JPS6023764A - Controller for thermoelectric type expansion valve - Google Patents

Controller for thermoelectric type expansion valve

Info

Publication number
JPS6023764A
JPS6023764A JP59127070A JP12707084A JPS6023764A JP S6023764 A JPS6023764 A JP S6023764A JP 59127070 A JP59127070 A JP 59127070A JP 12707084 A JP12707084 A JP 12707084A JP S6023764 A JPS6023764 A JP S6023764A
Authority
JP
Japan
Prior art keywords
expansion valve
valve
thermoelectric
thermoelectric expansion
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59127070A
Other languages
Japanese (ja)
Other versions
JPS6044576B2 (en
Inventor
中沢 昭
今須 賢一郎
健吾 高橋
山根 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59127070A priority Critical patent/JPS6044576B2/en
Publication of JPS6023764A publication Critical patent/JPS6023764A/en
Publication of JPS6044576B2 publication Critical patent/JPS6044576B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/345Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids
    • F25B41/347Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by solenoids with the valve member being opened and closed cyclically, e.g. with pulse width modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)
  • Safety Devices In Control Systems (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍サイクルの絞シ装置として用いる熱電形
膨張弁の制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a control device for a thermoelectric expansion valve used as a throttling device for a refrigeration cycle.

従来例の構成とその問題点 従来から冷凍サイクルに設けた熱電形膨張弁の絞り度を
制御するようにした制御装置は、種々考えられてはいた
が、これら従来の制御装置は、いずれも、冷凍サイクル
や各種検出器等が正常に作動している場合についてのみ
考えており、冷凍サイクル又は検出器の異常等が生じた
場合の補償回路は全く考えられてい々かった。このため
、例えば、冷凍サイクルの負荷状態を検出するサーミス
タ等の検出器が短絡したことにより、圧縮機の吸入部の
冷媒の加熱度が小さくなるか又は大きくなる。この加熱
度が小さい場合においては、熱電形膨張弁は最小開度ま
で絞り込み、冷凍回路は閉じる状態で真空運転に近くな
ることから、圧縮機および冷媒、潤滑油等に大きな障害
となる。逆に、加熱度が大きい場合には、最大開度まで
開き、圧縮機の弁等を破損する原因ともなる等の問題が
あった。
Conventional configurations and their problems Various control devices that control the degree of restriction of thermoelectric expansion valves installed in refrigeration cycles have been considered, but all of these conventional control devices have Only the case where the refrigeration cycle and various detectors were operating normally was considered, and no consideration was given to a compensation circuit in the event of an abnormality in the refrigeration cycle or the detectors. For this reason, for example, if a detector such as a thermistor that detects the load state of the refrigeration cycle is short-circuited, the degree of heating of the refrigerant in the suction section of the compressor becomes smaller or larger. When this degree of heating is small, the thermoelectric expansion valve is throttled down to the minimum opening degree, and the refrigeration circuit is closed and operates close to vacuum, which causes serious damage to the compressor, refrigerant, lubricating oil, etc. On the other hand, when the degree of heating is large, there is a problem that the valve opens to the maximum opening degree, causing damage to the valve of the compressor and the like.

発明の目的 本発明は、冷凍サイクルの運転状態を検出する検出回路
から特定の異常信号が発せられた場合には、冷凍サイク
ル中に設けた熱電形膨張弁の開度を一定に保つことによ
り、圧縮機、冷媒および潤滑油等への障害を防止するよ
うにしたことを目的とするものである。
Purpose of the Invention The present invention provides, when a specific abnormality signal is issued from a detection circuit that detects the operating state of the refrigeration cycle, by keeping the opening degree of a thermoelectric expansion valve provided in the refrigeration cycle constant. The purpose is to prevent damage to the compressor, refrigerant, lubricating oil, etc.

