JPS60241024A - Transmission type color liquid crystal display device - Google Patents

Transmission type color liquid crystal display device

Info

Publication number
JPS60241024A
JPS60241024A JP59097884A JP9788484A JPS60241024A JP S60241024 A JPS60241024 A JP S60241024A JP 59097884 A JP59097884 A JP 59097884A JP 9788484 A JP9788484 A JP 9788484A JP S60241024 A JPS60241024 A JP S60241024A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
optical path
convex type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59097884A
Other languages
Japanese (ja)
Inventor
Junichi Nakamura
旬一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Epson Corp
Original Assignee
Seiko Epson Corp
Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Epson Corp filed Critical Seiko Epson Corp
Priority to JP59097884A priority Critical patent/JPS60241024A/en
Publication of JPS60241024A publication Critical patent/JPS60241024A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133526Lenses, e.g. microlenses or Fresnel lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE:To improve the sharpness of an image by providing convex type microlenses or pyramids to a liquid crystal display device so that most of the light from all visual directions arrive only at the effective display part of the liquid crystal display device. CONSTITUTION:The optical path of (a)1 incident on the convex type microlens is first bent upward by the bundary face, passes through an upper polarizing plate 9 and a fresh color filter 8a, is further bent upward by the boundary face of upper plate glass 7 and arrives at a data electrode 6. (b)2 arrives similarly at 6 through the convex type microlenses 10, 9, 8a, 7 from the eye and is refracted upward at 10, 7 in this stage, by which the optical path is bent. The optical paths of (a)3, (a)4 are similarly refractived as shown in the figure, i.e.; (a)5 is refracted downward by 10 and upward by 7 and arrives at 6. The same holds true of (b)1-(b)5, (c)1-(c)4. Most of the optical paths from all directions are refracted by the lens effect of the convex type microlens 10 to arrive at an effective display face 6 which is a shutter part.

Description

【発明の詳細な説明】 〈発明の技術分野〉 本発明け、広範々視野で、鮮明かつ高輝度な画像表示を
可能とした透過型フルカラー液晶表示装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a transmissive full-color liquid crystal display device capable of displaying clear and high-luminance images over a wide field of view.

〈従来技術〉 従来例について第5図を用いて説明する。<Conventional technology> A conventional example will be explained using FIG. 5.

まず、第5図左側より照射された光束は、1の下偏光板
を通り、この際、特定方向に偏光された光とガリ、2の
下板ガラスを通って3(コモン電極)4(液晶)6(デ
ータ電極)で構成されたシャッタ一部を通って光束制御
される。更に7(上板ガラス)を通り、8(色フイルタ
−)を介し特定色(フィルター波長)になシ、9(上偏
光板)を通過してイロハで示す、見る人の目に到達する
First, the light beam irradiated from the left side of Fig. 5 passes through the lower polarizing plate 1, and at this time, the light polarized in a specific direction passes through the gully and the lower glass 2, and then passes through the lower plate 3 (common electrode) and 4 (liquid crystal). The light flux is controlled through a part of the shutter composed of 6 (data electrodes). The light then passes through 7 (upper plate glass), passes through 8 (color filter) for a specific color (filter wavelength), and passes through 9 (upper polarizing plate) to reach the viewer's eyes, which are shown in alphabets.

なお、図中5は、液晶封止用のシール材テある。Note that 5 in the figure is a sealing material for sealing the liquid crystal.

ここで、1〜9の各層を通過する際、光束は特に3,4
.6で構成されたシャッタ一部に於いて、シャッタ一部
、すなわち3と6の対向部具外を通過する事ができない
。よって、見る人の側からは、イロハの各角度から見た
いずれの場合に於いても、無効部分(図中、イ・21口
・2.ハ・2.イ・4゜口・4.ハ・4)を含めた表示
面を見る事になる。
Here, when passing through each layer 1 to 9, the luminous flux is particularly
.. In a part of the shutter constituted by 6, it is not possible to pass through the part of the shutter, that is, the part 3 and 6 facing each other. Therefore, from the perspective of the viewer, in any case when viewed from each angle of the alphabet, the invalid parts (in the figure,・You will see the display screen including 4).

