JPS6024343A - Metallic thin film resistor - Google Patents

Metallic thin film resistor

Info

Publication number
JPS6024343A
JPS6024343A JP58132124A JP13212483A JPS6024343A JP S6024343 A JPS6024343 A JP S6024343A JP 58132124 A JP58132124 A JP 58132124A JP 13212483 A JP13212483 A JP 13212483A JP S6024343 A JPS6024343 A JP S6024343A
Authority
JP
Japan
Prior art keywords
resistance
tantalum
aluminum
thin film
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58132124A
Other languages
Japanese (ja)
Other versions
JPH0331780B2 (en
Inventor
Yoshio Hara
原 義雄
Masamitsu Saito
斉藤 正光
Hideyuki Suzuki
秀幸 鈴木
Masaru Koyama
優 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAISEI KOKI KK
Original Assignee
TAISEI KOKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAISEI KOKI KK filed Critical TAISEI KOKI KK
Priority to JP58132124A priority Critical patent/JPS6024343A/en
Publication of JPS6024343A publication Critical patent/JPS6024343A/en
Publication of JPH0331780B2 publication Critical patent/JPH0331780B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE:To set the coefft. of resistance temp. at a desired value and to improve the uniformity and stability by providing a composition consisting of specified amounts of Ta, Cr and Al in a square region defined by specified four points in the composition diagram of a ternary Ta-Cr-Al alloy. CONSTITUTION:This metallic thin film resistor consists of, by atom, 2-24% Ta, 24-88% Cr and 3-67% Al. The composition is in a square region defined by a point A (2% Ta, 88% Cr, 10% Al), a point B (9% Ta, 24% Cr, 67% Al), a point C (24% Ta, 72% Cr, 4% Al) and a point D (19% Ta, 78% Cr and 3% Al) in the composition diagram of a ternary Ta-Cr-Al alloy.

Description

【発明の詳細な説明】 本発明はタンタル(TaJ 、、クロム(Cr )およ
びアルミニウム(1)の3i戎分よりムリ、抵J元扇吸
係数を所望の領に収定することがです、シフJ)もバラ
ツキか小妬く安定度の榎れた金属薄膜抵抗体に関する。
[Detailed Description of the Invention] The present invention is capable of adjusting the resistance coefficient to a desired range, which is better than the 3i ratio of tantalum (TaJ), chromium (Cr), and aluminum (1). J) also relates to a metal thin film resistor whose stability is somewhat inconsistent.

近年4膜抵抗体の進歩は目ざ丑しいものかろジ安定度の
置い抵抗体として窒化クンタル縛腺抵抗体がり目発塾れ
、また、而い向肩低抗娑もつ抵抗体としてCr−8iU
サーメツトが′丸用化されている。
In recent years, the progress of four-film resistors has been remarkable.Nitride Kunthal-bound resistors have been developed as resistors with high stability, and Cr-8iU has been developed as resistors with low resistance.
Cermets are now available for general use.

すなわち窒化タンタル薄膜抵抗体は良好な抵抗湿度係数
とすぐれた安定性をもっている。窒化タンタル薄膜を生
成するには通常活例−スバッタリング法が用いられ、真
空槽内に微量のン占1住カスの冑2人とその1lil1
価に)敗密な管理を必要とする。またl1r−8i(J
サーメット抵抗しi(は比牧的商い161イ」抵4iL
”c不する7)iその安定度が低く、(I]現性が悪い
などの製造技術上の間怨も多い。
That is, the tantalum nitride thin film resistor has a good resistance humidity coefficient and excellent stability. To produce a tantalum nitride thin film, a sputtering method is usually used.
) requires close management. Also, l1r-8i (J
Cermet resistance 161 resistance 4iL
7) There are many problems with manufacturing technology, such as low stability and (I) poor processability.

ところで、さきに発明されたシリコンと、タンタル、ニ
オブ、チタン、ジルコン、モリブテン。
By the way, silicon, which was invented earlier, tantalum, niobium, titanium, zircon, and molybdenum.

