical chopper
US5714759A (en) Optical system with an extended, imaged source
KR102114557B1 (en) A NDIR analyzer using Two Functional Channels
JPS60244838A (en) Detector for degree of contamination of waste gas in continuous heat treating device for fabric
JPS60238746A (en) Device for detecting concentration of gaseous hydrocarbon
US20040203169A1 (en) Device and process for determining the concentration of at least one gas component in a breathing gas mixture
WO1999064814A1 (en) Method and apparatus for determining processing chamber cleaning or wafer etching endpoint
JP3126759B2 (en) Optical analyzer
JPH041557A (en) Flow cell of infrared spectrophotometer
JP3302208B2 (en) Infrared analyzer
SU587344A1 (en) Device for determining the transmitting absorbing and reflecting properties of translucent materials