この場合、有効面積との割合にょシ開ロ率が決定される
が、現在よく用いられる多重マトリクス構造等の電極配
線部、すなわち無効部面積の広い構造に於いては、非常
に開口率が圓下し、画像の輝度及び鮮明度が低下する欠
点を有した。
In this case, the aperture ratio is determined by the ratio to the effective area, but in the electrode wiring part such as the multi-matrix structure commonly used at present, that is, the structure with a large ineffective area, the aperture ratio is very low. The problem was that the brightness and sharpness of the image decreased.

又、6と8の面積が等しい為、製造工程でのズレや、7
の板厚みによりシャッタ一部と色フィルター層にズレが
生じ、色ムラ、色調異常、輝度ムラ等の欠点があった。
Also, since the areas of 6 and 8 are equal, there may be a gap in the manufacturing process, and 7.
Due to the thickness of the plate, there was a misalignment between a portion of the shutter and the color filter layer, resulting in defects such as color unevenness, color tone abnormalities, and brightness unevenness.

〈目 的〉 本発明は、これらの欠点を除去したもので、その目的は
、表示面から見た開口率の向上による画像の鮮明度及び
輝度の向上及び視野角の拡大にある。
<Purpose> The present invention eliminates these drawbacks, and its purpose is to improve the clarity and brightness of images and expand the viewing angle by improving the aperture ratio as seen from the display surface.

又、色フィルターのズレ防止による色ムラ防止。In addition, color unevenness is prevented by preventing color filters from shifting.

色調の安定化、輝度ムラの防止を目的とする。The purpose is to stabilize the color tone and prevent uneven brightness.

〈発明の構成〉 本発明は、前記の目的を達成するために、通常の透過型
液晶パネル、すガわち上下偏光板及びコモン電極データ
電極を有する上下板ガラスと、上! 下板ガラスにはさまれた液晶とで構成されたノくネルに
、データ電極面積より大きな面積を持つ赤緑青の色フィ
ルターと、表示面の一番外側に個々のデーター電極(即
ち表示電極画素)に対応した凸型マイクロレンズ又は多
角錐で成るプリズムを密着させた構造を付加したもので
ある。
<Structure of the Invention> In order to achieve the above-mentioned object, the present invention provides a conventional transmission type liquid crystal panel, that is, upper and lower glass plates having upper and lower polarizing plates and common electrode data electrodes, and upper and lower glass plates having upper and lower polarizing plates and common electrode data electrodes. The channel consists of a liquid crystal sandwiched between a lower glass plate, a red, green and blue color filter with an area larger than the data electrode area, and individual data electrodes (i.e. display electrode pixels) on the outermost side of the display surface. It has an additional structure in which a convex microlens or polygonal pyramid prism corresponding to the above is closely attached.

〈実施例〉 以下、本発明の実施例につき図面を参照しながら説明す
る。
<Examples> Examples of the present invention will be described below with reference to the drawings.

第1図、第3図は、本発明の実施例Iであって、第1図
の1は下偏光板、2は下板ガラス、3はコモン電極、4
は液晶、5は液晶封止用シール材、6はデータ電極、7
は上板ガラス、8aは色フイルタ−,9け上偏光板、1
0は凸型マイクロレンズである。又、第3図は、第1図
の構成に於ける光の通路説明図であって、1〜10は第
1図に共通なものを示し、付.イ・2.イ・6.イ・4
゜イ・5は、イの方向から見た時の光路を表わす。
1 and 3 show Embodiment I of the present invention, in which 1 in FIG. 1 is a lower polarizing plate, 2 is a lower plate glass, 3 is a common electrode, and 4 is a lower polarizing plate.
is a liquid crystal, 5 is a sealant for sealing the liquid crystal, 6 is a data electrode, 7
is the upper plate glass, 8a is the color filter, 9 is the upper polarizing plate, 1
0 is a convex microlens. Further, FIG. 3 is an explanatory diagram of the path of light in the configuration of FIG. 1, in which numerals 1 to 10 indicate common elements to those in FIG. I・2. I・6. I・4
゜A.5 represents the optical path when viewed from the direction of A.

