JPS60231541A - Working method by cross rolling - Google Patents

Working method by cross rolling

Info

Publication number
JPS60231541A
JPS60231541A JP8713784A JP8713784A JPS60231541A JP S60231541 A JPS60231541 A JP S60231541A JP 8713784 A JP8713784 A JP 8713784A JP 8713784 A JP8713784 A JP 8713784A JP S60231541 A JPS60231541 A JP S60231541A
Authority
JP
Japan
Prior art keywords
diameter
shaft
die
stage
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8713784A
Other languages
Japanese (ja)
Inventor
Eihiko Tsukamoto
塚本 頴彦
Hiroshi Shioda
浩 塩田
Kazuo Morimoto
森本 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP8713784A priority Critical patent/JPS60231541A/en
Publication of JPS60231541A publication Critical patent/JPS60231541A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21HMAKING PARTICULAR METAL OBJECTS BY ROLLING, e.g. SCREWS, WHEELS, RINGS, BARRELS, BALLS
    • B21H1/00Making articles shaped as bodies of revolution
    • B21H1/18Making articles shaped as bodies of revolution cylinders, e.g. rolled transversely cross-rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Abstract

PURPOSE:To prevent the necking to be generated in the small-diameter shaft part of a stepped shaft-shaped metallic product having plural flanges by the effect of the succeeding stage in the stage of subjecting said product to the titled working by specifying the relation among the diameter of the small-diameter shaft part formed in the first stage, the wedge angle and lead angle of a die, and the diameter of a blank material. CONSTITUTION:The necking 7 arises in the shaft part having a shaft diameter (d) if the shaft diameter (d) formed in the first stage and the shaft diameter dl to be formed in the succeeding stage are in dl>d in the stage of forming the stepped shaft-shaped product having the plural flanges 6 from the blank material having the diameter d0 by a cross rolling method. The diameter d is preferably made as small as possible and the necking is required to be prevented in the case of forming two pieces at a time. The roll forming of the succeeding stage is thereupon executed by selecting the diameter d0 in a way as to satisfy the equation (alpha is the wedge angle of the die and beta is the lead angle of the die) with respect to the diameter d.

Description

【発明の詳細な説明】 本発明は、金属丸棒素材から段付軸を成形するクロスロ
ール加工方法の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a cross roll processing method for forming a stepped shaft from a metal round bar material.

従来よりクロスローリングマシンを用いて段付軸を成形
加工するクロスロール加工方法が行われているが、この
クロスロール加工方法は、同一方向に回転する一対のロ
ール間に丸棒状素材を挿入しく通常の圧延においては素
材を加工する一対のワークロールは互いに反対方向に回
転する。)、該ロール外周面に設けられたダイスによシ
素材を挟圧して所要の段付形状に成形するものである。
A cross-roll processing method has traditionally been used in which a stepped shaft is formed using a cross-rolling machine. In rolling, a pair of work rolls that process the material rotate in opposite directions. ), the raw material is pressed by a die provided on the outer peripheral surface of the roll and formed into a desired stepped shape.

このクロスローリング法によれば、他の成形方法、例え
ば鍛造法等にくらべて能率的かつ正確な成形加工が可能
であシ、製造コストを大幅に低減することができる。し
かしながら、このようなりロスロール加工方法で複数個
のフランジを有する段付軸状金属製品を転造成形する際
、前工程で成形した軸部が後の成形工程で生じる軸方向
張力の影響を受けてくびれを発生し、所要形状の製品が
得られない場合があった。゛ 第1図は、従来の段付軸の成形加工方法を示したもので
、第1図(a)は回転ダイスによるクロスローリング法
を示しており、素材3は同一方向に回転するロール1,
1間に挿入され、ロール1,1の円周面に設けられたダ
イス2,2に挟圧されて所定の形状寸法に成形される。
According to this cross-rolling method, more efficient and accurate molding is possible than other molding methods, such as forging, and manufacturing costs can be significantly reduced. However, when rolling a stepped shaft-shaped metal product with multiple flanges using this loss rolling method, the shaft formed in the previous process is affected by the axial tension generated in the subsequent forming process. There were cases in which constrictions occurred and it was not possible to obtain a product with the desired shape.゛Figure 1 shows a conventional method for forming a stepped shaft, and Figure 1 (a) shows a cross rolling method using a rotating die, in which the material 3 is rolled by rolls 1, rotating in the same direction.
1, and is pressed by dies 2, 2 provided on the circumferential surfaces of the rolls 1, 1, and formed into a predetermined shape and size.