発明の構成 上記目的を達成するために、本発明の熱電形膨張弁の制
御装置は、冷凍サイクル中の圧力あるいは温度等を検出
する検出器からの信号を入力とする検出回路、およびこ
の検出回路からの信号により熱電形膨張弁の開度を制御
する制御回路とからなシ、前記検出回路により検出され
る値が、あらかじめ設定された値の範囲を超えるときに
前記制御回路により前記熱電形膨張弁の開度を一定に保
つべく制御するようにし、冷凍サイクル運転が安全に続
行できるようにしている。
Structure of the Invention In order to achieve the above object, the thermoelectric expansion valve control device of the present invention includes a detection circuit that receives a signal from a detector that detects pressure or temperature during a refrigeration cycle, and this detection circuit. a control circuit that controls the opening degree of the thermoelectric expansion valve according to a signal from the detection circuit, and when a value detected by the detection circuit exceeds a preset value range, the control circuit The valve opening is controlled to be kept constant, allowing refrigeration cycle operation to continue safely.

実施例の説明 本発明の一実施例における熱電形膨張弁の制御装置につ
いて第1図〜第3図を参考に説明する。
DESCRIPTION OF THE EMBODIMENTS A thermoelectric expansion valve control device according to an embodiment of the present invention will be described with reference to FIGS. 1 to 3.

まず、第1図により熱電形膨張弁を用いた空気調和機の
冷凍回路について説明する。
First, a refrigeration circuit for an air conditioner using a thermoelectric expansion valve will be explained with reference to FIG.

同図において、aは圧縮機、bl′1′凝縮器、Cは通
電量により閉じる方向へ作動する熱電形膨張弁、dは蒸
発器、eはアキュムレータである。さらにfは前記蒸発
器dの温度を検出するサーミスタ、gは前記圧縮機乙に
おける吸入部りの温度を検出するサーミスタである。i
は前記2つのサーミスタf、gからの信号により前記熱
電形膨張弁Cの開度を制御する制御装置である。
In the figure, a is a compressor, a bl'1' condenser, C is a thermoelectric expansion valve that operates in the closing direction depending on the amount of current, d is an evaporator, and e is an accumulator. Furthermore, f is a thermistor that detects the temperature of the evaporator d, and g is a thermistor that detects the temperature of the suction section of the compressor B. i
is a control device that controls the opening degree of the thermoelectric expansion valve C based on signals from the two thermistors f and g.

次に前記熱電形膨張弁Cの構造について第2図を参考に
説明する。
Next, the structure of the thermoelectric expansion valve C will be explained with reference to FIG. 2.

熱電形膨張弁Cは弁部分11と弁駆動部分12とからな
る。弁部分11は弁棒13と弁体14とからなる。弁棒
13は弁座部16を設けかつ流体が流出入する流出入ボ
ー)16.17を有し、各ボート16.17にはそれぞ
れ冷媒管18.19が接続されている。なお、弁体14
は弁棒1sK形成した孔20内に上下に摺動自在に設け
られている。一方、弁駆動部分12は、上ケーシング2
1と下ケーシング22と弁棒14とにより密閉された空
間23を形成している。この空間23内には二つのバイ
メタル24.25が収納されており、両バイメタル24
.25はその両端にてスペーサ26.27を介して並設
されている。そして、両バイメタル24.,25の中央
部に孔28.29を穿設し、上ケーシング21の内面中
央部に固着させた支持ピン30を上バイメタル24の孔
28に上方から挿入し、また弁体14の上端に形成した
ピン部分31を、下バイメタル26の孔29に下方から
挿入することにより、両バイメタル24゜25は空間2
3内に支持される。々お弁体14は座金32を介して、
スプリング33により常に上方向に伺勢されている。3
4は上バイメタル24を強制加熱する電気ヒータであり
、上バイメタル24に巻装されている。この電気ヒータ
34への通電が断たれている場合に、上バイメタル24
は、弁部分11がほぼ全開状態になるようにしている。
The thermoelectric expansion valve C consists of a valve part 11 and a valve drive part 12. The valve part 11 consists of a valve stem 13 and a valve body 14. The valve stem 13 is provided with a valve seat 16 and has inlet/outlet bows 16,17 through which fluid flows in and out, and a refrigerant pipe 18.19 is connected to each boat 16.17, respectively. In addition, the valve body 14
is provided in a hole 20 formed by the valve stem 1sK so as to be able to freely slide up and down. On the other hand, the valve driving portion 12 is connected to the upper casing 2.
1, the lower casing 22, and the valve stem 14 form a sealed space 23. Two bimetals 24 and 25 are housed in this space 23, and both bimetals 24 and 24 are
.. 25 are arranged in parallel at both ends with spacers 26 and 27 interposed therebetween. And both bimetal 24. , 25 are formed in the center, and a support pin 30 fixed to the center of the inner surface of the upper casing 21 is inserted from above into the hole 28 of the upper bimetal 24, and also formed in the upper end of the valve body 14. By inserting the pin portion 31 into the hole 29 of the lower bimetal 26 from below, both bimetals 24 and 25 are closed to the space 2.
Supported within 3. The valve body 14 is inserted through the washer 32,
It is always biased upward by the spring 33. 3
4 is an electric heater for forcibly heating the upper bimetal 24, and is wound around the upper bimetal 24. When the electricity to this electric heater 34 is cut off, the upper bimetal 24
In this case, the valve portion 11 is almost fully opened.

