JPS60238149A - Preparation of porous inorganic oxide - Google Patents

Preparation of porous inorganic oxide

Info

Publication number
JPS60238149A
JPS60238149A JP59092794A JP9279484A JPS60238149A JP S60238149 A JPS60238149 A JP S60238149A JP 59092794 A JP59092794 A JP 59092794A JP 9279484 A JP9279484 A JP 9279484A JP S60238149 A JPS60238149 A JP S60238149A
Authority
JP
Japan
Prior art keywords
zeolite
gel
particle
inorg
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59092794A
Other languages
Japanese (ja)
Other versions
JPH0456666B2 (en
Inventor
Takeji Sanebuchi
実渕 武治
Kenji Nitsuta
健次 仁田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Association for Residual Oil Processing
Original Assignee
Research Association for Residual Oil Processing
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Association for Residual Oil Processing filed Critical Research Association for Residual Oil Processing
Priority to JP59092794A priority Critical patent/JPS60238149A/en
Publication of JPS60238149A publication Critical patent/JPS60238149A/en
Publication of JPH0456666B2 publication Critical patent/JPH0456666B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain porous inorg. oxide suitable as the catalyst or catalyst carrier in the hydrotreatment of heavy hydrocarbon or various reactions, by mixing a water swellable gel like substance with zeolite having a specific size along with a binder, and drying and baking the resulting mixture. CONSTITUTION:In preparing porous inorg. oxide consisting large and small particles and having large pores, a small particle forming inorg. binder such as an alumina sol and a water swellable gell like substance such as wheat starch are mixed with large zeolite particles having a particle size of 0.1-10mum and the resulting mixture is molded, dried and baked to prepare porous inorg. oxide. For example, 90-10pt.wt. of the small particle forming inorg. binder and 0.5- 15pt.wt. of the water swellable gell like substance are added to 100pts.wt. of large zeolite particles. By this method, porous inorg. oxide suitable as the catalyst or catalyst carrier not only in the hydrotreatment of heavy hydrocarbon but also in various reactions is obtained.

Description

【発明の詳細な説明】 本発明は多孔性無機酸化物の製造方法に関し、詳しくは
大粒子と小粒子からなるとともに大細孔を有するもので
あって、重質炭化水素の水素化触媒や担体などとして用
いた場合に、炭素分や金属分が析出しても活性の低下が
小さく、極めて好適に利用できる多孔性無機酸化物の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a porous inorganic oxide, and more specifically, it is composed of large particles and small particles and has large pores, and the present invention relates to a method for producing a porous inorganic oxide, which is composed of large particles and small particles and has large pores. The present invention relates to a method for producing porous inorganic oxides that can be used very suitably, with little reduction in activity even when carbon or metal components are precipitated.

近年、世界的に原油が重質化する傾向にあると同時に、
石油の需要構造が変化し、軽質油が不足し、一方で重質
油が余る傾向を示している。そのため重質油を分層して
ナフサ、灯油、軽油などの軽質油に転化する技術が多数
開発されてきている。
In recent years, there has been a global trend toward heavier crude oil, and at the same time,
The demand structure for oil is changing, with light oil in short supply and heavy oil in surplus. For this reason, many technologies have been developed to separate heavy oil into light oils such as naphtha, kerosene, and diesel oil.

そのうち水素化分解、水素化精製などの水素化処理の技
術は良質の軽質油が得られるため、非常に有望視されて
いる。またこの重質油の水素化処理にあたっては、ゼオ
ライト触媒を用いることが広く行なわれている。
Among these, hydroprocessing technologies such as hydrocracking and hydrorefining are considered very promising because they yield high-quality light oil. Furthermore, in the hydrogenation treatment of heavy oil, zeolite catalysts are widely used.

しかしながら、従来使用されているゼオライト触媒では
、水素化処理において生成するアスファルテン、金属な
どが沈析して触媒の活性点を塞ぎ、短期間に触媒活性が
低下してしまうという問題があった。
However, conventionally used zeolite catalysts have a problem in that asphaltenes, metals, etc. produced during hydrotreating precipitate and block the active sites of the catalyst, resulting in a decrease in catalytic activity in a short period of time.