タングステン等の中の1つとの2成分系助It’d抵]
九休は一応上記の欠陥を佃い、現状でQユ取もすぐれた
薄腺抵抗不として尚〈評価できるものでめゐ。
Two-component system with one of tungsten etc.]
Kukyuu has overcome the above-mentioned defects, and as of now, it can still be evaluated as having excellent Q-yu ability and no thin gland resistance.

すなわち、熱処理扇屁を調整ずゐことにより広い固M抵
抗範囲に亘り低い抵机湿歴保威rもつことかできるもの
でめる。
That is, by not adjusting the heat treatment fan fart, it is possible to maintain a low resistance moisture history retention r over a wide solid resistance range.

しかしながら抵抗体の安定度は熱処理温度に関1−hシ
、渇い安定度をめようとすれは熱処理湿度も高くなり、
その時の低い抵仇湿反保舷に対↓芯1−る&Lt成また
は固有抵抗は自ら決定されて選択の自白はなくなる。
However, the stability of the resistor is related to the heat treatment temperature, and in order to improve the dryness stability, the heat treatment humidity will also increase.
At that time, the ↓ core 1-ru & Lt formation or specific resistance against the low resistance moisture resistance is determined by itself and there is no confession of choice.

こ\でシリコン合金fi、膜抵抗体の一例とし−C1シ
リコンータンタル合金傳瞑抵机捧の熱処理(品展と安定
度の関係途説明する、 第1図の曲想Aはシリコン−タンクル合金博腺抵抗体の
組成に対する固有抵抗ρ(μす2゛σ〕を示し、同じく
曲線Bは抵抗温度係a″re比(ppm/”G)を6ら
れしている。なお、4黄“1111はシリコンの組成比
(%)を示し図中のA’、B’はそれぞれA空中に2い
て650℃で熱処理した後の値を示す曲線でりる。
Here, we will use silicon alloy fi as an example of a film resistor - heat treatment of C1 silicon-tantalum alloy film resistor (explaining the relationship between quality and stability). Curve B shows the specific resistance ρ (μ2゛σ) for the composition of the glandular resistor, and curve B also shows the resistance temperature coefficient a″re ratio (ppm/”G) of 6. Note that 4 yellow “1111” A' and B' in the figure, which indicate the composition ratio (%) of silicon, are curves showing the values after heat treatment at 650° C. in A air, respectively.

第1図かられかるように、シリコン言m:1t18〜6
5原子%の%(7,)は適当な熱処理により抵抗湿度係
数が殆んど0のものが得らnることが示ちれている。こ
こでシリコン言南鴛と熱処理温度を変えて抵抗温度係数
の小嘔い試料を第1表の16.1〜/に4に示す。なお
、/I65は比軟のために試料/I61と同じものを具
借中650℃で熱処理したものである。
As shown in Figure 1, silicon word m: 1t18~6
It has been shown that %(7,) of 5 atomic % can be obtained with a resistance humidity coefficient of almost 0 by appropriate heat treatment. Here, samples with small resistance temperature coefficients obtained by changing the heat treatment temperature from silicon are shown in Table 1, 16.1 to 4. Note that /I65 is the same as sample /I61, but was heat-treated at 650° C. for relative softness.

第1表の試料を150℃の恒温槽中に1000時向放置
した後の抵抗値変化を測定したら第2衣のようになった
、この表より明らかなように抵抗体の安定性は熱処理温
度に大きく依存しており、組り又此の影替は少ないこと
がわかる。
When we measured the change in resistance of the samples in Table 1 after leaving them in a constant temperature bath at 150°C for 1000 hours, the results were as shown in Figure 2.As is clear from this table, the stability of the resistor depends on the heat treatment temperature. It can be seen that there is a large dependence on ``Kumimata'', and there are few changes in the Kumi Mata.