第1図(blは平ダイスを用いる場合の加工状況を示し
たものであるが、前記(a)の回転ダイスによる加工状
況を円周方向に展開図示したものと考えても差支えない
Although FIG. 1 (bl) shows the machining situation when using a flat die, it can be considered that the machining situation using the rotary die in (a) is shown expanded in the circumferential direction.

第2図は、前記ダイス2,20回転に伴って直径d0の
素材の中央部を直径dまで転造成形する場合の成形過程
を示したもので、(atの右側2−イはダイスの展開平
面図、左側2−口はダイスの最終的な進行方向横断面図
を示している。
Figure 2 shows the forming process when the central part of a material with a diameter d0 is rolled to a diameter d as the die rotates 2 and 20 times. The plan view, left side 2-port shows the final forward cross-sectional view of the die.

さらに[blの2−ハはダイスの進行方向縦断面図を示
し、(C)の3−イル3−ホ拡ダイス各部での素材の成
形過程を示している。例えば、3−ハは素材がダイス上
の図中2線上にあるときの形状を示す。図中αおよびβ
はそれぞれダイスの楔角および進み角を示し、hはダイ
ス高さを示す。丸棒状素材は図(c)の3−イル3−ホ
に示されるようにダイスの回転にょる転造の進行に伴っ
て順次成形され、最終製品に仕上げられる。
Further, 2-C of [bl] shows a longitudinal cross-sectional view of the die in the advancing direction, and 3-I of (C) shows the forming process of the material at various parts of the expanding die. For example, 3-C shows the shape when the material is on the second line in the figure on the die. α and β in the figure
are the wedge angle and lead angle of the die, respectively, and h is the die height. The round bar-shaped material is sequentially formed into a final product as rolling progresses due to the rotation of the die, as shown by 3-il 3-e in Figure (c).

ところが、第3図に示すような複数個のフランジ6を有
する段付軸状製品を成形する場合、初工程で成形した軸
径dと次工程で成形する軸径d、とがdt)dの関係と
なるものでは、初工程で成形した軸径dの軸部に第4図
(a) (blに示すようなくびれ7が発生し、所望形
状の転遺品が得られない場合がある。この第3図に示す
ような形状の転造品は、クロスロール加工法で2個取り
成形を行う場合の最も一般的なものである。
However, when molding a stepped shaft-shaped product having a plurality of flanges 6 as shown in Fig. 3, the shaft diameter d formed in the first step and the shaft diameter d formed in the next step are dt)d. In related products, a constriction 7 as shown in FIG. 4(a) (bl) may occur in the shaft portion of the shaft diameter d formed in the initial process, and a remanufactured product with the desired shape may not be obtained. A rolled product having a shape as shown in FIG. 3 is the most common product when two-cavity molding is performed by the cross-roll processing method.

