JPS60241281A - Method of oxidizing solid substance - Google Patents

Method of oxidizing solid substance

Info

Publication number
JPS60241281A
JPS60241281A JP60045024A JP4502485A JPS60241281A JP S60241281 A JPS60241281 A JP S60241281A JP 60045024 A JP60045024 A JP 60045024A JP 4502485 A JP4502485 A JP 4502485A JP S60241281 A JPS60241281 A JP S60241281A
Authority
JP
Japan
Prior art keywords
oxidation
niobium
cerium
oxygen
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60045024A
Other languages
Japanese (ja)
Other versions
JPH0638524B2 (en
Inventor
エルンスト‐エベルハルト・ラツタ
マリア・ロネイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of JPS60241281A publication Critical patent/JPS60241281A/en
Publication of JPH0638524B2 publication Critical patent/JPH0638524B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02244Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of a metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/02227Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
    • H01L21/0223Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
    • H01L21/02233Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
    • H01L21/02236Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
    • H01L21/02238Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/3165Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation
    • H01L21/31683Inorganic layers composed of oxides or glassy oxides or oxide based glass formed by oxidation of metallic layers, e.g. Al deposited on the body, e.g. formation of multi-layer insulating structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/016Catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/089Josephson devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/117Oxidation, selective
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S148/00Metal treatment
    • Y10S148/118Oxide films
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S505/00Superconductor technology: apparatus, material, process
    • Y10S505/80Material per se process of making same
    • Y10S505/815Process of making per se
    • Y10S505/818Coating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Formation Of Insulating Films (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、金属や半導体などの物質上に酸化物層を調製
することに関係しており、さらに具体的にいえば、かか
る物質を室温に近い温度で触媒酸化して、集積回路装置
の製造に有用な処理中間体上に高品質の極薄の絶縁材料
を形成することに関係するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to the preparation of oxide layers on materials such as metals and semiconductors, and more specifically to the preparation of oxide layers on materials such as metals and semiconductors, and more specifically to the preparation of oxide layers on materials such as metals and semiconductors. It involves catalytic oxidation at temperatures close to , to form high quality ultrathin insulating materials on processing intermediates useful in the manufacture of integrated circuit devices.

[開示の概要] ニオブ金属の表面に一層または数層のセリウム単分子層
を配列すると、室温でニオブの酸化触媒として働き、触
媒のパターン付けによって構成できる非常に薄く非常に
高品質の絶縁層ができる。
SUMMARY OF THE DISCLOSURE Arranging one or several monolayers of cerium on the surface of niobium metal acts as an oxidation catalyst for niobium at room temperature, creating a very thin and very high quality insulating layer that can be constructed by patterning the catalyst. can.

セリウムの存在によって促進されて、6.6X10−’
Paという低い圧力でかなりの量のNb、O。
Facilitated by the presence of cerium, 6.6X10-'
A considerable amount of Nb and O at a low pressure of Pa.

が生成される。この触媒作用は、酸化中にセリウムの原
子価が3価から4価に変わることに関係している。セリ
ウム酸化の下でのNb2O5形成の反応速度論は2段階
である。
is generated. This catalytic effect is related to the change in the valence of cerium from trivalent to tetravalent during oxidation. The kinetics of Nb2O5 formation under cerium oxidation is two-step.

第1段は、イオン拡散によって限定される速い成長であ
る。
The first stage is fast growth limited by ion diffusion.

第2段は、電子トンネリングによって限定されるゆっく
りした成長である。
The second stage is slow growth limited by electron tunneling.

セリウムの代りに使用できるその他の触媒作用をもつ希
土類は、テルビウムとプラセオジムである。ニオブの代
りに使用できるその他の基板材料は、アルミニウム、八
ツニウム、シリコン、タンタルまたはそれらの酸化可能
な合金である。
Other catalytic rare earths that can be used in place of cerium are terbium and praseodymium. Other substrate materials that can be used in place of niobium are aluminum, octunium, silicon, tantalum or oxidizable alloys thereof.

[従来の技術] 近年、多結晶ニオブの室温酸化が、超伝導ジョセフソン
接合中のトン半ル障壁材料として使用できることから、
注目を集めている。主な関心は、大きな過剰電流の原因
と考えられる亜酸化物の存在の直接の証拠を見つけるこ
とであった。X線光電子分光分析(XPS)の研究から
、ニオブの酸化は、最初に酸素を急速に吸収し、次にN
bOとNbO2の薄い層が形成され、続いて大きな酸素
暴露で表面にNb2o5が形成されることを特徴とする
ことがわかった。ニオブの低次酸化物は、Nb2O5と
は対照的な低い絶縁特性を示す。サンズとホフマンは、
Nb2O,形成の反応速度をめた。
[Prior Art] In recent years, room-temperature oxidation of polycrystalline niobium can be used as a ton-half barrier material in superconducting Josephson junctions.
It is attracting attention. The main interest was to find direct evidence of the presence of suboxides, which could be responsible for the large excess current. From X-ray photoelectron spectroscopy (XPS) studies, niobium oxidation first rapidly absorbs oxygen, then N
It was found to be characterized by the formation of a thin layer of bO and NbO2, followed by the formation of Nb2o5 on the surface with large oxygen exposure. Lower oxides of niobium exhibit poor insulating properties in contrast to Nb2O5. Sands and Hoffman
The reaction rate of Nb2O formation was estimated.

