JPS60243214A - Manufacture of alloy steel containing nitrogen - Google Patents

Manufacture of alloy steel containing nitrogen

Info

Publication number
JPS60243214A
JPS60243214A JP24861983A JP24861983A JPS60243214A JP S60243214 A JPS60243214 A JP S60243214A JP 24861983 A JP24861983 A JP 24861983A JP 24861983 A JP24861983 A JP 24861983A JP S60243214 A JPS60243214 A JP S60243214A
Authority
JP
Japan
Prior art keywords
nitrogen
molten steel
steel
depth
addition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24861983A
Other languages
Japanese (ja)
Inventor
Hideo Nabeshima
鍋島 秀雄
Seiji Kamimura
上村 政治
Tsukasa Okumura
司 奥村
Shohei Yamashita
庄平 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Stainless Steel Co Ltd
Original Assignee
Nippon Stainless Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Stainless Steel Co Ltd filed Critical Nippon Stainless Steel Co Ltd
Priority to JP24861983A priority Critical patent/JPS60243214A/en
Publication of JPS60243214A publication Critical patent/JPS60243214A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases

Abstract

PURPOSE:To obtain nitrogen-contg. alloy steel inexpensively in stable yield of nitrogen addition by specifying the immersion depth of a lance for introducing gaseous nirogen and the flow rate of gaseous nitrogen and introducing gaseous nitrogen after VOD-refining the alloy steel which has been subjected to refining. CONSTITUTION:The result of research about the effect for the yield of nitrogen addition and operating conditions at the following period is shown in the figures wherein the addition conditions of gaseous nitrogen are changed in the component regulating period after VOD-refining stainless steel, for example, SUS304. Still more, in this case, the immersion depth into the molten steel of a lance for introducing gaseous nitrogen is regulated to 60-85% of the depth of the molten steel. Gaseous nitrogen is introduced from the lance to obtain nitrogen- contg. allow steel by regulating the flow rate of gaseous nitrogen to 0.30- 0.045Nm<3>/min per ton of molten steel together with the depth of immersion. As a result, the yield of nitrogen addition is improved and also the scattering of molten steel is diminished and furthermore the fusion wear of side wall refratory of the ladle can be reduced.

Description

【発明の詳細な説明】 本発明は含窒素合金鋼の製造方法忙関し、特K VOD
精錬後の合金鋼溶湯に窒素導入用ランスな用い窒素ガス
を適正な条件で、安く安定した窒素添加歩留を得る窒素
添加方法に関するものである。
[Detailed Description of the Invention] The present invention relates to a method for manufacturing nitrogen-containing alloy steel, and a special method for manufacturing nitrogen-containing alloy steel.
The present invention relates to a method of adding nitrogen to a molten alloy steel after refining, using a lance for introducing nitrogen gas under appropriate conditions to obtain a stable nitrogen addition yield at a low cost.

従来、含窒素合金鋼を製造する方法として。Conventionally, as a method for producing nitrogen-containing alloy steel.

電気炉やAOD W錬による場合は比較的容易であるが
、最近、合金鋼の精錬に常用されている真空下で精錬す
るVOD精錬においては、真空下で脱賭現象を生じ、真
空精錬後の成分調整期に含窒素合金例えば窒化フエa/
四ム、窒化フェロマンガン、窒化7エマンガンなどによ
り窒素を添加していた。
It is relatively easy to use an electric furnace or AOD W refining, but recently, in VOD refining, which is commonly used for refining alloy steel under vacuum, a gambling phenomenon occurs under vacuum, and the During the component adjustment period, nitrogen-containing alloys such as nitrided Fea/
Nitrogen was added using 4M, ferromanganese nitride, 7Emanganese nitride, etc.