そのため、ゼオライトに1000λ以上の大細孔を生成
させたものを使用することが提案されている。しかし、
このような大細孔を有するぞオライドであっても、アル
ミナゾルなどのようなバインダーを用いて成形して得ら
れるものは、ゼオライトの大細孔がアルミナなどのバイ
ンダー粒子により塞がれるため、充分な触媒活性は得ら
れず触媒寿命も短いものであった。
Therefore, it has been proposed to use zeolite with large pores of 1000λ or more. but,
Even if a zeolite has such large pores, it cannot be molded using a binder such as alumina sol, since the large pores of the zeolite are blocked by binder particles such as alumina. No significant catalytic activity was obtained and the catalyst life was short.

そこで、本発明者らは上記問題点を解決し、重質油の水
素化処理などに好適な触媒あるいは担体を開発するべく
、鋭意研究した。その結果、特定の大きさのゼオライト
にバインダーとともに水膨潤性ゲル状物質を混合し、乾
燥、焼成することKよって、重質炭化水素の水素化処理
をはじめ各種の反応の触媒あるいはその触媒担体として
好適な多孔性の無機酸化物が得られることを見い出し、
この知見に基づいて本発明を完成した。
Therefore, the present inventors conducted extensive research in order to solve the above problems and develop a catalyst or carrier suitable for hydrotreating heavy oil. As a result, zeolite of a specific size is mixed with a water-swellable gel material along with a binder, dried, and calcined.Therefore, it can be used as a catalyst or catalyst support for various reactions, including the hydrogenation of heavy hydrocarbons. It was discovered that a suitable porous inorganic oxide could be obtained,
The present invention was completed based on this knowledge.

すなわち、本発明は大粒子と小粒子からなるとともに大
細孔を有する多孔性無機酸化物を製造するにあたり、大
粒子ゼオライトに小粒子形成性無機結合剤および水膨潤
性ゲル状物質を混合することを特徴とする多孔性無機酸
化物の製造方法を提供するものである。
That is, in producing a porous inorganic oxide consisting of large particles and small particles and having large pores, the present invention involves mixing large particle zeolite with a small particle forming inorganic binder and a water-swellable gel material. The present invention provides a method for producing a porous inorganic oxide characterized by the following.

本発明において用いられる大粒子ゼオライトとしては各
種の天然あるいは合成ゼオライトをあげることができる
。例えば、アンモニウムY型(NH4Y型)ゼオライト
、これを焼成して得られるプロオライド、金属プロトン
Y ill (MHY型)ゼオライト、金属スチーム処
理Y型(MsHy型)ゼオライトなどが挙げられる。こ
こでゼオライト中に含まれている金属としては、2価あ
るいは3価の金属。
As the large particle zeolite used in the present invention, various natural or synthetic zeolites can be mentioned. Examples include ammonium Y type (NH4Y type) zeolite, proolide obtained by firing this, metal proton Y ill (MHY type) zeolite, and metal steam-treated Y type (MsHy type) zeolite. Here, the metals contained in zeolite are divalent or trivalent metals.

具体的にはマグネシウム、カルシウム、セリウム。Specifically, magnesium, calcium, and cerium.

アルミニウム、鉄、ニッケル、コバルト、銅などがある
These include aluminum, iron, nickel, cobalt, and copper.

本発明の大粒子ゼオライトの粒径は、小粒子形成性無機
結合剤から形成される小粒子との比較においてより大き
いものであれば良く、特に制限はないが、大粒子ゼオラ
イトの粒径(4)と小粒子形成性無機結合剤から形成さ
れる粒子の粒径(9)の比が通常はん4≧2、好ましく
は100以上である。
The particle size of the large-particle zeolite of the present invention is not particularly limited as long as it is larger than the small particles formed from the small-particle-forming inorganic binder, but the particle size of the large-particle zeolite (4 ) and the particle size (9) of the particles formed from the small particle-forming inorganic binder is usually 4≧2, preferably 100 or more.