36.36は前記電気ヒータ39の両端に接続される端
子であり、上ケーシング21を貫通して設けられている
。この上バイメタル24は電気ヒータ34により強制加
熱されることにより、その両端が下方(図中矢印A方向
)に移動するよう変形するものである。従って電気ヒー
タ34に通電すると、上バイメタル24が変形し、スプ
リング33の弾性力に抗して弁体14を下方に押し下げ
、弁座16と弁体14の下端との間の隙間を小さくする
。すなわち、弁の絞り度を大きくする。この場合の弁の
絞り度は、電気ヒータ34への通電電力量により調整さ
れる。すなわち、大電力を通せば、上バイメタル24は
大きく変形彎曲し、弁の絞り度が大きくなる。逆に電気
ヒータ34への電力が小さい場合には、上バイメタル2
4の変形量は少々ぐ、弁の絞り度は小さい。なお、下バ
イメタル25は、孔2oと弁体14との摺動面から空間
23内に流入した冷媒及び周囲の空気温度による温度影
響を受け変形するもので、負荷状態補償用のバイメタル
である。
Terminals 36 and 36 are connected to both ends of the electric heater 39 and are provided through the upper casing 21. When the upper bimetal 24 is forcibly heated by the electric heater 34, its both ends are deformed so as to move downward (in the direction of arrow A in the figure). Therefore, when the electric heater 34 is energized, the upper bimetal 24 deforms and pushes the valve body 14 downward against the elastic force of the spring 33, thereby reducing the gap between the valve seat 16 and the lower end of the valve body 14. That is, the degree of restriction of the valve is increased. The degree of aperture of the valve in this case is adjusted by the amount of power supplied to the electric heater 34. That is, when a large amount of electric power is passed through the upper bimetal 24, the upper bimetal 24 is greatly deformed and curved, and the degree of restriction of the valve increases. Conversely, when the electric power to the electric heater 34 is small, the upper bimetal 2
The amount of deformation in No. 4 is a little small, and the degree of restriction of the valve is small. Note that the lower bimetal 25 is a bimetal for load condition compensation, and deforms under the influence of the temperature of the refrigerant flowing into the space 23 from the sliding surface between the hole 2o and the valve body 14 and the ambient air temperature.

次に、第3図により通電閉式熱電形膨張弁Cの制御を行
う電気回路について説明する。
Next, an electric circuit for controlling the energized closed type thermoelectric expansion valve C will be explained with reference to FIG.