しかしながら、この方法によるときは溶鋼上′が変動す
る欠点がある.。又窒素添加だけの目的に,前述の如き
含窒素合金を添加することは高価なりロムやマンガンを
含有せしめることとなりコストアップとなっていた。さ
らにクロムやマンガンやカーボンの含有量が規制される
鋼種については窒化フエロクロム、窒化7エ胃マンガン
、窒化電解マンガンは使用できない。又操業面、品質面
においても、多量の窒化合金を添加することは温度降下
の増大や精錬後の溶鋼.に未精錬合金が入ることによる
品質低下の問題を招いていた。
However, this method has the disadvantage that the molten steel surface varies. . Furthermore, adding a nitrogen-containing alloy such as the one described above for the sole purpose of adding nitrogen is expensive and requires the inclusion of ROM or manganese, resulting in an increase in cost. Further, for steel types where the content of chromium, manganese, and carbon is regulated, ferrochrome nitride, 7-gastric manganese nitride, and electrolytic manganese nitride cannot be used. In addition, in terms of operation and quality, adding a large amount of nitriding alloy will increase the temperature drop and cause problems in the molten steel after refining. The presence of unrefined alloys in the process led to problems with quality deterioration.

本発明は上記の従来方法の問題を改善するととを、目的
としたもので、合金鋼を溶製しvODwj錬した後窒素
を添加するに当り、窒素ガス導入用ランスな溶鋼内に浸
漬してその浸漬深さを溶鋼深さの60%以上85%以下
となるようにし、而も窒素ガスを0.03枳上0.04
5以下Nll3/分溶鋼トンの流量で大気下において吹
込むことにより含窒素合金鋼を展進する方法に関するも
のである。
The purpose of the present invention is to improve the problems of the above-mentioned conventional method, and when adding nitrogen after melting alloy steel and vODwjing, it is immersed in the molten steel using a lance for introducing nitrogen gas. The immersion depth should be 60% or more and 85% or less of the molten steel depth, and nitrogen gas should be added by 0.03 to 0.04.
The present invention relates to a method for developing nitrogen-containing alloy steel by blowing in the atmosphere at a flow rate of 5 or less Nll3/ton of molten steel.

本発明者らは安価な窒素源として窒素ガスに着眼したが
、VOD精錬忙おいてポーラスプラグを通し底吹きでN
ガスを添加するには、現在市販されているポーラスプラ
グでは非常に流量が小さく長時間を要し溶鋼の温度低下
が大きいので、窒素ガス導入用ランスな用い上吹きで多
量に窒素を添加することを考え、安定かつ高い窒素添加
歩留を得るため窒素ガス添加条件について各種の試験を
行ない、その結果を以下忙示す。
The present inventors focused on nitrogen gas as an inexpensive nitrogen source, but during VOD refining, N was bottom-blown through a porous plug.
To add gas, with the porous plugs currently available on the market, the flow rate is very low and it takes a long time, and the temperature of the molten steel drops significantly. Therefore, it is recommended to use a lance for introducing nitrogen gas and add a large amount of nitrogen by top blowing. In order to obtain a stable and high nitrogen addition yield, various tests were conducted regarding nitrogen gas addition conditions, and the results are summarized below.

SUS 304のステンレス鋼(18,5%(jr −
8,5%Ni) s 5 TをVOD精錬精錬分成分調
整期素ガス添加条件を変化させた時の窒素添加歩留、操
業条件への影響について調査し、第1図に窒素ガス流量
を0.015’ Nta5/分溶鋼トンから0.053
 N■3/分溶鋼トンまで変化させた時の窒素添加歩留
(1)、溶鋼飛散状況(2)及び取鍋側壁耐火物溶損状
況(3)の推移を示す。
SUS 304 stainless steel (18.5% (jr-
8.5%Ni) s 5 T during VOD refining and refinement component adjustment.The effect on the nitrogen addition yield and operating conditions when changing the element gas addition conditions was investigated, and Figure 1 shows the nitrogen gas flow rate at 0. .015' Nta5/min molten steel ton to 0.053
The changes in nitrogen addition yield (1), molten steel scattering status (2), and ladle side wall refractory erosion status (3) are shown when changing the rate up to N3/min molten steel tons.