この場合、成形終了後、中央部から2個の製品に切シ離
すので、中央部の軸径dはできるだけ小さくすることが
望ましいが、この部分を最初に成形した場合は、後工程
での有効なくびれ防止対策が開発されていないため、こ
の加工法の実用化上重大な障害があった。なお、第3図
中、■部紘初工程で成形する軸部、■部は次工程で成形
する細部で1LL12(a) (b)は第3図の1部の
成形した軸部に生じるくびれ7の形状を例示したもので
ある。
In this case, after molding is completed, the product will be cut into two parts from the center, so it is desirable to make the shaft diameter d of the center part as small as possible. However, if this part is molded first, it will be difficult to Since no measures to prevent constriction have been developed, there has been a serious obstacle in the practical application of this processing method. In Figure 3, part ``■'' is the shaft part formed in the first step, part ``■'' is the detail to be formed in the next process, and 1LL12 (a) and (b) are the constrictions that occur in the formed shaft part of the first part in Figure 3. 7 is an example of the shape.

本発明は、このような複数個のフランジを有する段付軸
状製品をクロスロール加工するに際し、初工程で成形さ
れる軸径が次工程で成形される軸径よシも小さい場合、
前記初工程で成形された小径軸部が次工程の影響により
くびれを生じることなく形状良好な転造製品を得ること
を可能ならしめる加工法を提供することを目的とする。
When cross-rolling such a stepped shaft-shaped product having a plurality of flanges, the present invention provides a method in which the diameter of the shaft formed in the first step is smaller than the diameter of the shaft formed in the next step.
It is an object of the present invention to provide a processing method that makes it possible to obtain a rolled product with a good shape without causing the small diameter shaft portion formed in the first step to become constricted due to the influence of the next step.

すなわち本発明のクロスロール加工方法は、複数個のフ
ランジを有する段付軸状金属製品をクロスロール加工に
よシ転造成形するに際し、初工程において成形された小
径軸部直径dに対し下記式の条件を満足するようなダイ
スの楔角α、同進み角ならびに素材直径d。を選定して
次工程の転造成形を行うことを特徴とする。
That is, in the cross-roll processing method of the present invention, when forming a stepped shaft-shaped metal product having a plurality of flanges by cross-roll processing, the following formula is used for the diameter d of the small diameter shaft formed in the first step. The wedge angle α, the advance angle, and the material diameter d of the die satisfy the following conditions. It is characterized in that the next process of rolling is performed by selecting the following.

以下、第5図ないし第9図を参照しながら本発明方法に
つき詳細に説明する。
Hereinafter, the method of the present invention will be explained in detail with reference to FIGS. 5 to 9.

クロスロール成形加工中にダイスに作用する力は第5図
に示すように半径方向の圧下刃PX s軸方向の軸力P
yおよび回転方向の接線力の3成分に分けられ、くびれ
発生の原因はこれらのうち軸力Pyによるものである。
As shown in Fig. 5, the forces acting on the die during the cross-roll forming process include the rolling blade PX in the radial direction and the axial force P in the s-axis direction.
It is divided into three components: y and tangential force in the rotational direction, and the cause of necking is the axial force Py among these components.

第5図は第2図に示したダイスの押し拡げ部Bの任意の
位置での転造素材とダイスとの関係を示したもので、素
材3はダイス頂部の非挾圧面5−1+5−2ではさまれ
る直径dの円柱部分に上下のダイス挟圧面4−1.4−
z + 4−s 、 4−4によシ前記軸力Pyの2倍
の軸方向張力2Pyを受ける。
FIG. 5 shows the relationship between the rolling material and the die at any position of the extrusion part B of the die shown in FIG. The upper and lower die clamping surfaces 4-1.4-
z + 4-s, 4-4 receives an axial tension 2Py that is twice the axial force Py.

この軸力Pyは、軸方向の降伏に必要な応力の平均値を
hすとすると、幾何学的条件からまる接触投影面積をA
Vとして次式で表わされる。
This axial force Py is defined as the projected contact area based on geometric conditions, where h is the average value of the stress required for yielding in the axial direction.
It is expressed as V by the following formula.

