JPS6024084A - Semiconductor laser element - Google Patents

Semiconductor laser element

Info

Publication number
JPS6024084A
JPS6024084A JP13210383A JP13210383A JPS6024084A JP S6024084 A JPS6024084 A JP S6024084A JP 13210383 A JP13210383 A JP 13210383A JP 13210383 A JP13210383 A JP 13210383A JP S6024084 A JPS6024084 A JP S6024084A
Authority
JP
Japan
Prior art keywords
active layer
gaas
region
layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13210383A
Other languages
Japanese (ja)
Other versions
JPH0429235B2 (en
Inventor
Kazuhisa Murata
和久 村田
Yorifumi Inada
順史 稲田
Takuro Ishikura
卓郎 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP13210383A priority Critical patent/JPS6024084A/en
Publication of JPS6024084A publication Critical patent/JPS6024084A/en
Publication of JPH0429235B2 publication Critical patent/JPH0429235B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/24Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To multiply a longitudinal mode, and to settle the performance characteristics of low noises by bringing the thickness of an active layer in a laser element with a double hetero-junction type multilayer crystalline layer to 0.1mum or more and the thickness of a clad layer joining on the substrate side of the active layer to 0.2mum or more. CONSTITUTION:N-GaAs 2 is superposed on P-GaAs 1, and a V-shaped groove is formed and P-GaAs 3, a P-GaAs active layer 4, N-GaAlAs 5 and N-GaAs 6 are shaped in an epitaxial manner. A difference between mixed crystal ratios among the clad layers 3, 5 and the active layer 4 is brought to approximately 0.25-0.40 from carriers and an optical confinement effect. A boundary line between a multi-mode region M and a single mode region S is prescribed by the thickness d2, d1 of the active layer 4 and the clad layer 3 at that time. When d1 and d2 are changed, a high noise region Ef is prescribed while using a SN ratio -70dB as a boundary, and a region Ec having the short life of operation and a region Ed having long one are prescribed. Accordingly, when d1 and d2 are selected in accordance with a predetermined manner, a laser element, a longitudinal mode thereof is multiplied, is obtained, and the output characteristics of low noises applicable to a light source for a video disk can be settled.

Description

【発明の詳細な説明】 く技術分野〉 本発明は半導体レーザ素子の構造に関し、特にディスク
装置等の信号光として有効な縦モードがマルチ化された
半導体レーザ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to the structure of a semiconductor laser device, and more particularly to a semiconductor laser device having multiple longitudinal modes that are effective as signal light for disk devices and the like.

〈従来技術〉 民生用商品であるコンパクト型オーディオディスクプレ
ーヤの信号光線として半導体レーザが使用されて以来半
導体レーザ素子の需要は急激に増大している。半導体レ
ーザ素子は小型軽量であシ、ディヌク板の蓄積情報を読
み取る信号光源として適したものであるが、はぼ同様な
方式で信号を読み出しているビデオディスクには半導体
レーザを信号光線として適用することは困難である。そ
の最大の原因は半導体レーザ素子のノイズが大きいだめ
に例えばHe−Neレーザを使用した場合に比較して画
質が大きく低下することにある。ビデオディスクの映像
信号を鮮明に再生するためには非常にS/N比の高い光
源を利用することが必要であり、従って小型の光源とし
ての特徴を有する半導体レーザ素子をビデオディスク等
の信号光源として有効に活用することを企図してそのS
/N比を改善する回置開発が積極的に堆し進められてい
る。
<Prior Art> Ever since semiconductor lasers have been used as signal beams for compact audio disc players, which are consumer products, the demand for semiconductor laser elements has increased rapidly. Semiconductor laser elements are small and lightweight, making them suitable as signal light sources for reading the information stored on the Dinuk board, but semiconductor lasers are used as signal light sources for video discs that read signals using a similar method. That is difficult. The main reason for this is that the noise of the semiconductor laser element is large, so that the image quality is greatly degraded compared to when a He--Ne laser is used, for example. In order to clearly reproduce video signals from video discs, it is necessary to use a light source with a very high S/N ratio. Therefore, it is necessary to use a semiconductor laser element, which has the characteristics of a compact light source, as a signal light source for video discs, etc. The S
The development of replacement systems to improve the /N ratio is being actively pursued.