なおこの時の窒素ガス導入用ランスの浸漬深さは溶鋼深
さの75%である。
The immersion depth of the nitrogen gas introduction lance at this time was 75% of the molten steel depth.

第1図より明らかなように、窒素添加歩留は窒素ガス流
量が0’、03.NII’ 7分溶鋼トンを超えると若
干向上するが短時間で窒素添加するには窒素ガス流量を
多くした方がよいのは当然である。しかしながら窒素ガ
ス流量が0.045 Him’/分溶鋼トン以上忙なる
と溶鋼の飛散は多くなり操業困難な状態となる。又取鍋
側壁耐火物は窒素ガス流量が0.045 Httr3/
分溶鋼トン以上となると溶損が大きくなるので、この結
果に基き本発明においては窒素ガス流量はo、o s 
As is clear from FIG. 1, the nitrogen addition yield is the same as the nitrogen gas flow rate of 0', 03. NII' There is a slight improvement when exceeding 7 minutes of molten steel tons, but it is natural that it is better to increase the nitrogen gas flow rate in order to add nitrogen in a short time. However, if the nitrogen gas flow rate exceeds 0.045 Him'/min ton of molten steel, the amount of molten steel scattering increases, making operation difficult. Also, the nitrogen gas flow rate of the ladle side wall refractory is 0.045 Httr3/
If the amount exceeds a ton of molten steel, the erosion loss will increase, so based on this result, in the present invention, the nitrogen gas flow rate is o, o s
.

Ha3/分溶鋼トン以上、0.045 N■3/分溶鋼
トン以下とした。
Ha3/min molten steel ton or more and 0.045 N3/min molten steel ton or less.

次に第2図に窒素ガス導入用ランスの浸漬深さを溶鋼深
さの50%から95%まで変化させたときの窒素添加歩
留(1)及び取鍋底部耐火物の溶損状況(2)の推移を
示す。なおこのときの窒素ガス流量は0.040 Nm
’ 7分溶鋼トンである。
Next, Figure 2 shows the nitrogen addition yield (1) and the state of erosion of the refractory at the bottom of the ladle (2) when the immersion depth of the nitrogen gas introduction lance was varied from 50% to 95% of the molten steel depth. ). Note that the nitrogen gas flow rate at this time was 0.040 Nm
' 7 minutes is a ton of molten steel.

第2図より明らかなように窒素添加歩留は窒素ガス導入
用ランスの浸漬深さが溶鋼深さの60%以下では悪く8
5%までは浸漬深さに比例し増加するが、85%を超え
ると窒素添加歩留は殆んど変化しない。一方、取鍋底部
耐火物は窒素ガス導入用ランスの浸漬深さの85%以上
になると溶損が大きくなる。麩上の結果から窒素ガス導
入用ランスの浸漬深さは溶鋼深さの60%以上85%以
下とした。
As is clear from Figure 2, the nitrogen addition yield is poor when the immersion depth of the nitrogen gas introduction lance is less than 60% of the molten steel depth.
Up to 5%, the nitrogen addition yield increases in proportion to the immersion depth, but beyond 85%, the nitrogen addition yield hardly changes. On the other hand, the refractory at the bottom of the ladle suffers from significant erosion when the depth of immersion exceeds 85% of the lance for introducing nitrogen gas. Based on the above results, the immersion depth of the nitrogen gas introduction lance was set to be 60% or more and 85% or less of the molten steel depth.

以下、本発明と従来法との比較を実施例により説明する
Hereinafter, a comparison between the present invention and a conventional method will be explained using examples.