口・11口・22口・3.ロー4.ロー5は、口の方向
から見た時の光路を表わす。ノ・・1.ノ・・2゜ハ・
5.ハ・4は、ノ・の方向から見た時の光路を表わす。
mouth・11 mouth・22 mouth・3. Row 4. Row 5 represents the optical path when viewed from the direction of the mouth. No...1. No...2゜ha...
5. C.4 represents the optical path when viewed from the direction of No.

まず、第3図左側よりの通過光を右側イの方向より見た
時について説明する。ここで、液晶表示装置とイの目と
の距離は、画像視認に十分な距離であるものとする。し
たがって、凸型マイクロレンズ面を見た付〜イ・5まで
光路はほぼ平行である事を前提とする。これは、以下説
明する口の方向、ハの方向についても同様である。
First, a description will be given of the case where the light passing from the left side of FIG. 3 is viewed from the direction A on the right side. Here, it is assumed that the distance between the liquid crystal display device and the viewer's eye is sufficient for visual recognition of the image. Therefore, it is assumed that the optical paths are approximately parallel from A to A.5 when looking at the convex microlens surface. This also applies to the direction of the mouth and the direction of C, which will be explained below.

さて、付の光路は、まず凸型マイクロレンズへ入射の際
、境界面で屈折により上方に曲げられる。そして、9,
8aを通過するが、実際上層厚が薄いので、説明の簡略
化のためここでの屈折は無視する。更に上板ガラスの境
界面で上方に曲げられ、6に達する。以上が付の光路で
あるが、光が目に入る考えでは、この逆の方向となる事
は言うまでもない。イ・2についても、同様で目から1
0.9,8a、7を経て6に達する。この際、10.7
に於いて上方に屈折がおこり、光路は曲げられる。イ・
3.イ・4の光路も、同様に第3図の如く決定される。
First, when the optical path is incident on the convex microlens, it is bent upward due to refraction at the boundary surface. And 9,
8a, but since the upper layer is actually thin, refraction here will be ignored for the sake of simplicity. It is further bent upward at the interface of the upper glass plate and reaches 6. The above is the optical path, but it goes without saying that if the light were to enter the eye, it would be in the opposite direction. Similarly for A and 2, 1 from the eye.
It reaches 6 through 0.9, 8a, and 7. At this time, 10.7
At this point, refraction occurs upward and the optical path is bent. stomach·
3. The optical path of A.4 is similarly determined as shown in FIG.

又、イ・5は、10で下方に7で上方に屈折し、やはシ
ロに達する。
Also, A.5 is refracted downward at 10 and upward at 7, reaching Shiro.

以下、口・1〜口・5.ハ・1〜ハ・4について= 5
− も第3図の如く同様である。こうして、10のレンズ効
果によりあらゆる方向からの光路のほとんどが、6すな
わちシャッタ一部である有効表示面に到達するのである
Below, mouth 1 to mouth 5. Regarding Ha.1 to Ha.4 = 5
- is also similar as shown in Figure 3. Thus, due to the lens effect of 10, most of the light paths from all directions reach the effective display surface 6, which is a part of the shutter.