また大粒子ゼオライトの粒径そのものの大きさについて
は通常1〜10μ、好ましくは2〜5μ程度のものが用
いられる。このような粒径の大粒子ゼオライトを用いる
と、粒子間空隙が800〜2000Xとなり、また、こ
れに50〜2ooX程度の粒径の小粒子形成性無機結合
剤を組合せると所望の大きさの粒子空隙が形成されるこ
ととなる。
Further, the particle size of the large-particle zeolite itself is usually about 1 to 10 microns, preferably about 2 to 5 microns. If large particle zeolite with such a particle size is used, the interparticle voids will be 800 to 2000X, and if this is combined with a small particle forming inorganic binder with a particle size of about 50 to 200X, the desired size can be obtained. Particle voids will be formed.

本発明は上記の如き大粒子ゼオライトに、小粒子形成性
無機結合剤および水膨潤性ゲル状物質を混合する。ここ
で小粒子形成性無機結合剤としては、触媒中において小
粒子を形成する無機物の結合剤であれば良く、特に制限
はないが、例えばベーヴノL A’ nノ マn7ぐ−
J−sl −!、マn−コニd脅 ごノリカゲル、シリ
カ・アルミナゲル、シリカゾルなどを挙げることができ
る。この小粒子形成性無機結合剤は粒径等に%に制限は
ないが他の成分と混練して、得られる多孔性無機酸化物
中で小粒子として存在するもので、大粒子ゼオライトと
の粒径比が前記の如きものであればよい。
In the present invention, a small particle-forming inorganic binder and a water-swellable gel material are mixed with the above-mentioned large particle zeolite. Here, the small particle-forming inorganic binder is not particularly limited as long as it is an inorganic binder that forms small particles in the catalyst.
J-sl-! Examples include silica gel, silica/alumina gel, and silica sol. This small particle-forming inorganic binder is present as small particles in the porous inorganic oxide obtained by kneading it with other ingredients, although there is no limit to the particle size or the like. It is sufficient if the diameter ratio is as described above.

次に本発明においては、さらに水膨潤性ゲル状物質を加
えることが必要である。この水膨潤性ゲル状物質とは、
水により膨潤するものでありかつ、加熱時にゲル状を保
つものであれば良く、特に制限はない。具体的には、コ
ーンスターチ、馬鈴薯でんぷん、サツマイモでんぷん、
小麦でんぷん。
Next, in the present invention, it is necessary to further add a water-swellable gel material. What is this water-swellable gel-like substance?
There are no particular limitations as long as it swells with water and maintains a gel-like state when heated. Specifically, corn starch, potato starch, sweet potato starch,
wheat starch.

に−カラジーナン、マンナン、アルギン酸塩などが挙げ
られ、特にコーンスターチまたはに一力2ジーナンが好
適である。
Examples include carrageenan, mannan, alginates, etc., and cornstarch or dianine is particularly preferred.

本発明において、大粒子ゼオライト、小粒子形成性無機
結合剤および水膨潤性ゲル状物質の配合割合は特に制限
はなく、小粒子形成性無機結合剤がバインダーとして充
分に機能しうる量であるとともに−*膨粘性ゲル状物書
六二す詩竿ギナラスLの大細孔を閉塞するに充分な量で
あればよ(・。具体的には、大粒子ゼオライ)100重
量部に対して、小粒子形成性無機結合剤を90〜101
景部、好ましくは70〜40重量部とし、水膨潤性ゲル
状物質を0.5〜15重量部、好ましくは1〜10重量
部とする。
In the present invention, there is no particular restriction on the blending ratio of large-particle zeolite, small-particle-forming inorganic binder, and water-swellable gelatinous material, and the amount of the small-particle-forming inorganic binder can sufficiently function as a binder. - *If the amount is sufficient to block the large pores of the swelling viscous gel-like material 62 Sushi Rod Guinaras L (・Specifically, large particle zeolite) Particle-forming inorganic binder from 90 to 101
The amount of water-swellable gel material is preferably 0.5-15 parts by weight, preferably 1-10 parts by weight.

またこれらの各成分を混合するにあたっては、混合順序
、操作における制限はな(、様々な手法によって行なえ
ばよい。例えば、水性媒体中で大粒子ゼオライトに他の
成分を同時に、あるいは順次加えて混合するなどによっ
て行なう。さらに具体的には、各成分をニーダ−等の混
合機を用いて混合後、成形可能な状態まで約100℃程
度で1時間前後捏和し、その後室温まで冷却し、さらに
1.5時間程度捏和を行なうなどによればよい。
In addition, when mixing these components, there are no restrictions on the mixing order or operation (it can be done by various methods. For example, mixing large particle zeolite in an aqueous medium by adding other components simultaneously or sequentially) More specifically, each component is mixed using a mixer such as a kneader, kneaded at about 100°C for about an hour until it can be molded, then cooled to room temperature, and then kneaded. The mixture may be kneaded for about 1.5 hours.