実施例1 8U8504のステンレス鋼(18,5%Or −8,
5%Ni) 55 Tを溶製しVOD精錬する。上記溶
鋼(N : 0.01%)に対し、窒素ガス流量は0.
040 Na3/分溶鋼トン、窒素ガス導入用ランスの
浸漬深さは溶鋼深さの75%の1.5mの添加条件で窒
素ガスを吹き込んだ。窒素ガス添加開始の温度は160
0〜1620t:’で精錬後のスラグのCaO/ 5i
o2 は2.0〜2.2であり、窒素ガス添加完了迄の
10分間で窒素含有量は0.07%となり溶鋼温度は1
570Cで、生成された溶鋼の組成はOO,06%、8
i 0.6%。
Example 1 8U8504 stainless steel (18.5% Or -8,
5%Ni) 55T is melted and VOD refined. For the above molten steel (N: 0.01%), the nitrogen gas flow rate was 0.
Nitrogen gas was blown into the steel under the following conditions: 040 Na3/min molten steel tons, and the immersion depth of the nitrogen gas introducing lance was 1.5 m, which was 75% of the molten steel depth. The temperature at which nitrogen gas addition starts is 160
0~1620t: CaO/5i of slag after refining at '
o2 is 2.0 to 2.2, and in 10 minutes until the nitrogen gas addition is completed, the nitrogen content becomes 0.07% and the molten steel temperature decreases to 1.
At 570C, the composition of the molten steel produced is OO, 06%, 8
i 0.6%.

Mn1.2%、Or 18.5・%、Ni 8.5%、
NO607%、残部Fe であった。次に第1表に従来
の窒化7エロクロ五忙よる窒素添加方法と本発明の各諸
元を比較表示する。
Mn 1.2%, Or 18.5%, Ni 8.5%,
It was 607% NO and the balance was Fe. Next, Table 1 compares the specifications of the conventional nitrogen addition method using nitriding and the present invention.

第1表 上記第1表より明らかなように、本発明は従来法に比し
窒素添加歩留は大きく向上し、かつ安定した実績窒素値
を示し、コスト面でも従来法の40%であグ大巾のコス
トダウンができた。
Table 1 As is clear from Table 1 above, the present invention greatly improves the nitrogen addition yield compared to the conventional method, shows stable actual nitrogen values, and is 40% cheaper than the conventional method in terms of cost. We were able to reduce the cost of the large cloth.

窒素添加後の温度降下も本発明の方が従来法に比し少な
い。
The temperature drop after nitrogen addition is also smaller in the present invention than in the conventional method.

実施例2 25%Or −7%Ni −0,02%Cの2相ステン
レス鋼で、目標窒素値0.15%を狙って窒素添加した
ときの例について説明する◇ 上記溶鋼(N : 0.O1%)K対し窒素ガス流量は
0.04ONI!13/分溶鋼トン、窒素ガス導入用ラ
ンスの浸漬深さは溶鋼深さの75%の1.5mの添加条
件で窒素ガスを吹込んだ。窒素ガス添加開始の温度は1
640Cで、精錬後のスラグのcao / 5in2 
は2.0〜2.2であり、窒素ガス添加完了までの20
分間で窒素含有量は0.15%となり、溶鋼温度は15
75Cで、生成された溶鋼の組成はG O,010%、
Si 0.40%、Mn 009%、Or 25.2%
、Ni 7%、N Ool 5%、残部F6 であった
Example 2 An example in which nitrogen is added to a 25% Or -7% Ni -0.02% C duplex stainless steel aiming at a target nitrogen value of 0.15% will be explained.◇ The above molten steel (N: 0.02%). Nitrogen gas flow rate is 0.04 ONI for O1%) K! Nitrogen gas was blown in at 13 tons of molten steel per minute, and the immersion depth of the nitrogen gas introduction lance was 1.5 m, which was 75% of the depth of the molten steel. The temperature at which nitrogen gas addition starts is 1
At 640C, slag cao/5in2 after refining
is 2.0 to 2.2, and it takes 20 to complete nitrogen gas addition.
The nitrogen content becomes 0.15% in 1 minute, and the molten steel temperature becomes 15%.
At 75C, the composition of the molten steel produced is GO,010%,
Si 0.40%, Mn 009%, Or 25.2%
, Ni 7%, N Ool 5%, and the balance F6.