第2図、第4図は実施例■であり、第2図の1〜9は第
1図と同一物である。11は多角錐(この場合は四角錐
)よシ成るプリズムを表わす。又、第4図の1〜9も第
1図と同一物を示し、11は多角錐より成るプリズムを
表わしている。ここで第4固在よりの透過光をイロハの
各方向より見た場合の光路を、付〜イ・52口・1〜口
・5゜ハ・1〜ハ・4でそれぞれ示すが、実施例Iの時
と同様に液晶表示装置と目までの距離は、画像視認に十
分な距離であるものとする。さて、付の光路は目よシ1
1に到達し、空気とプリズム(この場合四角錐であるが
、底辺の数は4〜coまで任意である。ただし、どの場
合についても構成角度を適正値に設計する必要がある。
2 and 4 show Example 2, and 1 to 9 in FIG. 2 are the same as in FIG. 1. 11 represents a prism consisting of a polygonal pyramid (in this case, a square pyramid). Further, 1 to 9 in FIG. 4 are the same as those in FIG. 1, and 11 represents a prism made of a polygonal pyramid. Here, the optical paths when the transmitted light from the fourth fixed body is viewed from each direction of the alphabet are shown as A to A, 52 mouths, 1 to 5 degrees, 5 degrees C, 1 to C, and 4, respectively. As in case I, it is assumed that the distance between the liquid crystal display device and the eyes is sufficient for visual recognition of the image. Now, the attached optical path is eye-catching.
1, and the air and the prism (in this case, it is a square pyramid, but the number of bases can be arbitrary from 4 to co. However, in any case, it is necessary to design the configuration angle to an appropriate value.

)の境界面に於いて下方へ屈折し、9.8aを経て7の
境界面で上方に屈折し6に至る。
) is refracted downward at the boundary surface of 7, passes through 9.8a, and refracted upward at the boundary surface of 7, reaching 6.

 6− 以下同様に、イ・2〜イ・51口・1〜口・5゜ハ・1
〜ハ・4の光路も、第4図に示す通りである。ここでも
実施例Iと同様、11のプリズム効果により、あらゆる
方向からの光路のほとんどが6を経て通過する結果とな
る。
6- In the same way, a, 2 to a, 51 mouth, 1 to mouth, 5゜ha, 1
The optical path of C. to C.4 is also as shown in FIG. Here, as in Example I, the prism effect of 11 results in most of the light paths from all directions passing through 6.

また、実施例I・■を通して、図面の都合上、光路を図
面の上下方向イ〜ハについて説明したが、第1図、第2
図でもわかる通り、構造上、左右方向に於いても同一の
結果が得られる事を付記しておく。更に又、目の方向か
らの光路中6に到達する光は、8aを通過する際、8a
の各色光(R)。
In addition, throughout Examples I and 2, the optical path was explained in the vertical direction A to C of the drawing for convenience of drawings.
As can be seen in the figure, it should be noted that due to the structure, the same results can be obtained in the left and right directions. Furthermore, when the light that reaches 6 in the optical path from the direction of the eye passes through 8a, 8a
each color light (R).

緑(G)、青(B)が6より面積的に犬のため、必ず所
定の色に着色(%、定波長に限定)される。
Since green (G) and blue (B) are larger in area than 6, they are always colored in a predetermined color (%, limited to a constant wavelength).

なお、10.11の形状については、材料の屈折率、1
0及び11から6″i!での距離、7,8a。
For the shape of 10.11, the refractive index of the material, 1
Distance at 6″i! from 0 and 11, 7,8a.

9の屈折率及び層厚を考慮すると共に、それぞれの境界
面に於ける反射防止のため、各材料の臨界角をも加味し
た最適設計が必要である。
In addition to taking into account the refractive index and layer thickness of 9, an optimal design is required that also takes into consideration the critical angle of each material in order to prevent reflection at each interface.