〈発明の目的〉 本発明は、半導体レーザ素子の素子構造特に結晶層厚に
技術的手段を駆使することにより、縦モードをマルチ化
し、低ノイズの動作特性を確立した新規有用な半導体レ
ーザ素子を提供することを目的とする。
<Objective of the Invention> The present invention provides a new and useful semiconductor laser device that has multiple longitudinal modes and established low-noise operating characteristics by making full use of technical means for the device structure of the semiconductor laser device, especially the crystal layer thickness. The purpose is to provide.

〈実施例の説明〉 第1図は本発明の1実施例として用いられる基板にV字
型の溝を形成したV S I S (V−channe
ledSubstrate Inner 5tripe
)5半導体レーザ素子の基本構成を示す断面模式図であ
る。p型GaAs基板1上にn型GaAs電流阻止層2
を堆積した後。
<Explanation of Embodiments> FIG. 1 shows a V-channel (V-channel) in which a V-shaped groove is formed on a substrate used as an embodiment of the present invention.
ledSubstrate Inner 5tripe
) 5 is a schematic cross-sectional view showing the basic configuration of a semiconductor laser device. An n-type GaAs current blocking layer 2 is formed on a p-type GaAs substrate 1.
After depositing.

ヌトライプ状の7字溝をエツチング形成することによシ
ミ流阻止層2が除去された電流通路を開通し、この上に
p q、G a A sクラッド層3、p(又はn)f
ipGaAs活性層4、n型GaA#Asクラッド層5
及びn型GaAsキャップ層6を順次エピタキシャル成
長させ、n側電極7及びn側電極8を形成することによ
りダブルへテロ接合型の半導体レーザ素子が構成される
。n側電極7及びn側電極8を介して電流を注入すると
7字溝の部分を電流通路として活性層4に電流が流れ、
レーザ発振が開始される。V字溝外ではn型クラッド層
3の厚さが薄いため、この部分で光の一部は基板1に吸
収され、屈折率差が付いて導波機構が形成される。また
、縦モードは通常の場合単一化される。縦モードが単一
化されると単独でのノイズは小さいが実装時に温度変化
に起因するモードポツプノイズや戻シ光に起因するノイ
ズが発生し、S/N比が低下する。尚、7字溝に対応す
る電流通路は1〜2μm非常に狭い幅の内部ストライプ
構造となっているため、利得導波作用もあシ、これはノ
イズを低減する効果を奏する。更に、内部ストライプ構
造は発振閾値電流が電極ストライプ構造に比較して低く
、遠視野像も均整のとれたものとなる。
By etching and forming nutripe-shaped 7-shaped grooves, a current path is opened from which the stain flow prevention layer 2 has been removed, and on top of this, p q , Ga As cladding layers 3 , p (or n) f
ipGaAs active layer 4, n-type GaA#As cladding layer 5
A double heterojunction type semiconductor laser device is constructed by sequentially epitaxially growing an n-type GaAs cap layer 6 and forming an n-side electrode 7 and an n-side electrode 8. When a current is injected through the n-side electrode 7 and the n-side electrode 8, the current flows through the active layer 4 using the 7-shaped groove as a current path.
Laser oscillation starts. Since the thickness of the n-type cladding layer 3 is thin outside the V-shaped groove, part of the light is absorbed by the substrate 1 in this part, and a refractive index difference is created, forming a waveguide mechanism. Further, the longitudinal mode is normally unified. When longitudinal modes are unified, the noise alone is small, but mode pop noise caused by temperature changes and noise caused by reflected light occur during mounting, resulting in a decrease in the S/N ratio. Incidentally, since the current path corresponding to the 7-shaped groove has an internal stripe structure with a very narrow width of 1 to 2 μm, it also has a gain waveguide effect, which has the effect of reducing noise. Furthermore, the internal stripe structure has a lower oscillation threshold current than the electrode stripe structure, and the far-field pattern is well-balanced.

上記構造の半導体レーザ素子に於いて、n型クラッド層
3のV字溝外での厚さをdi 、活性層4の厚さをdl
とし、dl及びdlを適宜変化させた場合の縦モードへ
の影響について説明する。d1+d2を適当な範囲に設
定すれば縦モードをマルチ化することができ、ビデオデ
ィヌク装置の信号光線と1〜て充分に適用可能なS/N
比の高い出ノJレーザ光が得られることが判明した。第
2図はdl及びdlによって規定されるマルチモー、ド
領域Mとシング)v(単一)モード領域S及びその境界
線を示す説明図である。n型クラッド層3とn型クラッ
ド層5のG a AIA sの混晶比は双方とも0.4
4であシ活性層の混晶比は0.14とした。クラッド層
3,5と活性層4間の混晶比差はキャリアと光の閉じ込
め効果より0.25〜0.40程度に設定することが望
ましい。第2図より明らかな如くdlが0.25 μ’
m以上でdlが0.1μm以上の場合に縦モードがマル
チ化される。尚、dlが0、’J21im以」−であれ
ばd】が0.2ttm程度でもマルチ化され、またdi
が0.35μm以上であればdlが0.08μm程度で
もマルチモード領域Mとなる。dlとdlを変化させた
場合のノイズレベルを測定すると第3図の如くとなった
。図中Ea領領域ビデオディスク用信号光源として充分
に適用1丁能なノイズの低い領域であり、Eb領領域ビ
デオディスク用としては不適肖なノイズの高い領域であ
る。また、その境界はS/N比が一70dBのレベルに
相当する。この図に於いてもdlとdlの条件は第2図
の結果と略々一致している。
In the semiconductor laser device having the above structure, the thickness of the n-type cladding layer 3 outside the V-shaped groove is di, and the thickness of the active layer 4 is dl.
The influence on the longitudinal mode when dl and dl are changed appropriately will be explained. By setting d1 + d2 in an appropriate range, the vertical mode can be multiplied, and the S/N can be sufficiently applied to the signal beam of the video digital device.
It has been found that a high output J laser beam can be obtained. FIG. 2 is an explanatory diagram showing a multimode mode region M defined by dl and dl, a single)v (single) mode region S, and their boundaries. The mixed crystal ratio of G a AIA s in the n-type cladding layer 3 and the n-type cladding layer 5 is both 0.4.
The mixed crystal ratio of the active layer was set to 0.14. The difference in the mixed crystal ratio between the cladding layers 3 and 5 and the active layer 4 is desirably set to about 0.25 to 0.40 in view of carrier and light confinement effects. As is clear from Figure 2, dl is 0.25 μ'
The longitudinal mode is multiplied when dl is 0.1 μm or more. In addition, if dl is 0, 'J21im or later'-, it will be multiplied even if d] is about 0.2ttm, and di
If dl is 0.35 μm or more, the multimode region M occurs even if dl is about 0.08 μm. The noise level measured when changing dl and dl was as shown in Fig. 3. In the figure, the Ea area is a low-noise area that can be sufficiently applied as a signal light source for a video disc, and the Eb area is a high-noise area that is unsuitable for a video disc. Further, the boundary corresponds to a level where the S/N ratio is -70 dB. Also in this figure, the conditions for dl and dl are approximately the same as the results in FIG. 2.

尚、ノイズレベルはレーザ出力3mWで測定した。Note that the noise level was measured at a laser output of 3 mW.

dlを0.2511m以上、dlを0.1μm以上に設
定し、そのスベク)/し曲線をめると第4図の如くとな
る。出力は1mWよ、il)7mW迄変化させ、各出力
強度に於けるヌベクl−/し曲線を示している。
When dl is set to 0.2511 m or more and dl is set to 0.1 μm or more, and the curve is plotted based on the curve, the result is as shown in FIG. The output was varied from 1 mW to il) 7 mW, and the Nubek l-/shi curves at each output intensity are shown.

VSIS構造の半導体レーザ素子はヌベクトル幅(1本
の縦モード幅)が1〜2λと広く可干渉性も悪いため、
戻シ光によるノイズが小さい。図より明らかな如くこの
半導体レーザ素子では縦モードが6mW以下の出力強度
に於いて顕著にマルチモード化されていることがわかる
The VSIS structure semiconductor laser device has a wide nuvector width (width of one longitudinal mode) of 1 to 2λ and poor coherence.
Noise caused by returned light is small. As is clear from the figure, in this semiconductor laser device, the longitudinal mode is noticeably multi-mode at an output intensity of 6 mW or less.

一方、dl及びdlを大きく設定すると発振閾値電流が
高くなり、まだ素子の発熱のため寿命が短くなる。第5
図はd、、dlの変化に対する発振閾値電流への影響を
示す特性図である。Ec領領域発振閾値電流が高く動作
寿命の短かい領域、Edは発振閾値電流が小さく動作寿
命の充分に長い領域である。境界線は発振閾値電流が9
0mAの値に相当する。図よりdlが0.45μmより
小さくかつdlが0.2μmよシ小さい条件下では発振
閾値電流も小さく動作寿命も長くなる。発振閾値電流が
90mA以上になると実際の動作電流は]、OOmA以
上になり、寿命が大幅に低下する。
On the other hand, when dl and dl are set large, the oscillation threshold current becomes high, and the life of the device is shortened due to heat generation of the element. Fifth
The figure is a characteristic diagram showing the influence of changes in d, dl on the oscillation threshold current. The Ec region is a region where the oscillation threshold current is high and the operating life is short, and the Ed region is a region where the oscillation threshold current is small and the operating life is sufficiently long. The boundary line is when the oscillation threshold current is 9
Corresponds to a value of 0mA. As can be seen from the figure, under conditions where dl is smaller than 0.45 μm and dl is smaller than 0.2 μm, the oscillation threshold current is small and the operating life is long. When the oscillation threshold current becomes 90 mA or more, the actual operating current becomes 00 mA or more, and the life span is significantly reduced.

捷だ先出力対電流特性にもキングが表われ易く横モード
が不安定になるため:実用上新たな問題点が生じる。従
って、dlの上限値は0.45μm。
King tends to appear in the output vs. current characteristics at the cutting end, and the transverse mode becomes unstable: a new practical problem arises. Therefore, the upper limit of dl is 0.45 μm.

d2の上限値は02μηL程度に設定することが望まし
い。
It is desirable to set the upper limit value of d2 to about 02μηL.

〈発明の効果〉 以上詳説した如く、本発明によれば縦モードがマルチ化
された半導体ンーザ素子が得られ、ビデオディスク装置
等の光源としても適用可能な低ノイズの出力特性を確立
することができる。
<Effects of the Invention> As explained in detail above, according to the present invention, a semiconductor laser element with multiple longitudinal modes can be obtained, and low-noise output characteristics can be established that can be applied as a light source for video disk devices, etc. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例として用いられるVSIS型
半導体レーザ素子の断面模式図である。 第2図はdl及びd2によって規定されるマルチモード
領域とシングルモード領域を示す説明図である。 第3図はdlとd2を変化させた場合のノイズレベルを
説明する説明図である。 第4図は出力強度とスペクトル曲線を示す特性図である
。 第5図はdl及びd2の変化と発振閾値電流への影響を
示す特性図である。 1・・・基板 2・・・電流阻止層 3・・・p型クラ
ッド層 4 ・活性層 5・・n型クラッド層6・・・
キャップ層 代理人 弁理士 福 士 愛 彦(他2名)Q OJ 
q2 03 04 Q5 01; 07 011−−一
−→−dtOtmノ 第5 図
FIG. 1 is a schematic cross-sectional view of a VSIS type semiconductor laser device used as an embodiment of the present invention. FIG. 2 is an explanatory diagram showing a multimode region and a single mode region defined by dl and d2. FIG. 3 is an explanatory diagram illustrating the noise level when changing dl and d2. FIG. 4 is a characteristic diagram showing output intensity and spectrum curve. FIG. 5 is a characteristic diagram showing changes in dl and d2 and their effects on the oscillation threshold current. 1... Substrate 2... Current blocking layer 3... P-type cladding layer 4 - Active layer 5... N-type cladding layer 6...
Cap layer agent Patent attorney Aihiko Fukushi (and 2 others) Q OJ
q2 03 04 Q5 01; 07 011--1-→-dtOtmFig.5

Claims (1)

【特許請求の範囲】[Claims] 1 基板上にヌトライプ状の電流直路を介して積層され
たダブルへテロ接合型多層結晶層を有する半導体レーザ
素子に於いて、前記多層結晶層の活性層厚を0.1μm
以上、活性層に基板側で接合するクラッド層を0.2μ
m以上にそれぞれ設定し7たことを特徴とする半導体レ
ーザ素子。
1. In a semiconductor laser device having a double heterojunction multilayer crystal layer stacked on a substrate via a nutripe-like current path, the active layer thickness of the multilayer crystal layer is 0.1 μm.
Above, the cladding layer bonded to the active layer on the substrate side was 0.2μ
7. A semiconductor laser device characterized in that each of the semiconductor laser elements is set to 7 m or more.
JP13210383A 1983-07-19 1983-07-19 Semiconductor laser element Granted JPS6024084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13210383A JPS6024084A (en) 1983-07-19 1983-07-19 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13210383A JPS6024084A (en) 1983-07-19 1983-07-19 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS6024084A true JPS6024084A (en) 1985-02-06
JPH0429235B2 JPH0429235B2 (en) 1992-05-18

Family

ID=15073521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13210383A Granted JPS6024084A (en) 1983-07-19 1983-07-19 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS6024084A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432359A (en) * 1992-12-21 1995-07-11 Kabushiki Kaisha Toshiba Light emitting device with AlAs mixed crystal ratios
GB2365218A (en) * 2000-02-21 2002-02-13 Sony Corp Stripe laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5432359A (en) * 1992-12-21 1995-07-11 Kabushiki Kaisha Toshiba Light emitting device with AlAs mixed crystal ratios
GB2365218A (en) * 2000-02-21 2002-02-13 Sony Corp Stripe laser
US6628687B2 (en) 2000-02-21 2003-09-30 Sony Corporation Semiconductor laser emitting apparatus
GB2365218B (en) * 2000-02-21 2004-06-30 Sony Corp Semiconductor laser emitting apparatus

Also Published As

Publication number Publication date
JPH0429235B2 (en) 1992-05-18

Similar Documents

Publication Publication Date Title
US7098064B2 (en) Semiconductor laser device and its manufacturing method, and optical disc reproducing and recording apparatus
US5608752A (en) Semiconductor laser device and method of designing the same
JPH0888439A (en) Semiconductor laser and its production
JP2006294984A (en) Semiconductor laser element, its manufacturing method and light pickup device employing it
US20020136255A1 (en) Semiconductor laser, optical element provided with the same and optical pickup provided with the optical element
JPH04155988A (en) Semiconductor laser
JPS61287289A (en) Semiconductor laser device for light memory
JPS6024084A (en) Semiconductor laser element
JPS6091692A (en) Semiconductor laser device
JPS641952B2 (en)
JPH10154843A (en) Semiconductor laser element and optical disc unit employing the same
JP3785429B2 (en) Semiconductor laser device and manufacturing method thereof
JPS6384086A (en) Semiconductor laser array element
JP3837821B2 (en) Optical pickup device using compound semiconductor laser
JPH02152292A (en) Semiconductor laser device
JP2004087980A (en) Edge-emitting semiconductor laser, electronic equipment, control method of edge-emitting semiconductor laser and manufacturing method of edge-emitting semiconductor laser
JP3768267B2 (en) Semiconductor laser device and manufacturing method thereof
JP3768288B2 (en) Semiconductor laser device and manufacturing method thereof
JPS61234584A (en) Semiconductor laser element
JPH071818B2 (en) Integrated semiconductor laser
JPS61161786A (en) Semiconductor laser device
JPH02137388A (en) Integration-type semiconductor laser
JPH09283842A (en) Semiconductor laser element
JPH02257691A (en) Integrated type semiconductor laser
JP2006148006A (en) Semiconductor laser element