他のシリコン・金属系薄膜抵抗体についてもはソ同様な
結果が認められた。すなわち、2成分系合金薄)原抵抗
体に2いては最も安定な熱処理を行ない、小さい抵抗温
度係数をめると固有抵抗と組成は自から定まってし1い
、そのため薄膜集積回路の設計および個別抵抗器の製迫
上大きな制約ヶ受ける欠点がめった。
Similar results were observed for other silicon/metal thin film resistors. In other words, if the two-component alloy thin resistor is subjected to the most stable heat treatment and a small resistance temperature coefficient is taken into account, the specific resistance and composition will be determined by themselves. The drawbacks of individual resistors are that they are subject to great limitations in manufacturing.

本発明は、上記便米の欠点に嫌みなちれたもので、タン
タル・クロム・アルミニウムの3JJy、分よシなる合
金薄l艇を用いて構成したa抗体であって、?に1成比
を変え熱処理ケ施すことによって、ノ<シツキの少ない
尚い安定度と低い抵抗温度係数に1)ち、熱処理温度ゲ
変化させることにより抵抗温度係数又を変化芒せること
ができる金属薄起抵すし体を徒供することを目的とする
The present invention overcomes the drawbacks of the above-mentioned methods, and is an antibody constructed using a thin alloy made of tantalum, chromium, and aluminum. By changing the composition ratio of 1) and applying heat treatment to the metal, it is possible to achieve greater stability with less stress and a lower temperature coefficient of resistance.1) By changing the heat treatment temperature, the temperature coefficient of resistance can be varied The purpose is to train the sushi body.

以下本発明の好ましい実施例を図面により説明する。Preferred embodiments of the present invention will be described below with reference to the drawings.

第2図は、タンタル・クロム・アルミニウムの3成分よ
りなる抵抗体の組成(%)を表わすもので(三元合金図
)、図中A、B、c、vの四y〕形の物域は、抵抗温度
係数が小さく安定装の高い電域でβす、この元明の王安
部となるものである。
Figure 2 shows the composition (%) of a resistor consisting of three components: tantalum, chromium, and aluminum (ternary alloy diagram). is β in the electric range where the temperature coefficient of resistance is small and the stabilizer is high.

@3表に、第2凶における三元合ψ図内の管点(1〜1
2)の未処理時のK、(趙戊比(原子勢)と抵抗昂IJ
!L係り(岬/℃)會示す。即ち、屯8〜12(A −
13・C−D領域夕t)では抵抗渦反保叙′vC1もは
太きいが、点1〜?LA−B−C−D値柩ビ])ではT
CRが小さいことを示し一〇いる。
@Table 3 shows the tube points (1 to 1) in the ternary combination ψ diagram in the second
2) Untreated K, (Zhao Shubi (atomic force) and resistance Gong IJ
! Showing the L staff (Misaki/℃) meeting. That is, tuns 8 to 12 (A −
13. In the C-D region (t), the resistance vortex resistance 'vC1' is also thick, but point 1~? LA-B-C-D value
10 indicates that CR is small.

第3図は1タンタルTa i 8原子勢、クロムCr7
5原子係、アルミニウム7原子係の場合の(第2図の4
)熱処理温度による■積抵抗値R(Ω/[])、抵抗錨
W 保e ’l”clL (p%/’C) オL t+
: TClbのバラツキδ’L”CR(p声/’C) 
k示す。熱処理温度450°C〜750°Cの軸回で、
Rは約24(Ω/口)〜28(Ω/口)、T CR(7
) ’iJ−化U 約80〜d (9V’/℃)、抵抗
湿度係数のバラツキδ’f’cRは約3〜4(p四/’
C)の値を7トす。したがって、尚温処理においても変
化が少なく一安尼注を菊しているものと云えるc v 
fcz w 3表(、第2図の4)と対比すると明らか
なように、熱処理温度を変化ちぜることにより抵抗湿度
係数を要化塾せることがでSゐ。
Figure 3 shows 1 tantalum Ta i 8 atoms, chromium Cr7
In the case of 5 atoms and 7 atoms of aluminum (4 in Figure 2)
) Product resistance value R (Ω/[]) depending on heat treatment temperature, resistance anchor W Hoe 'l"clL (p%/'C) O L t+
: TClb variation δ'L"CR (p voice/'C)
Show k. At a heat treatment temperature of 450°C to 750°C,
R is approximately 24 (Ω/mouth) to 28 (Ω/mouth), T CR (7
) 'iJ-ization U about 80~d (9V'/℃), resistance humidity coefficient variation δ'f'cR about 3~4 (p4/'
Add 7 to the value of C). Therefore, it can be said that there is little change even when treated at still temperature, and it can be said that the c v
As is clear from Table 3 (4 in Figure 2), it is possible to change the resistance humidity coefficient by changing the heat treatment temperature.