〈発明の効果〉 以上説明したように、液晶表示装置に凸型マイクロレン
ズ又は多角錐を配する事により、あらゆる明視方向から
の光(光路)のほとんどが液晶表示装置の有効表示部(
シャッター形成電極部分)のみに到達する事が可能とな
り、明視方向からの見かけ上の開口率が向上する結果と
なり、画像の輝度及び竺明7度の向上また視野角の拡大
に、大きな効果をもたらしめるものである。更に、色フ
ィルター面積の改′良によシ色ムラ、輝ムラの防止。
<Effects of the Invention> As explained above, by arranging convex microlenses or polygonal pyramids in a liquid crystal display device, most of the light (light path) from all clear viewing directions is transmitted to the effective display area of the liquid crystal display device (
This makes it possible to reach only the shutter forming electrode part), resulting in an improvement in the apparent aperture ratio from the clear viewing direction, which has a great effect on improving image brightness and sharpness of 7 degrees, and expanding the viewing angle. It is something that can be brought about. Furthermore, by improving the color filter area, uneven color and brightness can be prevented.

色調の安定化゛を図り、液晶表示装置製造上の歩留シ向
上にもl犬゛5きく貢献するものである。
This contributes significantly to stabilizing the color tone and improving the yield rate in manufacturing liquid crystal display devices.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本・発明の実施例Iを表わす概略断面図、第2
図は実施例■を表わす概略断面図、第3図は実施例Iに
於ける光路説明図、第4図は実施例■に於ける光路説明
図、第5図は従来例を表わす概略断面及び光路説明図で
ある。 なお、各符号は 1・・・・・・下偏向板 2・・・・・・下板ガラス5
・・・・・・コモン電極 4・・・・・・液 晶5・・
・・・・液晶封止材 6・・・・・・データ電極7・・
・・・・上板ガラス 8・・・・・・旧色フィルタ8a
・・・新色フィルタ 9・・・・・・上偏光板10・・
・・・・凸型マイクロレンズ 11・・・・・・四角錐(多角錐)プリズム49ロ、ハ
・・・・・・観測方向 付〜イ・5・・・イの観測方向からの説明用光路口・1
〜口・5・・・口の観測方向からの説明用光路ハ・1〜
ハ・4・・・ハの観測方向からの説明用光路をそれぞれ
表わす。 以 上 出願人 エプソン株式会社 代理人 弁理士 最上 務  9− 第2図 (6)t17ノ へ\川 一イ3 \ハ・2 □1 一イ・5 ゝゝN/l、/ 147 1・2 1・4
Fig. 1 is a schematic sectional view showing Embodiment I of the present invention;
The figure is a schematic sectional view showing the embodiment (2), FIG. 3 is an explanatory diagram of the optical path in the embodiment I, FIG. It is an explanatory diagram of an optical path. In addition, each code is 1...Lower deflection plate 2...Lower plate glass 5
...Common electrode 4...Liquid crystal 5...
...Liquid crystal encapsulant 6...Data electrode 7...
...Top glass 8...Old color filter 8a
... New color filter 9 ... Upper polarizing plate 10 ...
... Convex microlens 11 ... Quadrilateral pyramid (polygonal pyramid) prism 49 B, C ... Observation direction ~ A. 5 ... For explanation from the observation direction of A Optical path exit 1
~ Mouth 5... Optical path for explanation from the observation direction of the mouth C 1 ~
C, 4, . . . represent optical paths for explanation from the observation direction of C, respectively. Applicant Epson Corporation Agent Patent Attorney Tsutomu Mogami 9- Figure 2 (6) To t17\Kawaichii3 \Ha・2 □1 11・5 ゝゝN/l, / 147 1・2 1・4

Claims (1)

【特許請求の範囲】[Claims] 色素フィルターを用い、透過光によりカラー表示を行々
う液晶表示装置で、透過光量制御′用の液晶及び制御電
極からなるシャッターと、前記制御電極に一色ずつ対応
した制御電極よシ大きい面積の色フイルタ−(赤緑青)
と、前記シャッター用制御電椿の一つ一つに対応し7た
凸型マイクロレンズもしくは多角錐より成るプリズムと
を順次配置した事を特徴とする透過型カラー液晶表示装
置。
A liquid crystal display device that uses a dye filter to perform color display using transmitted light, includes a shutter consisting of a liquid crystal and a control electrode for controlling the amount of transmitted light, and a color display with a larger area than the control electrode corresponding to each color of the control electrode. Filter (red, green, blue)
and seven convex microlenses or prisms made of polygonal pyramids corresponding to each of the shutter control camellias are sequentially arranged.
JP59097884A 1984-05-16 1984-05-16 Transmission type color liquid crystal display device Pending JPS60241024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59097884A JPS60241024A (en) 1984-05-16 1984-05-16 Transmission type color liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59097884A JPS60241024A (en) 1984-05-16 1984-05-16 Transmission type color liquid crystal display device