以上の如(本発明は従来の窒素添加方法と異なり、即ち
VOD精錬後、皆素源として従来の窒化合金に変え、大
気下で窒素ガスを導入することを特徴とし、窒素ガス添
加条件を窒素ガス流量で、溶鋼トン当り0,050 N
m3/分以上、α045 Nm’ 7分以下とし、窒素
ガス導入用ランスの浸漬深さを溶鋼深さの60%以上、
85%以下とするとと処より、従来方法に比し安定した
高い窒素添加歩留を得ることができ、大巾なコストダウ
ンに貢献で・きるなど大きな利点をもったものである0
 ゛ なお、本発明の実施は上述実施例のステンレス鋼忙限る
ものでなく、他の鋼種にも適用できることは当然である
As described above (the present invention is different from the conventional nitrogen addition method, that is, after VOD refining, the conventional nitride alloy is used as the element source, and nitrogen gas is introduced under the atmosphere, and the nitrogen gas addition conditions are changed to nitrogen Gas flow rate: 0,050 N per ton of molten steel
m3/min or more, α045 Nm' 7 minutes or less, and the immersion depth of the nitrogen gas introduction lance is at least 60% of the molten steel depth.
When the nitrogen addition rate is 85% or less, it is possible to obtain a stable and high nitrogen addition yield compared to conventional methods, which has great advantages such as contributing to a large cost reduction.
Note that the present invention is not limited to the stainless steel of the above-described embodiments, and can of course be applied to other types of steel.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は窒素ガス流量を変化させたときの窒素添加歩留
、溶鋼飛散状況及び取鍋側壁耐火物の溶損状況を示し、
第2図は窒素ガス導入用ランスの浸漬深さを変化させた
ときの窒素添加歩留及び取鍋底部耐火物の溶損状況を示
す。 オ/ l] 窒素6・ス#L+ (へ〇ワ2≦−身6−θロメ7)手
続補正書(方式) 昭和60年6月/ど日 特許庁長官 志 賀 学 殿 り事件の表示 昭和58年特許願第248619号2、
発明の名称 含窒素合金鋼の製造方法&補正をする者、 事件との関係 特許出願人 住 所 東京都新宿区本塩町8番地の2名 称 日本ス
テンレス株式会社 4、代理人 已補正の対象 図面 マ、補正の内容 別紙のとおシ
Figure 1 shows the nitrogen addition yield, molten steel scattering, and melting damage of the ladle side wall refractory when the nitrogen gas flow rate is changed.
Figure 2 shows the nitrogen addition yield and the state of erosion of the refractory at the bottom of the ladle when the immersion depth of the nitrogen gas introducing lance was varied. [O/l] Nitrogen 6・S#L+ (He〇wa 2≦-M6-θRome7) Procedural amendment (method) June 1985/Do Japan Commissioner of the Japan Patent Office Manabu Shiga Indication of Tonori case Showa 1958 Patent Application No. 248619 2,
Title of the invention Method for producing nitrogen-containing alloy steel & person making the amendment, relationship to the case Patent applicant address 8, Honshio-cho, Shinjuku-ku, Tokyo, 2nd name Nippon Stainless Co., Ltd. 4, subject of amendment by agent Drawings Contents of correction

Claims (1)