次にこの発明の試料の作製方法について説明する。スパ
ッタリング粂件はめしかしめベルジャ内f 3 X 1
0−”l’orr、にd非気した1ゲ、1MJ 前1j
 U −f /L/ :I’ ンガス會18〜20 X
 10−” Torr、導入し、1m 極’11m1 
it −5,7〜−6,5kV、゛−流缶度0.2 ′
−(J、51nA/cmで2換スパツタリンクにより行
なった。成IN連吸は50〜150A/#でめる。j良
Ifii成は、クンタル、クロム、アルばニウムの金属
を用い、その面積比を俊えゐことにより決定した。また
、熱処理は大気中で所足の湿度にて3分間加熱した。ま
た、真空中でも所だの温度にして数分間加熱するかある
いはスパッタリング中に抵抗基体を加熱するCとによっ
てほぼ同様な効果を得ることができた。
Next, a method for preparing a sample according to the present invention will be explained. The sputtering material is inside the bell jar f 3 x 1
0-"l'orr, nid non-ki 1 game, 1MJ previous 1j
U -f /L/ :I' Ngusai 18~20 X
10-” Torr, introduced, 1m pole’11m1
It -5,7 to -6,5kV, 0.2'
- (J, 51 nA/cm was carried out with a biconverting sputter link. The continuous suction was performed at 50 to 150 A/#. The area ratio was determined by increasing the area ratio.The heat treatment was performed by heating in the air at a sufficient humidity for 3 minutes.In addition, heating was performed for several minutes in a vacuum at a certain temperature, or the resistance substrate was heated during sputtering. Almost the same effect could be obtained by heating C.

ここで、上呂己金属a#、 leaの抵抗器としての安
定性を示すため、第4図及び第5図に高温放置試峡およ
び11j4湿負荷寿命試験の結果を示す。
Here, in order to show the stability of Urokimekin A# and LEA as a resistor, Figs. 4 and 5 show the results of a high-temperature storage test and a 11j4 humidity load life test.

第4図は、1va12原子%、Cr 69原子俤、A7
19IQ子係の組成(第2図の5、)に2ける尚娼で放
16゛シた場合の時間に対1−る抵抗1直液化率をボす
Figure 4 shows 1va 12 atom%, Cr 69 atom, A7
The composition of the 19IQ child (5 in Figure 2) shows the direct liquefaction rate of 1 - 1 of the resistance per time when it is released at 16 degrees.

このときの温vLを175℃とし無負荷で1.t)00
時間何っだものである。この結果、i、ooo時間まで
の抵抗1し変化率に約0.04%〜0.08%である。
At this time, the temperature vL was set to 175°C and 1. t)00
What is time? As a result, the rate of change in resistance up to time i, ooo is approximately 0.04% to 0.08%.