Publications (1)

Publication Number Publication Date
JPS60241024A true JPS60241024A (en) 1985-11-29

Family

ID=14204173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59097884A Pending JPS60241024A (en) 1984-05-16 1984-05-16 Transmission type color liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS60241024A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62267791A (en) * 1986-05-15 1987-11-20 大日本印刷株式会社 Electrode substrate for multicolor electrooptic display unit
US4726662A (en) * 1985-09-24 1988-02-23 Talig Corporation Display including a prismatic lens system or a prismatic reflective system
JPH02181781A (en) * 1989-01-06 1990-07-16 Mitsubishi Electric Corp Display element
JPH049922A (en) * 1990-04-27 1992-01-14 Sharp Corp Projection type color liquid crystal display device
US5151801A (en) * 1989-11-30 1992-09-29 Pioneer Electronic Corporation Liquid crystal display apparatus providing improved illumination via trucated prisms
JPH0527230A (en) * 1991-07-22 1993-02-05 Sharp Corp Manufacture of liquid crystal display device
US5250967A (en) * 1990-12-27 1993-10-05 Sanyo Electric Co., Ltd. Liquid crystal projector
JPH0618871A (en) * 1992-06-29 1994-01-28 Sharp Corp Liquid crystal display element for veneer type liquid crystal projection
EP0598608A1 (en) * 1992-11-17 1994-05-25 Sharp Kabushiki Kaisha Direct-view display apparatus
EP0677768A1 (en) * 1994-04-12 1995-10-18 OIS Optical Imaging Systems, Inc. Liquid crystal display with improved viewing characteristics
US5481385A (en) * 1993-07-01 1996-01-02 Alliedsignal Inc. Direct view display device with array of tapered waveguide on viewer side
US5521726A (en) * 1994-08-26 1996-05-28 Alliedsignal Inc. Polarizer with an array of tapered waveguides
US5555476A (en) * 1993-08-30 1996-09-10 Toray Industries, Inc. Microlens array sheet for a liquid crystal display, method for attaching the same and liquid crystal display equipped with the same
WO2004088403A1 (en) * 2003-03-28 2004-10-14 Seiko Epson Corporation Spatial light modulation device, projector using the spatial light modulation device, method for manufacturing fine-structure element used in the spatial light modulation device, and fine-structure element manufactured by the method
CN100392494C (en) * 2003-03-28 2008-06-04 精工爱普生株式会社 Spatial light modulation device, projector using the spatial light modulation device, method for manufacturing fine-structure element used in the spatial light modulation device, and fine-structure el