同図において、41は検出回路であり、前記2つのサー
ミスタfとぎ、および前記圧縮機aの吸入部りにおける
冷媒の過熱度を調整する抵抗器R1とから構成されてい
る。42は熱電形膨張弁Cの開度を調節して吸入部りに
おける冷媒の過熱度を一定に制御する制御回路であり、
比例増幅器43と、バッファーアンプ44とから構成さ
れており、サーミスタgと抵抗器R1との抵抗和が、サ
ーミスタfの抵抗よりも大きい場合は、比例増幅器43
とバッファーアンプ44の働きにより、熱電膨張弁のヒ
ータ34への印加電圧を増加し、逆に小さい場合には、
印加電圧を減少するようにしている。
In the figure, 41 is a detection circuit, which is comprised of the two thermistors f and a resistor R1 that adjusts the degree of superheating of the refrigerant in the suction section of the compressor a. 42 is a control circuit that adjusts the opening degree of the thermoelectric expansion valve C to keep the degree of superheating of the refrigerant in the suction part constant;
It is composed of a proportional amplifier 43 and a buffer amplifier 44, and when the sum of resistances of thermistor g and resistor R1 is larger than the resistance of thermistor f, the proportional amplifier 43
By the action of the buffer amplifier 44, the voltage applied to the heater 34 of the thermoelectric expansion valve is increased;
The applied voltage is reduced.

46は熱電形膨張弁Cの開度を常に一定に保つ制御回路
であり、抵抗器R2・R3から構成されており、通常の
運転状態においては各サイクル構成部品に異常を生ぜず
、かつ、適度の性能が得られるような、熱電形膨張弁の
開度(例えば従来のキャピラリーチューブによる絞りと
同じ開度)を保持するようにしている。46は前記2つ
の制御回路42・45を切り換える回路で、切り換え範
囲を設定する3つの抵抗器R4,R6,R6とバフファ
ー47および切り換え器48とから構成されており、検
出回路41での検出値が、設定範囲内であれば、切り換
え器48は制御回路42と熱電形膨張弁Cのヒータ34
を連結し、範囲外であれば、制御回路46と熱電形膨張
弁Cのヒータ34と連結するようにしている。
46 is a control circuit that always keeps the opening degree of the thermoelectric expansion valve C constant, and it is composed of resistors R2 and R3, and under normal operating conditions, it does not cause any abnormality in each cycle component and maintains a moderate opening degree. The opening degree of the thermoelectric expansion valve is maintained so that the performance of 46 is a circuit for switching the two control circuits 42 and 45, and is composed of three resistors R4, R6, and R6 for setting the switching range, a buffer 47, and a switch 48, and the detection value in the detection circuit 41 is is within the set range, the switch 48 switches between the control circuit 42 and the heater 34 of the thermoelectric expansion valve C.
If it is outside the range, the control circuit 46 and the heater 34 of the thermoelectric expansion valve C are connected.

以上の構造において、次に動作の説明をする。Next, the operation of the above structure will be explained.

圧縮機aを駆動して運転が行なわれると、圧縮機孔から
出た冷媒は、凝縮器すで冷却凝縮され、熱電形膨張弁C
で膨張し、蒸発器dで加熱蒸発されアキュームレータe
を介して圧縮機aに戻る周知の冷凍回路を構成する。
When the compressor a is driven and operated, the refrigerant that comes out of the compressor hole is cooled and condensed in the condenser, and the thermoelectric expansion valve C
It expands in the evaporator d and is heated and evaporated in the accumulator e.
The well-known refrigeration circuit returns to the compressor a via the compressor a.

上記冷凍回路が構成されると、2つのサーミスタf−g
は各々取り付けられた位置での温度に相当する抵抗値を
示す。検出回路41はこの2つの抵抗値の相関を電圧と
して検出する。
When the above refrigeration circuit is configured, two thermistors f-g
indicates the resistance value corresponding to the temperature at each installed position. The detection circuit 41 detects the correlation between these two resistance values as a voltage.