このようにして得られた混合物を通常の方法にしたがっ
て、成形、乾燥、焼成等を行なうことにより、本発明の
多孔性無機酸化物を得ることができる。
The porous inorganic oxide of the present invention can be obtained by subjecting the mixture thus obtained to molding, drying, sintering, etc. according to conventional methods.

ここで乾燥条件は原料により異なり一義的に決定されな
いが十分乾燥されるまで行なえば良いが通常80〜15
0℃、好ましくは90〜120℃で1〜10時間、好ま
しくは3〜5時間行なえば良い。また、焼成条件も、特
に制限はないが、通常400〜700℃、好ましくは4
50〜600℃で1〜10時間、好ましくは3〜5時間
行なう。
Here, the drying conditions vary depending on the raw material and cannot be determined uniquely, but it is sufficient to carry out the drying process until it is sufficiently dried, but it is usually 80 to 15
It may be carried out at 0°C, preferably 90 to 120°C, for 1 to 10 hours, preferably 3 to 5 hours. The firing conditions are also not particularly limited, but are usually 400 to 700°C, preferably 400°C to 700°C.
It is carried out at 50 to 600°C for 1 to 10 hours, preferably 3 to 5 hours.

本発明においては、水膨潤性ゲル状物質を加えることに
より、これが水性媒体中で膨潤し大粒子ゼオライトの粒
子空隙中に入りこんで、粒子空隙を塞ぎその結果、小粒
子形成性無機結合剤が混合中に大粒子ゼオライトの粒子
空隙に入りこむのを防ぐことができる。しかも、その後
に乾燥、焼成を行なえば、大粒子ゼオライトの粒子空隙
中の水膨潤性ゲル状物質は燃焼見て完全に消失し、また
この粒子空隙アルミナゾル、ベーマイトゲル等の無機結
合剤により閉塞されることもないため、数多くの大細孔
が存在する無機酸化物が得られることとなる。
In the present invention, by adding a water-swellable gel-like substance, it swells in an aqueous medium and enters the particle voids of large-particle zeolite, closing the particle voids and as a result, the small-particle-forming inorganic binder is mixed. This can prevent particles from entering the voids of large zeolite particles. Moreover, if drying and calcination are performed afterwards, the water-swellable gel-like substance in the pores of large-particle zeolite particles will completely disappear upon combustion, and the pores will be blocked by inorganic binders such as alumina sol and boehmite gel. Therefore, an inorganic oxide containing many large pores can be obtained.

このようにして得られる多孔性無機酸化物は、粒径1μ
〜5μ程度の大粒子ゼオライトおよび粒径50〜300
λ程度の小粒子形成性無機結合剤の小粒子からなり、多
くの大細孔を有しているものである。ここで大細孔とは
通常1000X以上の大きさの細孔を言(・、本発明の
多孔性無機酸化物の大細孔は、その細孔分布、細孔容積
については製造の際の条件等により異なるが、100〜
2001の細孔と1000,1以上の細孔の2モード型
の細孔分布を有し、細孔容積は500〜1000スが0
.15 CC/f1以上、1000^以上が0.1cc
今以上であって、全体として0.5 cc/g程度の値
である。
The porous inorganic oxide thus obtained has a particle size of 1 μm.
~ Large particle zeolite of about 5μ and particle size 50-300
It consists of small particles of a small particle-forming inorganic binder of about λ, and has many large pores. Here, large pores usually refer to pores with a size of 1000X or more (・The large pores of the porous inorganic oxide of the present invention are determined by the conditions during production regarding its pore distribution and pore volume. etc., but it varies from 100 to
It has a bimodal pore distribution of 2001 pores and 1000.1 or more pores, and the pore volume is 500 to 1000 s.
.. 15 CC/f1 or more, 1000^ or more is 0.1cc
This is higher than the current value, and the total value is about 0.5 cc/g.