第5図は、Ill a i s原子%、Cr 75 Q
子勢、A/7原千%の組成における負荷をかけた場合の
成度による抵抗値変化半を示す(△lL/’R%)。こ
のときの湿度を約40°C1湿匪を9 L)−’j 5
%且Hとし、そして負荷(+−1,5時間オン、0.5
時間オンをN7ぼり返えして1.000時間行ったもの
である。この結果、1.000時間1での抵抗1直変化
率tユ約−(J、t125%〜 ′0.025%である
FIG. 5 shows Illa is atomic %, Cr 75 Q
It shows half the change in resistance value depending on the composition when a load is applied to a composition of A/7 1,000% (ΔlL/'R%). The humidity at this time is approximately 40°C1 wet volume is 9 L) -'j 5
% and H, and the load (+-1,5 hours on, 0.5
This was done for 1,000 hours by turning the time on back to N7. As a result, the directivity change rate of resistance t in 1.000 hours 1 is approximately -(J, t125%~'0.025%).

したがって、これらの試販からも明らかなように諸条件
VCおいて安定性に優!シ、とりわけ耐伍μm′Dj寿
茄特性に後れ−(いるといえ心。
Therefore, as is clear from these trial sales, it has excellent stability under various VC conditions! However, it is particularly lagging behind the 5th μm resistance characteristic.

以上、上d己実派列からも明ら〃・外ように不つ6ψ1
によ2″しは、タンタル゛クロム・アルミニウムの3成
分よりなる合金薄膜を用いて41五成した抵抗体であっ
て、組成比金変え熱処理を施すこと(′Lよって、バラ
ツギの少々い高安定度と低抵抗湿度係数の賓性をもつ金
楓薄膜抵抗乞得ることかでさる。はだ、熱処理温度を変
化芒ぜることによって、抵4冗Y昌1斐係畝を所望の値
にすることができる。
As above, it is clear from the upper d self faction column that
Another method is to use a resistor made of a thin alloy film consisting of three components: tantalum, chromium, and aluminum, which is heat treated to change the composition ratio (because of the difference in height). It is possible to obtain a thin film resistor made of gold maple, which has the advantages of stability and low resistance humidity coefficient.However, by varying the heat treatment temperature, the resistance value can be set to the desired value. can do.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のシリコン・クンタル鍼鵜縛1良低抗体の
組成比と向イ′:J抵抗の関係図、第2凶は本先明のタ
ンクル゛クロム・アルζニウムの3玖力よりなる霊属博
腺抵抗体のt」1成比を不した一E−五月隻図、第3図
は仝発明の金属博ノ恨抵汎捧の熱処理による抵抗湿度係
数・面積抵抗値・抵抗湿度係数のパンツキを示したクラ
7、第4図は本発明の金属薄膜抵抗体の、−渦紋tit
試鹸結米を7Fシたクラン、第5図IJ二本冗明の依k
i’i tit腺抵v1□1イこの耐湿共1)7Iメq
茄試贋11古米を不しだクランである。 図中ρは1准抵抗、TCルは抵すし湿度保勿之、Δk<
′/ 1(、は抵抗1再変化率、tは試1押時’ 12
1でちる。 代理人 弁理士 寸 谷 −雄
Figure 1 shows the relationship between the composition ratio of conventional silicon Kuntal acupuncture and low and positive antibodies and the positive and negative resistance. Fig. 3 shows the resistance humidity coefficient, area resistance value, and resistance due to heat treatment of the invented metal resistance material. Figure 4 shows the panskiy of the humidity coefficient.
The clan that tried sapping rice on the 7th floor, Figure 5
i'i tit gland resistance v1□1a this moisture resistance 1) 7Imeq
This is a clan that did not sell old rice. In the figure, ρ is 1 quasi-resistance, TCL is resistance and humidity retention, Δk<
'/ 1 (, is resistance 1 re-change rate, t is trial 1 press' 12
Chill with 1. Agent Patent Attorney -Yu Sunuya

Claims (1)