それは、超高真空(UHV)条件下で乾燥酸素中で対数
成長法則に従い、10’L (IL=10−6Torr
、5ec= 1 、32 X 10”′4Pa、5ec
)の酸素暴露後に0.2ナノメートルの厚さに達する。
It follows a logarithmic growth law in dry oxygen under ultra-high vacuum (UHV) conditions and grows to 10'L (IL=10-6 Torr
, 5ec= 1, 32 X 10"'4Pa, 5ec
) reaches a thickness of 0.2 nanometers after exposure to oxygen.

ジェニ・エム・サンズ及びニス・ホフマン、ジャーナル
・オブ・レス−コモン・メタルズ1巻29、ページ3 
1 7 (J+of the Less−Common
 Metals、Volume92、 p、317(1
983))を参照のこと。
Jenni M. Sands and Nis Hoffman, Journal of Less-Common Metals, Volume 1, 29, Page 3
1 7 (J+of the Less-Common
Metals, Volume 92, p, 317 (1
See 983)).

セリウムの表面酸化のXPSと芯型子エネルギー損失分
光分析の研究からは、最初にCe2O3が形成され続い
て表面にCeO2の簿い層ができることが示唆される。
XPS and core energy loss spectroscopy studies of surface oxidation of cerium suggest that Ce2O3 is first formed followed by a thin layer of CeO2 on the surface.

水蒸気による酸化では3価の酸化物しか形成されない。Oxidation with water vapor only forms trivalent oxides.

ビー・イー・コエル等、ジャーナル・オブ・エレクトリ
ック・スペクトロスコピー・リレーテシド・フエノミナ
(J、E]、ectr。
B.E. Coel et al., Journal of Electrical Spectroscopy Relatecid Phenomina (J,E), ectr.

5pectr、Re1.Phen、Vol、 21 、
p、31 (1980) )及びジー・ストラツサー及
びエフ・ピー・ネツアー、ジャーナル・オブ・バキュー
ム・サイエンス・アンド・テクノロジー(J、Vac、
Sci、Tech、、5ection A、、Vol、
2、page826、April−May 1984)
を参照のこと。
5pectr, Re1. Phen, Vol. 21,
p. 31 (1980)) and G. Stratzer and F.P. Netzer, Journal of Vacuum Science and Technology (J. Vac.
Sci,Tech,,5section A,,Vol.
2, page 826, April-May 1984)
checking ...

室温で空気に暴露したとき固有酸化物を形成する金属は
、アルミニウムやニオブを含めて沢山ある。しかし、本
発明のもとになった実験研究より前には、固体の触媒酸
化は知られていない。
Many metals, including aluminum and niobium, form intrinsic oxides when exposed to air at room temperature. However, prior to the experimental work that gave rise to the present invention, catalytic oxidation of solids was unknown.

さらに、X線光電子放射分光分析(xps)の研究から
、薄いアルミニウム、薄いイツトリウムまたはマグネシ
ウム、イツトリウムまたはエルビウム保護層を使うと、
ニオブの空気酸化を抑えられることがわかっている。
Additionally, X-ray photoemission spectroscopy (XPS) studies have shown that using thin aluminum, thin yttrium or magnesium, yttrium or erbium protective layers;
It is known that air oxidation of niobium can be suppressed.

絶縁酸化物層を調製するための技術には、一般に高温が
必要であるが、温度が高いと、汚染物質の拡散やドーパ
ントの最適範囲を越える拡散など他の問題を引き起こす
ので、望ましくないことがわかっている。集積回路に大
きな関心が集中しているため、多数の研究所で酸化物の
研究が行なわれたが、有意な絶縁層の室温酸化が実現で
きるとの知識はもたらされず、もちろんかかる酸化を実
施するための現実的知識も、実際の触媒や方法の選択に
関する知識ももたらされなかった。半導体集積回路やそ
の他の集積回路に必要な酸化物層には、依然として高温
が必要であった。
Techniques for preparing insulating oxide layers generally require high temperatures, which may be undesirable because they cause other problems such as diffusion of contaminants or diffusion of dopants beyond the optimal range. know. The great focus on integrated circuits has led to research on oxides in numerous laboratories, but this has not led to the knowledge that significant room temperature oxidation of insulating layers can be achieved, and of course it is difficult to carry out such oxidations. No knowledge of practical methods or selection of catalysts or methods was provided. Oxide layers required for semiconductor integrated circuits and other integrated circuits still required high temperatures.

白金、ロジウム、パラジウム4セリウムなどある種の触
媒、特に白金は、自動車産業で排気ガスの浄化に使われ
ることが普通になっている。排気ガスの触媒反応は高温
で起こり、気体成分しか関係しない。例えば、米国特許
第4’ 274981号を参照のこと。
Certain catalysts, especially platinum, such as platinum, rhodium, and palladium-tetracerium, are commonly used in the automotive industry to purify exhaust gases. Catalytic reactions in exhaust gas occur at high temperatures and involve only gaseous components. See, eg, US Pat. No. 4'274,981.

ある種の希土類や金属は、触媒特性をもつことが知られ
ている。ゲルマニウム、セリウム、トリウム、マンガン
、ニオブ、クロム、プラセオジウム、イツトリウム、ジ
ルコニウム、ルテニウム、ガリウム、スズ、インジウム
、銅、ランタン、タンタル、タングステンなどが、酸化
を推進するものとして記載されている。例えば、米国特
許第4001317号を参照のこと。
Certain rare earths and metals are known to have catalytic properties. Germanium, cerium, thorium, manganese, niobium, chromium, praseodymium, yttrium, zirconium, ruthenium, gallium, tin, indium, copper, lanthanum, tantalum, tungsten, and others have been described as promoting oxidation. See, eg, US Pat. No. 4,001,317.

先行技術は、気体物質及び有機物質に関するものであり
、半導体の製造に使用される加工中間体や固体の酸化は
扱っていない。
The prior art concerns gaseous and organic materials and does not deal with the oxidation of processing intermediates or solids used in the manufacture of semiconductors.

[発明力r解決しようとする問題点] 本発明の目的は、かかる酸化反応で通常必要な圧力と温
度の加工パラメータよりはるかに会い温度で材料を触媒
酸化して、有用な絶縁層を調製することである。
[Problems to be Solved] It is an object of the present invention to catalytically oxidize materials at temperatures far exceeding the pressure and temperature processing parameters normally required for such oxidation reactions to prepare useful insulating layers. That's true.

[問題点を解決するための手段] 本発明の一つの特徴は、表面酸化によって原子価が3価
から4価に変わる、セリウムやその他の希土類元素のい
くつかの単分子層を使って、高品質の滑らかで薄い酸化
物層をもたらすことである。
[Means for Solving the Problems] One feature of the present invention is to use several monolayers of cerium and other rare earth elements whose valence changes from trivalent to tetravalent through surface oxidation. The quality is to yield a smooth and thin oxide layer.

本発明の一つの利点は、高品質の絶縁層の有効パターン
を、高温を必要とせずに、触媒パターンがそのまま受け
容れできるかまたは容易に取り除けるような形で低コス
トで提供することである。
One advantage of the present invention is that it provides an effective pattern of high quality insulating layers at low cost, without the need for high temperatures, and in a form where the catalyst pattern can be accepted as is or easily removed.

本発明の上記その他の目的、特徴及び利点を明らかにす
るため、添付の図面に図示した如き本発明の良好な実施
例についてより詳しく説明する。
In order to make these and other objects, features and advantages of the present invention clearer, preferred embodiments of the invention will now be described in more detail as illustrated in the accompanying drawings.

[実施例] セリウムをニオブ金属性の基板表面に一層ないし数層の
単分子層として配列すると、室温でニオブ基板の酸化触
媒として働き、非常に高品質の薄い絶縁層ができる。他
のある種の触媒、一般には酸化反応中に原子価が増す希
土類も、また他のある種の基板材料、一般には酸化可能
な金属または半導体も使用できる。
EXAMPLE When cerium is arranged in one or several monolayers on the surface of a niobium metallic substrate, it acts as an oxidation catalyst for the niobium substrate at room temperature, resulting in a thin insulating layer of very high quality. Certain other catalysts, generally rare earths whose valence increases during the oxidation reaction, can also be used, as well as certain other substrate materials, generally oxidizable metals or semiconductors.

相当の量のNb2O,が、セリウムの存在によつ・ て
促進されて6.6X10””Paという低い圧力で形成
される。この触媒作用は、酸化中にセリウムの原子価が
3価から4価に変わることに関係するものである。酸化
されたセリウムの下でのNb2O,の反応速度論は、2
段階である。
Significant amounts of Nb2O, are formed at pressures as low as 6.6 x 10''Pa, facilitated by the presence of cerium. This catalytic effect is related to the change in the valence of cerium from trivalent to tetravalent during oxidation. The reaction kinetics of Nb2O, under cerium oxide is 2
It is a stage.

第1段は、イオン拡散によって限定される速い成長であ
る。
The first stage is fast growth limited by ion diffusion.

第2段は、電子のトンネリングによって限定されるゆっ
くりした成長である。
The second stage is slow growth limited by electron tunneling.

非常に薄いセリウムの保護層でも、ニオブ金属の酸化を
促進する。例えば、僅か200Lの酸素暴露後に4.5
nmのNb2O5が酸化されたセリウムの下に形成され
、より低次の酸化物は検出されない。
Even a very thin protective layer of cerium promotes oxidation of the niobium metal. For example, after only 200 L of oxygen exposure, 4.5
nm of Nb2O5 is formed under the oxidized cerium, and no lower oxides are detected.

集積回路製造の加工中間体を生成する方法として一般に
有用な本発明を実施するための、有利な出発材料は、適
当な基板に蒸着させたニオブである。加工は一般に超高
真空(UHV)系で行なう。
A preferred starting material for carrying out the present invention, which is generally useful as a method for producing processing intermediates for integrated circuit manufacturing, is niobium deposited on a suitable substrate. Processing is generally performed in an ultra-high vacuum (UHV) system.

ニオブ膜とセリウム保護層を300’にで蒸発させて酸
化させ、第1図に示した加工中間体を形成する。基板の
金属ニオブ1(これをさらに別の基板に載せてもよい)
は酸化されてNb、O,層2を含むようになり、セリウ
ムの薄い触媒層は酸化されてCe O2+ Ce 20
3 M 3になっている。
The niobium film and cerium protective layer are evaporated and oxidized at 300' to form the processed intermediate shown in FIG. Metal niobium 1 on the substrate (this may be placed on another substrate)
is oxidized to contain Nb, O, layer 2, and the thin catalyst layer of cerium is oxidized to form Ce O2+ Ce 20
It has become 3M3.

触媒の酸化は、xpsでMgKα励起(1252,6e
V)を使ってその場で表面にほぼ垂直に観測方法で分析
した、後からの分析で確認されている。
The oxidation of the catalyst was performed using MgKα excitation (1252,6e
This was confirmed by subsequent analysis using an observation method almost perpendicular to the surface on the spot using V).

まず約25r++++のニオブを蒸着する。そのXPS
スペクトルはクリーンな金属の電子レベルしか示さない
。結合エネルギーが202.3eVのNb5d、、□ピ
ークと205.1eVのNb5d、、□ピークのプロッ
トを第2図の曲線(a)に示す。6゜6X10−GPa
の純粋な酸素に20分間暴露した後、Nb5dレベルは
第2図の曲線(b)にみられるように、少量の低次Nb
酸化物の形成のみを示す。
First, approximately 25r++++ of niobium is deposited. That XPS
The spectrum shows only clean metal electron levels. A plot of the Nb5d, , □ peak with a binding energy of 202.3 eV and the Nb5d, , □ peak with a binding energy of 205.1 eV is shown in curve (a) in FIG. 6゜6X10-GPa
After 20 minutes of exposure to pure oxygen of
Only oxide formation is shown.

適当な基板上に25nmのニオブを蒸着し、ニオブの頂
面に0.6nmのセリウムを蒸着する。第3図の曲線(
a)は、この時点でのNb5dのレベルを示したもので
ある。6.6X10−’Paの純粋酸素に20分間暴露
した後、第3図の曲線(b)に示すようにかなりの量の
ニオブ酸化物が形成される。できたニオブ酸化物は、N
b5cルベルが5゜1eV化学シフトするのが特徴であ
る。このNb3 d 5/□で207 、4 e V、
 N b 3 d S/2で210゜2’eVの結合エ
ネルギーは、N b 20 sの特徴である。酸化物の
厚さtaxは、方程式1のように推定できる。
Deposit 25 nm of niobium on a suitable substrate and 0.6 nm of cerium on top of the niobium. The curve in Figure 3 (
Panel a) shows the level of Nb5d at this point. After 20 minutes of exposure to 6.6 x 10-'Pa of pure oxygen, a significant amount of niobium oxide is formed, as shown in curve (b) of Figure 3. The resulting niobium oxide is N
It is characterized by a chemical shift of 5°1 eV in b5c Lebel. This Nb3 d 5/□ is 207, 4 e V,
The binding energy of 210°2'eV at N b 3 d S/2 is characteristic of N b 20 s. The oxide thickness tax can be estimated as in Equation 1.

ただし、λ。8とλ、はそれぞれ酸化物と金属における
電子の平均自由行程、I axと工、は積分強度n、X
とn、はNb原子密度、θはサンプル面からの検出角度
である。酸化物の厚さを計算するのに使用した電子の平
均自由行程は、ニオブで1.4011、Nb2O,で2
.4nmである。すなわち、nm/n、、=2.69゜ 方和式(1)によれば、6.6X10−6Paで20分
間酸化した場合のNb2O,層の厚さは3.51mであ
る。
However, λ. 8 and λ are the mean free path of electrons in oxides and metals, respectively, I ax and λ are the integrated intensities n, X
and n is the Nb atom density, and θ is the detection angle from the sample surface. The electron mean free path used to calculate the oxide thickness is 1.4011 for niobium and 2 for Nb2O.
.. It is 4 nm. That is, nm/n, , = 2.69° According to the equation (1), the thickness of the Nb2O layer when oxidized at 6.6×10 −6 Pa for 20 minutes is 3.51 m.

良好な実施例のバリエーションでは、様々な厚さく0.
5om、lnm、2om)のセリウム保護層を同じ酸化
処理にかけたとき、同じ量のNb2O,が生成する。セ
リウムの触媒作用は、厚さが0.5〜2omの範囲では
その厚さによって変化しない。
Variations of the preferred embodiment include various thicknesses of 0.
When a cerium protective layer of 5 ohm, 1 nm, 2 ohm) is subjected to the same oxidation treatment, the same amount of Nb2O, is produced. The catalytic action of cerium does not change depending on the thickness within the range of 0.5 to 2 om.

25omのニオブをQ、5omのセリウムで被覆して酸
素の代りに6.6X10−’PaのH20蒸気に20分
間暴露しても、Nb2O,は生成されない。
Even if 25 ohm niobium is coated with Q, 5 om cerium and exposed to 6.6 x 10-'Pa H20 vapor instead of oxygen for 20 minutes, no Nb2O, is produced.

これらの結果は、純粋な酸素中で酸化を行なう場合に表
面にCe2O,とCeO2の混合物が形成されることを
確認するものである。
These results confirm that a mixture of Ce2O and CeO2 is formed on the surface when oxidation is carried out in pure oxygen.

第4図は、酸素に暴露させる前(a)と後(b)の保護
層のCa4dレベルを示すものである。金属セリウム相
は3価(ライ。ベール及びシー、ツアシェー、フィジカ
ル・レビュー・レター(Phys、Rev。
Figure 4 shows the Ca4d level of the protective layer before (a) and after (b) exposure to oxygen. The metallic cerium phase is trivalent (Rei. Beer and C., Zuscher, Physical Review Letters (Phys, Rev.

Lett、、Vol、39.p、956.1977)を
参照のこと)であるが、酸化されたセリウムは、3価と
4価の両方を示す。水蒸気中で酸化を行なう場合、Ce
4dスペクトルで4価セリウムの証拠は見つからず、ニ
オブはセリウムの下では酸化しない。セリウムの触媒作
用は、表面酸化中の(3価から4価への)原子価の変化
に関係しているようである。CeO2は、炭化水素の酸
化など酸化反応での触媒作用が大きいことがわかってい
る。その場合は、3価から4価へと原子価が変化しやす
いこととCe O。
Lett, Vol. 39. p. 956.1977), but oxidized cerium exhibits both trivalent and tetravalent valence. When oxidizing in water vapor, Ce
No evidence of tetravalent cerium was found in the 4d spectrum, and niobium does not oxidize under cerium. The catalytic effect of cerium appears to be related to the change in valence (from trivalent to tetravalent) during surface oxidation. CeO2 is known to have a strong catalytic effect in oxidation reactions such as oxidation of hydrocarbons. In that case, the valence of CeO is likely to change from trivalent to tetravalent.

中での酸化移動度が大きいことがともによく反映されて
いる。CeO2は酸素イオンの伝導体であり、多分結晶
状態でよりも無定形の場合の方がその作用が強いと思わ
れる。
Both of these clearly reflect the large oxidation mobility within. CeO2 is a conductor of oxygen ions, and its effect is probably stronger in the amorphous state than in the crystalline state.

低温で形成される酸化物膜は無定形であることがわかっ
ている。N b 20 sなどそれらの一部は網状構造
を形成する。小さいが緊密に結合されたカチオンよりも
大きな酸化イオンの方が網状通路を通りやすく、したが
ってこれらの酸化物膜は酸素イオン拡散によって成長す
る。
It is known that oxide films formed at low temperatures are amorphous. Some of them, such as N b 20 s, form a network structure. Large oxide ions pass through the network channels more easily than small, tightly bound cations, so these oxide films grow by oxygen ion diffusion.

酸化の際に発生しイオン拡散を促進するモット(Mot
t)電位はニオブよりもセリウムの方が大きいので、セ
リウムの方がニオブよりも酸化しやすい。表面の酸化さ
れたセリウムは、Ce O,を大きな割合で含んでおり
、これはニオブでCe2O3に還元できる。1モルの酸
素形成に関するNb2O5の分解熱は146.8Kca
Qであるが、CeO2のそれは僅か125KcaQであ
るためである。(Ce203の分解熱は305KcaQ
なのでニオブはCe2O3を還元できない。)酸素暴露
を続けると、酸素をニオブに与えたCeO2は表面で再
酸化し、ニオブがさらに酸化するための酸素イオンを供
給する。
Mot is generated during oxidation and promotes ion diffusion.
t) Since the electric potential is greater for cerium than for niobium, cerium is more easily oxidized than niobium. The oxidized cerium on the surface contains a large proportion of Ce2O, which can be reduced to Ce2O3 with niobium. The heat of decomposition of Nb2O5 for the formation of 1 mole of oxygen is 146.8 Kca
Q, but that of CeO2 is only 125 KcaQ. (The heat of decomposition of Ce203 is 305KcaQ
Therefore, niobium cannot reduce Ce2O3. ) As the oxygen exposure continues, the CeO2 that has donated oxygen to the niobium reoxidizes at the surface, providing oxygen ions for further oxidation of the niobium.

第二の実験では、6.6 X、10−’P aの酸素圧
力でのニオブの触媒酸化の反応速度論を研究するため、
0.9omのセリウムで被覆した、新しく付着させた5
0omのニオブの膜を使って、1分間から7時間暴露後
にXPSスペクトルを取った。1分間暴露(3L)では
、表面のセリウムがまず酸化されるため、スペクトルは
Nb2O5を示さなかった。9Lの酸素暴露を示す、3
分後にとった次のスペクトルは、既に1.9omのNb
2O,が形成されていることを示した。このことを、9
L暴露で非常に少量のNbOとNbO,が形成され、N
b2O,、は検出されない、触媒なしてのニオブの酸化
と比較すべきである。
In the second experiment, to study the kinetics of catalytic oxidation of niobium at an oxygen pressure of 6.6 X, 10-'Pa,
Freshly deposited 5 coated with 0.9om cerium
XPS spectra were taken using a 0 om niobium film after exposure for 1 minute to 7 hours. At 1 minute exposure (3 L), the spectrum did not show Nb2O5 because the cerium on the surface was oxidized first. 3, indicating 9L of oxygen exposure
The next spectrum taken minutes later was already 1.9 om Nb
It was shown that 2O, was formed. 9.
Very small amounts of NbO and NbO are formed upon exposure to L, and NbO,
b2O,, is not detected, which should be compared to the oxidation of niobium without catalyst.

第5図は、(方程式1で計算した)Nb2o、、層の厚
さを酸化時間の対数の関数として示したものである。図
から、酸化時間が大体40分頃までは急速に成長するこ
とがわかる。これは120Lの酸素暴露に相当する。こ
こですでに4omの純粋なNb2O,が形成されている
。このことを、120Lの酸素に暴露したとき0.6o
mのNb’O+NbO2の上にNb2O,が0.O5n
mしか形成されない、触媒なしのニオブ酸化と比較すべ
きである。
FIG. 5 shows the thickness of the Nb2o layer (calculated using equation 1) as a function of the logarithm of the oxidation time. From the figure, it can be seen that growth occurs rapidly until the oxidation time is about 40 minutes. This corresponds to 120L of oxygen exposure. Here, 4 om of pure Nb2O has already been formed. This corresponds to 0.6o when exposed to 120L of oxygen.
Nb2O, on top of Nb'O+NbO2 of m, is 0. O5n
Comparison should be made with the uncatalyzed niobium oxidation, where only m is formed.

速い成長は両対数表示(挿入図)で1/3の勾配を特徴
とし、それが対数時間依存関係を特徴とするゆっくりし
た成長に変わる。7時間(1,26OL)後の厚さは4
.8omである。ニオブの非触媒酸化では、ゆっくりし
た成長体制しかみられない。
Fast growth is characterized by a slope of 1/3 in logarithmic representation (inset), which gives way to slow growth characterized by a logarithmic time dependence. Thickness after 7 hours (1,26OL) is 4
.. It is 8 ohm. Noncatalytic oxidation of niobium shows only a slow growth regime.

Nb2O,の生成は、対数的時間依存関数を特徴とする
。1260Lの酸素に暴露したとき、0.6omのNb
O+NbO□の上にNb2O5が0.2omしか形成さ
れない。
The generation of Nb2O, is characterized by a logarithmic time-dependent function. 0.6om Nb when exposed to 1260L of oxygen
Only 0.2 om of Nb2O5 is formed on O+NbO□.

触媒酸化の実験から、酸素分圧が増大すると酸化物層の
厚さも増加することがわかっている。例えば、6.6X
10−’Paの酸素圧力で20分間酸化すると、厚さ3
05nmのNb2O,となるが、1.32X10’Pa
で同じ時間酸化すると6゜7nmのN b 20 sが
できる。第6図を参照のこと。
Catalytic oxidation experiments have shown that as the oxygen partial pressure increases, the thickness of the oxide layer also increases. For example, 6.6X
When oxidized for 20 minutes at an oxygen pressure of 10-'Pa, a thickness of 3
05nm Nb2O, but 1.32X10'Pa
When oxidized for the same period of time, N b 20 s with a thickness of 6°7 nm is produced. See Figure 6.

酸化温度を室温からやや高い温度まで上げると、酸化物
の厚さは指数関数的に増大する。
As the oxidation temperature is increased from room temperature to slightly higher temperatures, the oxide thickness increases exponentially.

」二連のように、セリウムの触媒作用により、よく制御
されたUHV状態の下では、かなりの星のN b 20
 sが成長できる。純粋なニオブを大気圧で同等の暴露
時装置いた場合に得られるよりも、厚さがずっと大きく
なる。しかし、触媒を使って固体を酸化することの利点
は、より短い時間で速度間約変化と平衡に達するだけで
なく、この触媒によってもたらされる平衡状態が化学量
論の点で非平衡状態よりも完全な(低次酸化物が形成さ
れない)ことである。セリウム触媒の重要な特徴は、表
面酸化中にその原子価が3価から4価に変わることであ
ることがわかった。
” Under well-controlled UHV conditions, due to cerium catalysis, significant stellar N b 20
s can grow. The thickness is much greater than would be obtained with an equivalent exposure device of pure niobium at atmospheric pressure. However, the advantage of using a catalyst to oxidize solids is not only that it reaches equilibrium with a change in rate in a shorter time, but also that the equilibrium state brought about by this catalyst is more stoichiometrically than a non-equilibrium state. complete (no lower oxides are formed). It was found that an important feature of the cerium catalyst is that its valence changes from trivalent to tetravalent during surface oxidation.

原子価が3価から4価に変化する、プラセオジムやテル
ビウムなど他の希土類の触媒作用も、セリウムと類似し
ている。制御された状態で酸化して保護/絶縁酸化物層
を形成することができる、アルミニウム、ハフニウム、
チタン、ジルコニウム、タンタル基板材料も、ある種の
用途では、ニオブの代りに金属または合金として使える
。シリコンは、1000℃のような極めて高い酸化温度
でしか有用な絶縁厚さのSiO□酸化物層を形成しない
が、上記の触媒を使うと、室温前後の温度で酸化するこ
とができる。酸化物パターンは、酸化の前にマスキング
したまたはエツチング法を使って触媒をパターン付けす
ることによって生成できる。
The catalytic behavior of other rare earths, such as praseodymium and terbium, whose valence changes from trivalent to tetravalent, is also similar to that of cerium. Aluminum, hafnium, which can be oxidized in a controlled manner to form a protective/insulating oxide layer.
Titanium, zirconium, and tantalum substrate materials can also be used as metals or alloys in place of niobium in certain applications. Silicon, which forms SiO□ oxide layers of useful insulating thickness only at extremely high oxidation temperatures, such as 1000° C., can be oxidized at temperatures around room temperature using the catalysts described above. Oxide patterns can be produced by patterning the catalyst using masked or etched methods prior to oxidation.

本発明を良好な実施例す外わち、様々な厚さ及び様々な
材料を用いたセリウム触媒によるニオブ酸化について説
明してきたが、当業者なら理解できるように、本発明の
精神と範囲から外れることなく、原子価が変化するその
他の希土類や各種の酸化可能な基板材料と合金を使用す
ることができる。
While this invention has been described as a preferred embodiment, ie, cerium-catalyzed niobium oxidation using various thicknesses and various materials, those skilled in the art will appreciate that the invention falls outside the spirit and scope of the invention. Other rare earths of varying valence and various oxidizable substrate materials and alloys can be used without the need for oxidation.

[発明の効果] 本発明の効果は、高品質の絶縁層を高温を必要とせずに
形成することができることである。さらに、高品質の絶
縁層の有効パターンを高温を必要とせずに、触媒パター
ンがそのまま受け容れできるかまたは容易に取り除ける
ような形で提供することもできる。
[Effects of the Invention] An effect of the present invention is that a high-quality insulating layer can be formed without requiring high temperatures. Additionally, an effective pattern of high quality insulating layers can be provided without the need for high temperatures and in such a way that the catalyst pattern can be accepted or easily removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の良好な実施例にもとづく集積回路加
工中間体の概略図である。 第2図は、次のものの合成XPSスペクトルである。 (a) 新しく蒸着させた25nmのニオブは、結合エ
ネルギー202.3eVのN b 3 d S/2ピー
クと205.1eVのNb5d3.□ピークとクリーン
金属の電子レベルしか示さない。 (b) 300 Kで6.6X10−’Paの純粋酸素
に20分間暴露させた後、Nb5dレベルは、少量の低
次Nb酸化物の形成しか示さな(16 第3図は、0.6nmのセリウムで覆った新しく蒸着さ
せた25nmのニオブのXFISスペクトルである。 (a) 酸素に暴露する前のNb5dレベル。 (b) 300 Kで6.6X10−’Paの酸素に2
0分間暴露した後の3dレベル。Nb5dレベルが、5
.1eV化学シフトすることを特徴とするNb2O,が
、かなりの量形成されたことを示す。 第4図は、酸素に暴露する前(a)と(b)のセリウム
保護層の合成XPSスペクトルである。金属セリウムは
3価だけであるが、酸化相はその他にCe’+化学種を
示す。 第5図は、Nb2O5層の厚さを300にでの酸化時間
の対数の関数として示した図である。この図は、大体4
nmの厚さまで両対数表示(挿入図)で1/3の勾配を
特徴とする速い成長を示し、それが対数的時間依存関係
を特徴とするゆっくりした成長に変わることを示す。 第6図は、ニオブ上にセリウム、プラセオジム及びテル
ビウム触媒を使った場合のNb2O,酸化物の厚さの、
酸素圧力の対数に対する依存関係を示す図である。 出願人 インターナショナル・ビジネス・マシーンズ・
コーポレーション 復代理人 弁理士 合 1) 潔 第1図 200 204 208 212 ’ EB(pV) 
第8図
FIG. 1 is a schematic diagram of an integrated circuit processing intermediate according to a preferred embodiment of the present invention. FIG. 2 is a composite XPS spectrum of: (a) Freshly deposited 25 nm niobium has a N b 3 d S/2 peak with a binding energy of 202.3 eV and a Nb 5 d 3 . □ Shows only peak and clean metal electron levels. (b) After 20 min exposure to pure oxygen at 300 K and 6.6 x 10-'Pa, the Nb5d level shows only a small amount of lower-order Nb oxide formation (16 Figure 3 shows that the 0.6 nm XFIS spectra of freshly deposited 25 nm niobium coated with cerium. (a) Nb5d level before exposure to oxygen. (b) 2 to 6.6 x 10-'Pa of oxygen at 300 K.
3d level after 0 minute exposure. Nb5d level is 5
.. This indicates that a significant amount of Nb2O, characterized by a 1 eV chemical shift, was formed. FIG. 4 is a composite XPS spectrum of the cerium protective layer (a) and (b) before exposure to oxygen. Metallic cerium is only trivalent, but the oxidized phase additionally exhibits Ce'+ species. FIG. 5 shows the thickness of the Nb2O5 layer as a function of the logarithm of the oxidation time at 300 nm. This figure is approximately 4
We show a fast growth characterized by a slope of 1/3 in double logarithmic representation (inset) up to a thickness of nm, which changes to a slow growth characterized by a logarithmic time dependence. Figure 6 shows the thickness of Nb2O oxide when using cerium, praseodymium and terbium catalysts on niobium.
FIG. 3 is a diagram showing the dependence of oxygen pressure on the logarithm. Applicant International Business Machines
Corporation Sub-Agent Patent Attorney 1) Kiyoshi 1 Figure 200 204 208 212' EB (pV)
Figure 8

Claims (1)

【特許請求の範囲】[Claims] 酸化中の原子価の増大に関係する触媒作用をもつ希土類
の1乃至10単分子層の非常に薄い層を付着させること
、及び室温またはそれよりもやや高い温度で望みの厚さ
まで酸化物を成長させるのに必要な時間、それに必要な
酸素分圧で酸素に暴露することを含む、固体表面に酸化
物層を形成する方法。
Depositing very thin layers of 1 to 10 monolayers of rare earths with catalytic properties that are responsible for the increase in valence during oxidation, and growing the oxide to the desired thickness at room temperature or slightly higher. A method of forming an oxide layer on a solid surface, the method comprising exposing it to oxygen for a period of time and at a partial pressure of oxygen necessary to cause the formation of an oxide layer on a solid surface.
JP60045024A 1984-05-15 1985-03-08 Method for catalytic oxidation of solid substance Expired - Lifetime JPH0638524B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US610355 1984-05-15
US06/610,355 US4526629A (en) 1984-05-15 1984-05-15 Catalytic oxidation of solid materials

Publications (2)

Publication Number Publication Date
JPS60241281A true JPS60241281A (en) 1985-11-30
JPH0638524B2 JPH0638524B2 (en) 1994-05-18

Family

ID=24444690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60045024A Expired - Lifetime JPH0638524B2 (en) 1984-05-15 1985-03-08 Method for catalytic oxidation of solid substance

Country Status (4)

Country Link
US (1) US4526629A (en)
EP (1) EP0161619B1 (en)
JP (1) JPH0638524B2 (en)
DE (1) DE3585842D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028579A1 (en) * 1993-05-25 1994-12-08 Tadahiro Ohmi Method of forming insulating oxide film and semiconductor device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4735921A (en) * 1987-05-29 1988-04-05 Patrick Soukiassian Nitridation of silicon and other semiconductors using alkali metal catalysts
US4806505A (en) * 1987-10-30 1989-02-21 Regents Of The University Of Minnesota Samarium- and ytterbium-promoted oxidation of silicon and gallium arsenide surfaces
US6146135A (en) * 1991-08-19 2000-11-14 Tadahiro Ohmi Oxide film forming method
US5427630A (en) * 1994-05-09 1995-06-27 International Business Machines Corporation Mask material for low temperature selective growth of silicon or silicon alloys
JP2937817B2 (en) * 1995-08-01 1999-08-23 松下電子工業株式会社 Method of forming oxide film on semiconductor substrate surface and method of manufacturing MOS semiconductor device
US6707647B2 (en) * 2001-01-29 2004-03-16 International Business Machines Corporation Magnetic head with thin gap layers
JP2003073794A (en) * 2001-06-18 2003-03-12 Shin Etsu Chem Co Ltd Heat-resistant coated member
DE10304756B4 (en) * 2003-02-05 2005-04-07 W.C. Heraeus Gmbh Oxygenated niobium wire
DE102004032128B4 (en) * 2003-10-17 2010-10-14 W.C. Heraeus Gmbh Metallic material, method of manufacture and use
US7615385B2 (en) 2006-09-20 2009-11-10 Hypres, Inc Double-masking technique for increasing fabrication yield in superconducting electronics
US9911915B2 (en) 2014-07-29 2018-03-06 Hewlett Packard Enterprise Development Lp Multiphase selectors

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001317A (en) * 1974-07-22 1977-01-04 Standard Oil Company Process for the oxidation of olefins using catalysts containing various promoter elements
DE2555187A1 (en) * 1975-12-08 1977-06-16 Siemens Ag Semiconductor with coating of inorg. insulation and metallised layer - has metallised layer surface oxidised by simultaneous application of heat and oxidising medium under press.
JPS5610334A (en) * 1979-07-06 1981-02-02 Toyota Motor Corp Catalyst for cleaning up exhaust gas and manufacture of said catalyst
US4341662A (en) * 1980-04-11 1982-07-27 Pfefferle William C Method of catalytically coating low porosity ceramic surfaces
JPH0722183B2 (en) * 1981-10-09 1995-03-08 富士通株式会社 Method for manufacturing dielectric layer for semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994028579A1 (en) * 1993-05-25 1994-12-08 Tadahiro Ohmi Method of forming insulating oxide film and semiconductor device

Also Published As

Publication number Publication date
EP0161619A2 (en) 1985-11-21
JPH0638524B2 (en) 1994-05-18
DE3585842D1 (en) 1992-05-21
EP0161619A3 (en) 1989-05-31
EP0161619B1 (en) 1992-04-15
US4526629A (en) 1985-07-02

Similar Documents

Publication Publication Date Title
Posadas et al. Scavenging of oxygen from SrTiO3 during oxide thin film deposition and the formation of interfacial 2DEGs
US6541079B1 (en) Engineered high dielectric constant oxide and oxynitride heterostructure gate dielectrics by an atomic beam deposition technique
JPS60241281A (en) Method of oxidizing solid substance
US8227019B2 (en) High-throughput ex-situ method for rare-earth-barium-copper-oxide (REBCO) film growth
WO2011058651A1 (en) Semiconductor device and process for manufacturing same
Stadnichenko et al. XPS, UPS, and STM studies of nanostructured CuO films
TW201409703A (en) Electronic device, laminated structure, and method for manufacturing the same
He et al. Silicate layer formation at HfO2/SiO2/Si interface determined by x-ray photoelectron spectroscopy and infrared spectroscopy
Entani et al. Precise control of single-and bi-layer graphene growths on epitaxial Ni (111) thin film
Majumder et al. Structural phase transformation of Y2O3 doped HfO2 films grown on Si using atomic layer deposition
Akazawa et al. X-ray photoelectron spectroscopy characterization of fluorite and perovskite phases in Sr1− xBi2+ yTa2O9− z films
Nukaga et al. Effect of deposition temperature and composition on the microstructure and electrical property of SrBi2Ta2O9 thin films prepared by metalorganic chemical vapor deposition
Kitajima et al. Plasmonic nitridation of SiO2/Si (100) surface covered with gold nanoparticles via nitrogen plasma-produced radicals and light
JPH0358488A (en) Planar josephson element and manufacturing method of the same
Posadas et al. Facile growth of epitaxial vanadium monoxide on SrTiO3 via substrate oxygen scavenging
JPH08340136A (en) Methods of manufacturing oxide thin film element and superconductive element, and superconductive element
Zhang et al. Ferroelectrical properties of W-doped lead zirconate titanate
JP2002134737A (en) Field effect transistor and its manufacturing method
JPH04292419A (en) Formation of thin oxide superconductor film
Eagar et al. Improved J c in mechanically fabricated Nb 3 Al wires and ribbons
Ozawa et al. Hydrogen absorption in an epitaxial thin film of high-entropy perovskite oxide
Zhang et al. Fabrication and electrical properties of LaNiO3/Pb (Zr0. 61Ti0. 39) O3/LaNiO3/LaAlO3 all-perovskite heterostructures
Kawai et al. Structure and growth mechanism of ultrathin films of Bi cuprates grown by low-temperature MBE
Gladkikh et al. Structure of vanadium and chromium thin films
Bruno et al. Investigation of the Superconducting Properties of Nb Filmscovered by PECVD a-Si: H Layers for Superconducting Qubit Application