以上の如く多孔性無機酸化物は、そのまま触媒あるいは
触媒担体として用いることができ、また、種々の金属、
特に、水素化活性金属例えば■B族または■族金属など
を含浸法、共沈法などの方法で担持すれば極めて良好な
炭化水素転化用触媒として利用することができる。本発
明の多孔性無機酸化物を用いた触媒は大細孔を有してい
るため、重質炭化水素の水素化反応において炭素や不純
物金属を析出しても、活性の低下が小さく、触媒寿命も
長いものである。
As mentioned above, porous inorganic oxides can be used as catalysts or catalyst carriers as they are, and can be used as catalysts or catalyst carriers.
In particular, if a hydrogenation-active metal, such as a Group 1B or Group 2 metal, is supported by a method such as an impregnation method or a coprecipitation method, it can be used as an extremely good catalyst for hydrocarbon conversion. Since the catalyst using the porous inorganic oxide of the present invention has large pores, even if carbon or impurity metals are precipitated in the hydrogenation reaction of heavy hydrocarbons, the activity will be small and the catalyst will have a long life. It is also long.

よって、本発明は石油産業や一般の化学工業において極
めて有用である。
Therefore, the present invention is extremely useful in the petroleum industry and general chemical industry.

実施例1 市販のナトリウムY型ゼオライト(8i07AJ、O。Example 1 Commercially available sodium Y-type zeolite (8i07AJ, O.

=4.6(モル比))を塩化アンモニウム水溶液でイオ
ン交換し、酸化ナトリウム含量帆5重景%のアンモニウ
ムY型(NHaY型)ゼオライトを得た。
=4.6 (molar ratio)) was ion-exchanged with an aqueous ammonium chloride solution to obtain ammonium Y type (NHaY type) zeolite with a sodium oxide content of 5%.

なお、平均粒径は3μであった。Note that the average particle size was 3μ.

このようにして得られたN′H4Y型ゼオライト60重
量%、ベーマイトゲル40重量%およびコーンスターチ
をゼオライトおよびベーマイトゲルの合計乾燥重量の5
重量%を混合し、100℃で60分混線を行なった。得
られたものを直径1uの円柱状に押出し成形した後に1
20℃にて3時間乾燥した。このものの細孔分布および
細孔容積を水銀圧入法にて測定した。結果を第1表に示
す。
60% by weight of the N'H4Y type zeolite, 40% by weight of boehmite gel and cornstarch were added to 5% of the total dry weight of the zeolite and boehmite gel.
% by weight were mixed and mixed at 100° C. for 60 minutes. The obtained product was extruded into a cylindrical shape with a diameter of 1U, and then
It was dried at 20°C for 3 hours. The pore distribution and pore volume of this material were measured by mercury intrusion method. The results are shown in Table 1.

次いで、得られたものを550℃で3時間焼成し、多孔
性無機酸化物を得た。このものの細孔分布および細孔容
積の測定結果を第1表に示す。
Next, the obtained product was fired at 550° C. for 3 hours to obtain a porous inorganic oxide. Table 1 shows the measurement results of the pore distribution and pore volume of this product.

実施例2 実施例1において、コーンスターチに代工て馬鈴薯でん
ぷんを用いたこと以外′は実施例1と同様の操作を行な
った。細孔分布および細孔容積の結果を第1表に示す。
Example 2 The same operations as in Example 1 were carried out except that potato starch was used as a substitute for cornstarch. The results of pore distribution and pore volume are shown in Table 1.

実施例3 実施例1において、コーンスターチニ代工てに一カラジ
ーナンを用いたこと以外は実施例1と同様の操作を行な
った。細孔分布および細孔容積の結果を第1表に示す。
Example 3 The same operations as in Example 1 were carried out except that one carrageenan was used as a substitute for corn starch. The results of pore distribution and pore volume are shown in Table 1.

実施例4 実施例1において、コーンスターチの使用量をゼオライ
トおよびベーマイトゲルの合計乾燥重量の2重量%とじ
たこと以外は実施例1と同様の操作を行なった。細孔分
布および細孔容積の結果を第1表に示す。
Example 4 The same operation as in Example 1 was performed except that the amount of corn starch used was 2% by weight of the total dry weight of zeolite and boehmite gel. The results of pore distribution and pore volume are shown in Table 1.