【特許請求の範囲】 含窒素合金鋼を製造するに際し、溶製した合金鋼をVO
D精錬したる後窒素を添加する忙当り。 ノ\゛。 窒素ガス導入用ランスな溶鋼内に浸漬深さを溶鋼深さの
60%以上85%以下となるように浸−潰し、窒素ガス
を0.050 Km’ /分溶鋼トン以上、0.045
 Nm37m3調 入することを特徴とする含窒素合金鋼の製造方法。
[Claims] When producing nitrogen-containing alloy steel, the melted alloy steel is VO
D: Adding nitrogen after refining.ノ\゛. Immerse and crush the molten steel using a lance for introducing nitrogen gas so that the immersion depth is 60% or more and 85% or less of the molten steel depth, and add nitrogen gas at a rate of 0.050 Km'/min or more to 0.045 tons of molten steel.
A method for producing nitrogen-containing alloy steel, characterized in that 37 m3 of Nm is supplied.
JP24861983A 1983-12-28 1983-12-28 Manufacture of alloy steel containing nitrogen Pending JPS60243214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24861983A JPS60243214A (en) 1983-12-28 1983-12-28 Manufacture of alloy steel containing nitrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24861983A JPS60243214A (en) 1983-12-28 1983-12-28 Manufacture of alloy steel containing nitrogen

Publications (1)

Publication Number Publication Date
JPS60243214A true JPS60243214A (en) 1985-12-03

Family

ID=17180802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24861983A Pending JPS60243214A (en) 1983-12-28 1983-12-28 Manufacture of alloy steel containing nitrogen

Country Status (1)

Country Link
JP (1) JPS60243214A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098635A (en) * 2013-11-20 2015-05-28 株式会社日本製鋼所 Electrode for electroslag re-melting and method of producing high-nitrogen-content steel
CN113897531A (en) * 2021-09-08 2022-01-07 三鑫重工机械有限公司 Process for vacuum smelting of corrosion-resistant stainless steel by VOD method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015098635A (en) * 2013-11-20 2015-05-28 株式会社日本製鋼所 Electrode for electroslag re-melting and method of producing high-nitrogen-content steel
CN113897531A (en) * 2021-09-08 2022-01-07 三鑫重工机械有限公司 Process for vacuum smelting of corrosion-resistant stainless steel by VOD method
CN113897531B (en) * 2021-09-08 2022-12-13 三鑫重工机械有限公司 Process for vacuum smelting of corrosion-resistant stainless steel by VOD method

Similar Documents

Publication Publication Date Title
CN106148844B (en) A kind of preparation method of sulfur-bearing ultralow titanium high standard bearing steel
CN102051440A (en) Molten steel deoxidizing and carbureting method and steelmaking method
CN108251593B (en) A kind of pneumatic steelmaking dynamic regulation bottom blowing CO2The method of flow improvement denitrogenation
CN111485062A (en) Smelting method of low-cost high-purity 60Si2Mn spring steel
US3169058A (en) Decarburization, deoxidation, and alloy addition
CN111763795A (en) Chromium-removing and carbon-protecting method for smelting Cr-containing molten iron by top-bottom combined blown converter and application
JPS60243214A (en) Manufacture of alloy steel containing nitrogen
CN106929635A (en) Steel ingot and its manufacture method
CN104060047B (en) A kind of method of refining of the molten steel for the production of bearing steel
CN114292984B (en) LF refining slag component research [ Mn ] [ Si ] element RC process method
CA1157276A (en) Method for preventing slopping during subsurface pneumatic refining of steel
JP3728922B2 (en) Method for melting molybdenum-containing molten steel
RU2166549C1 (en) Composite blend for melting of steel (variant)
JPH11131122A (en) Method of decarburizing refining crude molten stainless steel using blast furnace molten iron and ferro chromium alloy
RU2278169C2 (en) Method for production of chromium-manganese stainless steel
JPS6241308B2 (en)
JP3282544B2 (en) Demanganese method for high chromium molten iron alloy
JPS6237340A (en) Manufacture of low-nitrogen and low-carbon ferrochrome
JPS6010087B2 (en) steel smelting method
US2800406A (en) Process for making manganese-bearing steels
US3754900A (en) Production of low nitrogen high chromium ferrous alloys
JPH11158525A (en) Method for melting nickel-contining steel
RU2434060C2 (en) Procedure for production of rail steel
US1228925A (en) Making low-carbon manganese alloys.
RU2416652C1 (en) Procedure for melting alloyed steel containing nitrogen