ここで、冷凍サイクルおよび検出回路が正常の時は、前
記検出回路41により検出された電圧は切り換え回路4
6内に設定した範囲内にあり、熱電形膨張弁Cは、制御
回路42により、圧縮機aの吸入部りにおける冷媒の過
熱度を一定にすべく制御される。次に、冷媒不足により
、サーミスタfの取り付は位置での冷媒が過熱された場
合、サーミスタfの高温側への検出ミス(感温部の接触
不良等による高温検出)および短絡の場合、あるいはサ
ーミスタgの断線の場合は、検出電圧が設定範囲よりも
大きくなる。また、サーミスタfが断線した場合、サー
ミスタgが短絡された場合は、検出電圧が設定範囲より
も小さくなる。
Here, when the refrigeration cycle and the detection circuit are normal, the voltage detected by the detection circuit 41 is
The thermoelectric expansion valve C is controlled by the control circuit 42 to keep the degree of superheat of the refrigerant at the suction section of the compressor a constant. Next, due to refrigerant shortage, thermistor f should be installed in case of overheating of the refrigerant at the position, detection error of thermistor f to the high temperature side (high temperature detection due to poor contact of the temperature sensing part, etc.), short circuit, or In the case of a disconnection of the thermistor g, the detected voltage becomes larger than the set range. Further, if the thermistor f is disconnected or the thermistor g is short-circuited, the detected voltage becomes smaller than the set range.

以上の2つの場合において検出電圧が設定範囲外と々る
ことがら、熱電形膨張弁Cは、制御回路45により、弁
の開度が一定に制御され適切な運転と圧縮機の保護がな
される。
In the above two cases, although the detected voltage is outside the set range, the thermoelectric expansion valve C is controlled to have a constant valve opening by the control circuit 45 to ensure proper operation and protect the compressor. .

なお、本実施例では通電閉式熱電形膨張弁Cを用いてい
るが、印加電圧を増加すると開度が大きく々るような通
電開式熱電形膨張弁を用いる場合は、第3図の制御装置
において、検出回路の電源とアースを逆にし、かつ3つ
の抵抗R4・R5・R6を適切に選定することにより同
様の効果が得られる。
In this embodiment, an energized closed type thermoelectric expansion valve C is used, but when using an energized open type thermoelectric expansion valve whose opening degree increases greatly when the applied voltage is increased, the control device shown in Fig. 3 may be used. Similar effects can be obtained by reversing the power supply and grounding of the detection circuit and appropriately selecting the three resistors R4, R5, and R6.

また別途表示機能を設け、制御回路46の動作中は点灯
を行い異常を表示することもできる。
Further, a separate display function may be provided to turn on the light while the control circuit 46 is operating to indicate an abnormality.

発明の効果 上記実施例から明らか々ように、本発明における熱電形
膨張弁の制御装置は、検出器からの信号を検出する検出
回路と、この検出回路からの信号により熱電形膨張弁の
開度を制御する制御回路とからなる熱電形膨張弁の制御
装置に、前記検出回路により検出される値が、設定され
た値の範囲を超えるときに、前記熱電形膨張弁の開度を
一定に保つべく制御する制御回路を設けたもので、検出
器に故障等の異常が生じたときは、制御回路より熱電形
膨張弁を所定値に開くため、適切な冷凍回路運転が行な
え、冷凍回路部品の保護も行えるものである。
Effects of the Invention As is clear from the above embodiments, the thermoelectric expansion valve control device of the present invention includes a detection circuit that detects a signal from a detector, and a detection circuit that detects a signal from the detection circuit to determine the opening degree of the thermoelectric expansion valve. a control device for a thermoelectric expansion valve comprising a control circuit for controlling the thermoelectric expansion valve, the thermoelectric expansion valve having a constant opening degree when the value detected by the detection circuit exceeds a set value range; The system is equipped with a control circuit that controls the temperature of the refrigeration circuit, and when an abnormality such as a failure occurs in the detector, the control circuit opens the thermoelectric expansion valve to a predetermined value, allowing proper refrigeration circuit operation and protecting the refrigeration circuit components. It can also be protected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における熱電形膨張弁を具備
した冷凍回路図、第2図は同熱定形膨張弁の断面図、第
3図は同熱定形膨張弁を制御する制御装置の電気回路図
である。 a・・・圧縮機、b・・・・・・凝縮器、C・・熱電形
膨張弁、d・・・・・・蒸発器、f−1(・・・・・・
サーミスタ(検出器)、i ・・・・制御装置、41・
・ 検出回路、42・46・・・・・・制御回路。 第1図 第2図
FIG. 1 is a refrigeration circuit diagram equipped with a thermoelectric expansion valve according to an embodiment of the present invention, FIG. 2 is a sectional view of the thermoelectric expansion valve, and FIG. 3 is a diagram of a control device for controlling the thermoelectric expansion valve. It is an electrical circuit diagram. a... Compressor, b... Condenser, C... Thermoelectric expansion valve, d... Evaporator, f-1 (...
Thermistor (detector), i...control device, 41.
- Detection circuit, 42, 46... control circuit. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 冷凍サイクル中の圧力あるいは温度等を検出する検出器
からの信号を入力とする検出回路、およびこの検出回路
からの信号により熱電形膨張弁の開度を制御する制御回
路とからなり、前記検出回路により検出される値が、あ
らかじめ設定された値の範囲を超えるときに前記制御回
路により前記熱電形膨張弁の開度を一定に保つべく制御
する熱電形膨張弁の制御装置。
The detection circuit consists of a detection circuit that receives a signal from a detector that detects pressure or temperature, etc. during the refrigeration cycle, and a control circuit that controls the opening degree of the thermoelectric expansion valve based on the signal from this detection circuit. A control device for a thermoelectric expansion valve that controls the opening degree of the thermoelectric expansion valve to be kept constant by the control circuit when a value detected by the thermoelectric expansion valve exceeds a preset value range.
JP59127070A 1984-06-20 1984-06-20 Thermoelectric expansion valve control device Expired JPS6044576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59127070A JPS6044576B2 (en) 1984-06-20 1984-06-20 Thermoelectric expansion valve control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59127070A JPS6044576B2 (en) 1984-06-20 1984-06-20 Thermoelectric expansion valve control device