実施例5 実施例1において、コーンスターチの使用量をゼオライ
トおよびベーマイトゲルの合計乾燥重量の10重月%と
したこと以外は、実施例1と同様の操作を行なった。細
孔分布および細孔容積の結果を第1表に示す。
Example 5 The same operation as in Example 1 was performed except that the amount of corn starch used was 10% of the total dry weight of zeolite and boehmite gel. The results of pore distribution and pore volume are shown in Table 1.

比較例1 実施例1において、コーンスターチの代わりに可溶性デ
ンプンを使用したこと以外は実施例1と同様の操作を行
なった。細孔分布および細孔容積の結果を第1表に示す
Comparative Example 1 The same operation as in Example 1 was performed except that soluble starch was used instead of cornstarch. The results of pore distribution and pore volume are shown in Table 1.

比較例2 実施例1において、コーンスターチの代わりにゼラチン
を使用したこと以外は、実施例1と同様の操作を行なっ
た。細孔分布および細孔容積の結果を第1表に示す。
Comparative Example 2 The same operation as in Example 1 was performed except that gelatin was used instead of cornstarch. The results of pore distribution and pore volume are shown in Table 1.

比較例3 実施例1においてコーンスターチの代わりにブドウ糖を
用(・たこと以外は実施例1と同様の操作を行なった。
Comparative Example 3 The same operation as in Example 1 was performed except that glucose was used instead of cornstarch.

細孔分布および細孔分布の結果を第1表に示す。The results of pore distribution and pore distribution are shown in Table 1.

比較例4 実施例1においてコーンスターチを使用しなかったこと
以外は実施例1と同様の操作を行なった。
Comparative Example 4 The same operation as in Example 1 was performed except that cornstarch was not used in Example 1.

細孔分布および細孔分布の結果を第1表に示す。The results of pore distribution and pore distribution are shown in Table 1.

比較例5 アルミナおよびこのアルミナの乾燥重量に対して5重量
%のコーンスターチを混合し、100℃で60分混練を
行なった。得られたものを直径1朋の円柱状に押出し成
形した後に、120℃にて3時間乾燥した。このものの
細孔分布および細孔容積を測定した。結果を第1表に示
す。
Comparative Example 5 Alumina and 5% by weight of corn starch based on the dry weight of the alumina were mixed and kneaded at 100° C. for 60 minutes. The obtained product was extruded into a cylindrical shape with a diameter of 1 mm, and then dried at 120° C. for 3 hours. The pore distribution and pore volume of this material were measured. The results are shown in Table 1.

手続ネ甫正書(自発) 昭和60年5月2日 特許庁長官 志賀 学 殿 ■、事件の表示 特願昭59−92794 2、発明の名称 多孔性無機酸化物の製造方法 3、補正をする者 事件との関係 特許出願人 重質油対策技術研究組合 4、代理人 〒104 東京都中央区京橋1丁目1番10号 西勘ビル5階 (7407)弁理士 久保1)藤 部 電話(275)0721番 5、補正の対象 明細書の発明の詳細な説明の憫 6、補正の内容 (1)明細書箱9頁3行目のrlo00Å以上」を「5
00Å以上」に訂正する。
Proceedings (self-motivated) May 2, 1985 Mr. Manabu Shiga, Director General of the Japan Patent Office ■, Indication of Case Patent Application No. 59-92794 2. Title of Invention Process for Producing Porous Inorganic Oxide 3. Amendments to be made Patent applicant: Heavy Oil Countermeasures Technology Research Association 4, Agent: 5F Nishikan Building, 1-10 Kyobashi, Chuo-ku, Tokyo (7407) 104 Patent Attorney Kubo 1) Fujibe Telephone (275) ) 0721 No. 5, Detailed explanation of the invention in the specification subject to amendment 6, Contents of amendment (1) "rlo00Å or more" on page 9, line 3 of the specification box to "5"
00Å or more”.

(2)同第9頁7行目のrioooÅ以上」を「500
Å以上」に訂正する。
(2) On page 9, line 7, ``more than rioooÅ'' is changed to ``500
Corrected to ``more than Å''.

(3)同第9頁8〜9行目の「500〜1000人」を
「500Å以上」に訂正する。
(3) On page 9, lines 8-9, "500 to 1000 people" is corrected to "500 Å or more."