Py = Ay−Kmy ==・(11ここで、接触投
影面積Ayを第6図のようにモデル化する。ダイスは上
下2個あるから、加工の最小単位は素材半回伝号と考え
る。素材半回伝号に対応するダイス成形面の見かけの進
み量fβは、直径d0の素材半回転の展開長l−πd6
 /2であるから fβ=l tanβ=pd6−β ・山・・・自(2)
成形により素材は体積一定の原理に従って軸方向にfβ
臀だけ伸びる。
Py = Ay-Kmy ==・(11) Here, the projected contact area Ay is modeled as shown in Figure 6. Since there are two dies, upper and lower, the minimum unit of machining is considered to be half a turn of the material. The apparent advancement amount fβ of the die forming surface corresponding to the half-turn transmission is the development length l−πd6 of a half-turn of the material with diameter d0.
/2, so fβ=l tanβ=pd6−β ・Mountain...self (2)
Due to forming, the material becomes fβ in the axial direction according to the principle of constant volume.
Only the buttocks grow.

π(d。”−d” ) fβ=πd、” fβ苦ダイス
がfβ進んだ時の加工体積VWはVw= (do” d
2) fβ この加工に伴う素材の伸び体積VEは VB = −d、” fp* ダイス成形面に接する素材面も自然にfββ過進とすれ
ば、ダイス成形面の素材面に対する真の進み景fは 圧下量をmとすると m = f tsnα ・・・・・・・・(4)また、
接触投影面積をめるための接触幅は従って、接触投影面
積Ayは近似的に ただし、r=d/d。
π(d."-d") fβ=πd, "fβThe machining volume VW when the die advances fβ is Vw= (do" d
2) fβ The elongation volume VE of the material due to this processing is VB = -d, "fp* If the material surface in contact with the die forming surface also naturally advances fββ, then the true progress of the die forming surface relative to the material surface f If the reduction amount is m, then m = f tsnα (4) Also,
The contact width for determining the projected contact area is therefore approximately the projected contact area Ay, where r=d/d.

一方、直径dの成形軸部に作用する軸方向引張応力をT
yとすると、 (1)〜(61式よシ ここで(7)式の左辺Ty/Kmyをくびれ指数λと定
義し、くびれ発生限界との関係を実験によって検討した
。第7図はこの実験のための工程を示したものであるが
、素材7の中実軸部8はあらかじめ所要の小径dに旋削
加工しておき、その両側部分の材料成形時に中実軸部8
に発生するくびれの程度をくびれ率とし、前記くびれ指
数λの値を穐々に変化させた場合のくびれ率を調査した
On the other hand, the axial tensile stress acting on the formed shaft with diameter d is T
Let y be Equations (1) to (61) Here, Ty/Kmy on the left side of Equation (7) was defined as the constriction index λ, and its relationship with the constriction generation limit was investigated through experiments. Figure 7 shows the results of this experiment. The solid shaft portion 8 of the material 7 is turned in advance to a required small diameter d, and the solid shaft portion 8 is turned when forming the material on both sides.
The degree of constriction that occurs in the test was defined as the constriction rate, and the constriction rate was investigated when the value of the constriction index λ was varied in a large manner.

第8図に示すように、中実軸部8の直径dに対してくび
れた部分の直径をd′とし、と定義する。この実験の結
果を第9図に示す。
As shown in FIG. 8, the diameter of the constricted portion relative to the diameter d of the solid shaft portion 8 is defined as d'. The results of this experiment are shown in FIG.

第9図の線図より、初工程で成形した小径の中実軸部8
にくびれが発生しない条件は、くびれ指数λが0.25
を超えないこと、すなわちλ= Ty/Kmy≦0.2
5 −・−・・・−(8)であることが知られる。前記
(7)式と(8)式とから次式が得られる。
From the diagram in Figure 9, the small diameter solid shaft part 8 formed in the first process
The condition that no constriction occurs is that the constriction index λ is 0.25.
i.e. λ=Ty/Kmy≦0.2
It is known that 5 -・-...-(8). The following equation is obtained from equations (7) and (8).

以上から、初工程で成形された直径dの小径軸部のくび
れを皆無とするためには、次工程で成形される軸部用ダ
イスの楔角α、同進み角βならびに素材直径d0を上記
(9)式を満足するように(すなわち、くびれ指数λが
0.25以下となるように)決定してやればよい。なお
、上記初工程で成形された小径軸部にある程度のくびれ
変形が許容される場合には、その許容程度に応じてダイ
ス形状(楔角αおよび進み角β)ならびに素材直径d0
を選定することも可能であることはいうまでもない。
From the above, in order to eliminate any constriction in the small diameter shaft part of diameter d formed in the first process, the wedge angle α, lead angle β, and material diameter d0 of the shaft die to be formed in the next process should be set as above. It may be determined so that the equation (9) is satisfied (that is, the constriction index λ is 0.25 or less). In addition, if a certain degree of constriction deformation is allowed in the small-diameter shaft portion formed in the first step, the die shape (wedge angle α and lead angle β) and material diameter d0 are adjusted according to the degree of constriction allowed.
It goes without saying that it is also possible to select.

以上の説明のように1本発明は第3図に示すような複数
個の72ンジを有する段付軸状製品の転造成形する場合
、特に2個数シ成形を行う場合に、初工程で成形された
小径軸部に次工程においてくびれ変形を生じることのな
いクロスロール加工方法を提供し得たもので、実用上の
効果の甚だ大きいものである。
As described above, the present invention can be applied in the first step when rolling a stepped shaft-shaped product having a plurality of 72-inches as shown in FIG. This method provides a cross-roll processing method that does not cause constriction deformation in the small-diameter shaft portion in the next step, and is extremely effective in practical use.

【図面の簡単な説明】[Brief explanation of drawings]

第1図1a)(b)は従来の段付軸の成形加工方法を示
す説明図、第2図(at〜(clは従来のクロスロール
加工方法による成形過程の説明図、第3図は本発明を適
用する複数個のフランジを有する段付軸状製品の1例を
示す図、第4図(al (blは第3図の製品のくびれ
発生の例を示す図、第5図(at[blおよび第6図(
al (blはクロスロール加工中における素材とダイ
スの関係を示す図、第7図(al (blはくびれ発生
限界を検討するための実験工程を示す図、第8図はくび
れ率を定義する図、第9図はくびれ率とくびれ指数との
関係を示す線図である。 図面中、 doは素材直径、 dは小径軸部直径、 1はロール、 2はダイス、 3は素材、 6はフランジ、 7はくびれ、 8は中実軸部、 αは楔角、 β鉱道み角である。 第1図 (bl 3−モ 3−二 3−ハ 3−口 3−イ第3図 第4図 第5図 第6図 (a) (b) x 第7図 (a) 第8図
1a and 1b are explanatory diagrams showing the conventional forming method for stepped shafts, FIG. Figure 4 (al) is a diagram showing an example of a stepped shaft-shaped product having a plurality of flanges to which the invention is applied; bl and Fig. 6 (
al (bl is a diagram showing the relationship between the material and the die during cross-roll processing, Figure 7 (al (bl is a diagram showing the experimental process for examining the limit of necking generation, and Figure 8 is a diagram defining the waisting rate) , Fig. 9 is a diagram showing the relationship between constriction rate and constriction index. In the drawing, do is the diameter of the material, d is the diameter of the small diameter shaft, 1 is the roll, 2 is the die, 3 is the material, and 6 is the flange. , 7 is the constriction, 8 is the solid shaft part, α is the wedge angle, and β mine angle. Figure 5 Figure 6 (a) (b) x Figure 7 (a) Figure 8

Claims (1)

【特許請求の範囲】[Claims] 複数個のフランジを有する段付軸状金属製品を転造成形
するクロスロール加工方法において、初工程において成
形された小径軸部直径dに対し下記式の条件を満足する
ようなダイスの楔角α、同進み角βならびに素材直径d
。を選定して次工程の転造成形を行うことを特徴とする
クロスロール加工方法。
In the cross-roll processing method for rolling forming a stepped shaft-shaped metal product having multiple flanges, the wedge angle α of the die is set such that the diameter d of the small shaft portion formed in the first step satisfies the condition of the following formula. , the lead angle β and the material diameter d
. A cross-roll processing method characterized by selecting and performing rolling forming in the next step.
JP8713784A 1984-04-28 1984-04-28 Working method by cross rolling Pending JPS60231541A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8713784A JPS60231541A (en) 1984-04-28 1984-04-28 Working method by cross rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8713784A JPS60231541A (en) 1984-04-28 1984-04-28 Working method by cross rolling

Publications (1)

Publication Number Publication Date
JPS60231541A true JPS60231541A (en) 1985-11-18

Family

ID=13906577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8713784A Pending JPS60231541A (en) 1984-04-28 1984-04-28 Working method by cross rolling

Country Status (1)

Country Link
JP (1) JPS60231541A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103639334A (en) * 2013-12-09 2014-03-19 安庆市振发汽车锻件有限责任公司 Multipurpose cross wedge rolling die
CN110114166A (en) * 2017-02-15 2019-08-09 联邦摩高气门机构公司 Method for Regularity of Workpiece of Cross Wedge Rolling disc valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886760A (en) * 1972-01-27 1973-11-15
JPS50120462A (en) * 1974-03-07 1975-09-20
JPS5150852A (en) * 1974-10-30 1976-05-04 Toyota Motor Co Ltd TENZOKAKOSOCHI

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886760A (en) * 1972-01-27 1973-11-15
JPS50120462A (en) * 1974-03-07 1975-09-20
JPS5150852A (en) * 1974-10-30 1976-05-04 Toyota Motor Co Ltd TENZOKAKOSOCHI

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103639334A (en) * 2013-12-09 2014-03-19 安庆市振发汽车锻件有限责任公司 Multipurpose cross wedge rolling die
CN110114166A (en) * 2017-02-15 2019-08-09 联邦摩高气门机构公司 Method for Regularity of Workpiece of Cross Wedge Rolling disc valve
CN110114166B (en) * 2017-02-15 2020-06-26 联邦摩高气门机构公司 Method for cross wedge rolling disc valves

Similar Documents

Publication Publication Date Title
JP3498312B2 (en) Cold reduction roll forming method for metal tube and metal tube formed thereby
US3954001A (en) Dies for cross rolling machines
JPS60231541A (en) Working method by cross rolling
US3503237A (en) Fabrication of articles by rolling
JPS591040A (en) Working method of oil groove of columnar member
US3779064A (en) Process and apparatus for calibrating and surfacing tubes
JPS6174713A (en) Method and device for reducing wall thickness at pipe end of seamless steel pipe
JPS58179527A (en) Cross rolling working method
JPH11347680A (en) Method for roll-forging shaft with step
JP3290933B2 (en) Rolling method for deformed steel bars
JPH01245914A (en) Manufacture of metallic pipe excellent in out-of-roundness of outer diameter
JPS60231540A (en) Working method by cross rolling
JP2994202B2 (en) Manufacturing method of ERW steel pipe with excellent roundness
SU1003983A1 (en) Blank forging method
US988834A (en) Tube-rolling.
JP3158586B2 (en) Method of forming member having H-shaped cross section
JPS6072630A (en) Method and tool for rolling
JPS6242683B2 (en)
JPH0234201A (en) Method for rolling shape steel by asymmetrical special box-shaped groove roll
JP2711129B2 (en) Manufacturing method of titanium seamless pipe
JPS6087907A (en) Continuous rolling mill for steel pipe
JPH0994629A (en) Form-rolling method and die for form-rolling
JPS61144204A (en) Skew rolling method of seamless pipe
US2303784A (en) Method of making steering knuckles
JPS61137612A (en) Skew rolling method of metallic pipe and plug used for rolling