Publications (2)

Publication Number Publication Date
JPS6023764A true JPS6023764A (en) 1985-02-06
JPS6044576B2 JPS6044576B2 (en) 1985-10-04

Family

ID=14950830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59127070A Expired JPS6044576B2 (en) 1984-06-20 1984-06-20 Thermoelectric expansion valve control device

Country Status (1)

Country Link
JP (1) JPS6044576B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0315029Y2 (en) * 1985-12-05 1991-04-03
JPH04124080U (en) * 1991-04-26 1992-11-11 功 山下 fishing rod holder

Also Published As

Publication number Publication date
JPS6044576B2 (en) 1985-10-04

Similar Documents

Publication Publication Date Title
US6141978A (en) Method and apparatus for eliminating unnecessary defrost cycles in heat pump systems
US3478534A (en) Thermistor controlled refrigeration expansion valve
US4448038A (en) Refrigeration control system for modulating electrically-operated expansion valves
US4688390A (en) Refrigerant control for multiple heat exchangers
US4362027A (en) Refrigeration control system for modulating electrically-operated expansion valves
US4375753A (en) Air conditioner
JPH01172687A (en) Solenoid valve for detecting temperature in spiral type compressor
US4193269A (en) Apparatus for supplying a cooling liquid to a condenser of a refrigeration unit
US3464227A (en) Expansion valve and heat pump system
US5247989A (en) Modulated temperature control for environmental chamber
US3453837A (en) Defrost control apparatus
US5081405A (en) Electrical actuator with means for preventing dither at a limit switch
US4425767A (en) Refrigeration control system for modulating electrically-operated expansion valves
US3803866A (en) Start winding protection device
US3405535A (en) Temperature controlled flow control device and refrigeration system including such device
JPS6023764A (en) Controller for thermoelectric type expansion valve
US5627506A (en) Overload protector
SE437297B (en) CONTROL DEVICE FOR A REFRIGERATOR
JPS6323467B2 (en)
US4221116A (en) Temperature compensated control for air conditioning system or heat pump
US4220013A (en) Pressure compensated control for air conditioning system or heat pump
GB2057659A (en) Method of operating a refrigeration system
US3538717A (en) Refrigeration system control arrangement including heat motor operated expansion valve
JPH0212340B2 (en)
US5162774A (en) Remotely setting thermostatic switch assembly and refrigeration system employing same