【特許請求の範囲】[Claims] タンタル2〜24原子係、クロム24〜88原子係、ア
ルミニウム3〜67原子力であって、象付図imに示す
ように点A(メンタル2原子%、クロム88原子係、ア
ルミニウム10原子%)、B(タンタル9原子%、クロ
ム24原子%、アルζニウム67原子%)、C(タンタ
ル24原子%、クロム7211’子%、アルミニウム4
1531.子%ン、D(タンタル19原子≠、クロム7
8原子%、アルミニウム3原子%〕で囲まれるタンタル
・クロム・アルミニウムの3成分よりなる合釜博膜を用
いて構成したことを特許とする螢属ン専)膜抵抗体。
Tantalum has 2 to 24 atoms, chromium has 24 to 88 atoms, aluminum has 3 to 67 atoms, and as shown in the symbol im, points A (2 atomic percent of mental, 88 atomic percent of chromium, 10 atomic percent of aluminum), B (9 atom% of tantalum, 24 atom% of chromium, 67 atom% of aluminum), C (24 atom% of tantalum, 7211'% of chromium, 4 atom of aluminum)
1531. D (19 tantalum atoms≠, 7 chromium atoms)
This is a patented film resistor constructed using a composite film made of three components: tantalum, chromium, and aluminum, surrounded by 8 at.% aluminum and 3 at.% aluminum.
JP58132124A 1983-07-20 1983-07-20 Metallic thin film resistor Granted JPS6024343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58132124A JPS6024343A (en) 1983-07-20 1983-07-20 Metallic thin film resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58132124A JPS6024343A (en) 1983-07-20 1983-07-20 Metallic thin film resistor

Publications (2)

Publication Number Publication Date
JPS6024343A true JPS6024343A (en) 1985-02-07
JPH0331780B2 JPH0331780B2 (en) 1991-05-08

Family

ID=15073966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58132124A Granted JPS6024343A (en) 1983-07-20 1983-07-20 Metallic thin film resistor

Country Status (1)

Country Link
JP (1) JPS6024343A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277436A (en) * 1985-09-30 1987-04-09 Susumu Kogyo Kk Chromium-aluminum alloy and thin film element using same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153752A (en) * 1982-03-08 1983-09-12 Takeshi Masumoto Ni-cr alloy material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153752A (en) * 1982-03-08 1983-09-12 Takeshi Masumoto Ni-cr alloy material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277436A (en) * 1985-09-30 1987-04-09 Susumu Kogyo Kk Chromium-aluminum alloy and thin film element using same
JPH0457740B2 (en) * 1985-09-30 1992-09-14 Susumu Ind Co Ltd

Also Published As

Publication number Publication date
JPH0331780B2 (en) 1991-05-08

Similar Documents

Publication Publication Date Title
US4298505A (en) Resistor composition and method of manufacture thereof
JPH06158272A (en) Resistance film and production thereof
JPS6024343A (en) Metallic thin film resistor
JPS58101454A (en) Electrode for semiconductor device
TWI250218B (en) Metallic resistance material, sputtering target, resistance thin film, and method for making the resistance thin film
JP2828071B2 (en) Physically deposited amorphous film material with excellent corrosion resistance
US4971759A (en) Metallic material for flutes
JPH0412601B2 (en)
JP2001110602A (en) Thin-film resistor forming method and sensor
JPS6244526A (en) Manufacture of alloy for sealing glass
JPH047561B2 (en)
JPS58113361A (en) Heat treatment of nickel superalloy
JPH045241B2 (en)
JPS63147305A (en) Metal thin-film resistor
JP2000182802A (en) Resistor, its manufacture, sputtering gate and resistance member
JPS597341B2 (en) Hard sintered alloy with excellent corrosion resistance
US2042971A (en) Method of making electrical resistance elements and alloys therefor
Schippel Modifications test of vacuum deposition Ni/Cr films with Mn and Si for thin film resistors
US1540928A (en) Acid-resisting alloy
JP2663479B2 (en) Physically deposited amorphous film material with excellent corrosion resistance
JPS62188753A (en) Soft glass sealing alloy
JPS6016724B2 (en) resistive thin film
JPS6034241B2 (en) Manufacturing method of thin film resistor
Maruhashi et al. Low Thermal Expansion Alloys
JPS6024563B2 (en) resistive thin film