(4) 同第9頁9〜10行目の「、1000Å以上が
0.1 cc/ g以上」を削除する。
(4) Delete "1000 Å or more is 0.1 cc/g or more" on page 9, lines 9-10.

(5)同第14頁の第1表を別紙の如く訂正する。(5) Table 1 on page 14 of the same page is corrected as shown in the attached sheet.

(以上)(that's all)

Claims (1)

【特許請求の範囲】 (1)大粒子と小粒子からなるとともに大細孔を有する
多孔性無機酸化物を製造するKあたり、大粒子ゼオライ
トに小粒子形成性無機結合剤および水膨潤性ゲル状物質
を混合することを特徴とする多孔性無機酸化物の製造方
法。 (2〕 大粒子ゼオライトの粒径が、061〜10μで
ある特許請求の範囲第1項記載の製造方法。 (3) 小粒子形成性無機結合剤が、アルミナゾル。 アルミナゲル、シリカゲル、シリカ・アルミナゲル、シ
リカゾルあるいはベーマイトゲルである特許請求の範囲
第1項記載の製造方法。 (4)水膨潤性ゲル状物質が、コーンスターチ。 馬鈴薯でんぷん、サツマイモでんぷん、小麦でんぷん、
九−カラジーナン、マンナンあるいはアルギン酔憔で本
る縣詐饋重の節■笛1頂貫P載の加岳方法。
[Claims] (1) Per K for producing a porous inorganic oxide consisting of large particles and small particles and having large pores, a large particle zeolite is combined with a small particle forming inorganic binder and a water-swellable gel-like material. A method for producing a porous inorganic oxide, the method comprising mixing substances. (2) The manufacturing method according to claim 1, wherein the large particle zeolite has a particle size of 0.61 to 10 μm. (3) The small particle forming inorganic binder is alumina sol. Alumina gel, silica gel, silica-alumina The manufacturing method according to claim 1, which is a gel, silica sol, or boehmite gel. (4) The water-swellable gel-like substance is corn starch. Potato starch, sweet potato starch, wheat starch,
9 - Carrageenan, mannan or algin A method of playing the prefecture fraud and heavy play with drunkenness.
JP59092794A 1984-05-11 1984-05-11 Preparation of porous inorganic oxide Granted JPS60238149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59092794A JPS60238149A (en) 1984-05-11 1984-05-11 Preparation of porous inorganic oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59092794A JPS60238149A (en) 1984-05-11 1984-05-11 Preparation of porous inorganic oxide

Publications (2)

Publication Number Publication Date
JPS60238149A true JPS60238149A (en) 1985-11-27
JPH0456666B2 JPH0456666B2 (en) 1992-09-09

Family

ID=14064330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59092794A Granted JPS60238149A (en) 1984-05-11 1984-05-11 Preparation of porous inorganic oxide

Country Status (1)