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726662A (en) * 1985-09-24 1988-02-23 Talig Corporation Display including a prismatic lens system or a prismatic reflective system
JPS62267791A (en) * 1986-05-15 1987-11-20 大日本印刷株式会社 Electrode substrate for multicolor electrooptic display unit
JPH02181781A (en) * 1989-01-06 1990-07-16 Mitsubishi Electric Corp Display element
US5151801A (en) * 1989-11-30 1992-09-29 Pioneer Electronic Corporation Liquid crystal display apparatus providing improved illumination via trucated prisms
JPH049922A (en) * 1990-04-27 1992-01-14 Sharp Corp Projection type color liquid crystal display device
US5250967A (en) * 1990-12-27 1993-10-05 Sanyo Electric Co., Ltd. Liquid crystal projector
JPH0527230A (en) * 1991-07-22 1993-02-05 Sharp Corp Manufacture of liquid crystal display device
JPH0618871A (en) * 1992-06-29 1994-01-28 Sharp Corp Liquid crystal display element for veneer type liquid crystal projection
EP0598608A1 (en) * 1992-11-17 1994-05-25 Sharp Kabushiki Kaisha Direct-view display apparatus
US5561538A (en) * 1992-11-17 1996-10-01 Sharp Kabushiki Kaisha Direct-view display apparatus
US5481385A (en) * 1993-07-01 1996-01-02 Alliedsignal Inc. Direct view display device with array of tapered waveguide on viewer side
US5555476A (en) * 1993-08-30 1996-09-10 Toray Industries, Inc. Microlens array sheet for a liquid crystal display, method for attaching the same and liquid crystal display equipped with the same
EP0677768A1 (en) * 1994-04-12 1995-10-18 OIS Optical Imaging Systems, Inc. Liquid crystal display with improved viewing characteristics
US5629784A (en) * 1994-04-12 1997-05-13 Ois Optical Imaging Systems, Inc. Liquid crystal display with holographic diffuser and prism sheet on viewer side
US5521726A (en) * 1994-08-26 1996-05-28 Alliedsignal Inc. Polarizer with an array of tapered waveguides
WO2004088403A1 (en) * 2003-03-28 2004-10-14 Seiko Epson Corporation Spatial light modulation device, projector using the spatial light modulation device, method for manufacturing fine-structure element used in the spatial light modulation device, and fine-structure element manufactured by the method
US7242444B2 (en) 2003-03-28 2007-07-10 Seiko Epson Corporation Space light modulating apparatus, projector including same, process for manufacturing microstructure element used in same, and microstructure element manufactured by same process
CN100392494C (en) * 2003-03-28 2008-06-04 精工爱普生株式会社 Spatial light modulation device, projector using the spatial light modulation device, method for manufacturing fine-structure element used in the spatial light modulation device, and fine-structure el
US7401926B2 (en) 2003-03-28 2008-07-22 Seiko Epson Corporation Space light modulating apparatus, projector including same, process for manufacturing microstructure element used in same, and microstructure element manufactured by the same process

Similar Documents

Publication Publication Date Title
TW482919B (en) Projection type color image display apparatus
WO2020248631A1 (en) Liquid crystal display apparatus
JPS60241024A (en) Transmission type color liquid crystal display device
US5850269A (en) Liquid crystal display device wherein each scanning electrode includes three gate lines corresponding separate pixels for displaying three dimensional image
CN105278152B (en) Improve the liquid crystal display of big visual angle colour cast
WO2019148666A1 (en) Liquid crystal panel and liquid crystal display
CN106526993A (en) Liquid crystal display and driving method thereof
CN208297887U (en) A kind of display device
JPS60146590A (en) Polychromatic image display device
JPH03140920A (en) Projection type display device and liquid crystal display device used for this projection type display device
CN107632451A (en) A kind of display panel, display device and display methods
JPS60262131A (en) Liquid-crystal display device
WO2016004685A1 (en) Liquid crystal panel and dual-vision liquid crystal display device
JP2016218091A (en) Electro-optical device and electronic apparatus
CN110146994B (en) Light filtering structure, glasses and display panel
US7433003B2 (en) Liquid crystal on silicon panel and method of manufacturing the same
CN106847208A (en) A kind of Liquid Crystal Display And Method For Driving
JP2000075259A (en) Liquid crystal device and projection type display device using the same
CN104483798B (en) Using the liquid crystal display of liquid crystal lens structure
US11137619B2 (en) Display device for virtual reality, viewing device for virtual reality and head-mounted display apparatus
JPS60169833A (en) Panel type display device
JPS61230101A (en) Color filter
JPS6111788A (en) Image display
JPS6218917B2 (en)
JPS6112270B2 (en)