Country Link
JP (1) JPS60238149A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030003632A (en) * 2001-07-02 2003-01-10 주식회사 나노 Fabricating Method for Catalyst Supporter using Inorganic Binder Sol
CN1309471C (en) * 2001-04-13 2007-04-11 格雷斯公司 Zeolite based catalyst of ultra-high kinetic conversion activity
JP2010179267A (en) * 2009-02-07 2010-08-19 Kosei:Kk Support, and method of producing the same
WO2012133327A1 (en) * 2011-03-31 2012-10-04 独立行政法人石油天然ガス・金属鉱物資源機構 Method for producing hydrogenation catalyst
JP2012533427A (en) * 2009-07-20 2012-12-27 ユーオーピー エルエルシー Binderless zeolite adsorbent, method for producing binderless zeolite adsorbent, and method for adsorption separation of para-xylene from mixed xylene using binderless zeolite adsorbent
CN111086997A (en) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 Method for preparing mesoporous high-crystallinity Y-type molecular sieve by template method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010179268A (en) * 2009-02-07 2010-08-19 Kosei:Kk Plant for producing support
JP6267414B2 (en) * 2012-03-30 2018-01-24 出光興産株式会社 Crystalline aluminosilicate, heavy oil hydrocracking catalyst and process for producing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309471C (en) * 2001-04-13 2007-04-11 格雷斯公司 Zeolite based catalyst of ultra-high kinetic conversion activity
KR20030003632A (en) * 2001-07-02 2003-01-10 주식회사 나노 Fabricating Method for Catalyst Supporter using Inorganic Binder Sol
JP2010179267A (en) * 2009-02-07 2010-08-19 Kosei:Kk Support, and method of producing the same
JP2012533427A (en) * 2009-07-20 2012-12-27 ユーオーピー エルエルシー Binderless zeolite adsorbent, method for producing binderless zeolite adsorbent, and method for adsorption separation of para-xylene from mixed xylene using binderless zeolite adsorbent
US8859448B2 (en) 2009-07-20 2014-10-14 Uop Llc Binderless zeolitic adsorbents, methods for producing binderless zeolitic adsorbents, and processes for adsorptive separation of para-xylene from mixed xylenes using the binderless zeolitic adsorbents
WO2012133327A1 (en) * 2011-03-31 2012-10-04 独立行政法人石油天然ガス・金属鉱物資源機構 Method for producing hydrogenation catalyst
JP2012213715A (en) * 2011-03-31 2012-11-08 Japan Oil Gas & Metals National Corp Method for producing hydrogenation catalyst
AP3769A (en) * 2011-03-31 2016-08-31 Nippon Steel & Sumikin Eng Co Method for producing hydrogenation catalyst
EA025233B1 (en) * 2011-03-31 2016-12-30 Джэпэн Ойл, Гэз Энд Металз Нэшнл Корпорейшн Method for producing hydrogenation catalyst
AU2012233965B2 (en) * 2011-03-31 2017-03-02 Cosmo Oil Co., Ltd. Method for producing hydrogenation catalyst
US9839904B2 (en) 2011-03-31 2017-12-12 Japan Oil, Gas And Metals National Corporation Method for producing hydrogenation catalyst
CN111086997A (en) * 2018-10-23 2020-05-01 中国石油化工股份有限公司 Method for preparing mesoporous high-crystallinity Y-type molecular sieve by template method

Also Published As

Publication number Publication date
JPH0456666B2 (en) 1992-09-09

Similar Documents

Publication Publication Date Title
US4203829A (en) Catalyst, method of preparation and use thereof in hydrodesulfurizing cracked naphtha
JPH03505839A (en) Method for producing zeolite beta hydrocarbon conversion catalyst
US4548912A (en) Microspherical catalysts
JPS58500009A (en) hydrocarbon conversion catalyst
JP6653715B2 (en) Support for selectively synthesizing high-quality kerosene fraction from synthesis gas, its catalyst, and method for its preparation
US3703461A (en) Hydrogenation process and catalyst
JPH0239305B2 (en)
JPS60238149A (en) Preparation of porous inorganic oxide
JP3862029B2 (en) Catalyst comprising at least one metal hydride component and synthetic clay
JP3341011B2 (en) Catalyst support and hydrogenation catalyst
DE3148394A1 (en) MASS CONTAINING FIBROUS CLAY AND METHOD FOR THE PRODUCTION THEREOF
CA1204722A (en) Method of preparing a catalyst for hydrocracking
JP2022553834A (en) Silica-alumina composites for hydrotreating applications
JPS61281196A (en) Reforming catalyst and its production
CN108452839B (en) Mesoporous-microporous composite molecular sieve, catalyst, preparation method and application thereof
JP2567260B2 (en) Method for producing hydrotreating catalyst from hydrogel
RU2626396C1 (en) Hydrocarbons crude hydrocraking catalyst
US3989645A (en) Process for preparing a heavy crude conversion catalyst
US3801515A (en) Catalyst and preparation method for said catalyst
US4137146A (en) Two-stage hydroconversion process (hydrocracking and reforming) using a stabilized aluminosilicate hydrocracking catalyst
JPH06210182A (en) Catalyst for hydrodesulfirization denitrification of hydrocarbon oil and its production
US3993598A (en) Process for preparing a heavy crude conversion catalyst
JPH03114535A (en) Novel platinum reforming catalyst and substance carried thereby
US4369131A (en) Enhanced catalyst stability for cyclic co methanation operations
CN104923244A (en) Diesel hydro-refining catalyst and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees