JPS60230097A - Method of processing liquid containing radionuclide - Google Patents

Method of processing liquid containing radionuclide

Info

Publication number
JPS60230097A
JPS60230097A JP8586084A JP8586084A JPS60230097A JP S60230097 A JPS60230097 A JP S60230097A JP 8586084 A JP8586084 A JP 8586084A JP 8586084 A JP8586084 A JP 8586084A JP S60230097 A JPS60230097 A JP S60230097A
Authority
JP
Japan
Prior art keywords
radionuclide
ion exchange
liquid
concentration
exchange resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8586084A
Other languages
Japanese (ja)
Inventor
平井 雅英
友繁 昌三
近藤 幸三
和則 鈴木
藤堂 福蔵
山中 彰宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Unitika Ltd
Original Assignee
JGC Corp
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Unitika Ltd filed Critical JGC Corp
Priority to JP8586084A priority Critical patent/JPS60230097A/en
Publication of JPS60230097A publication Critical patent/JPS60230097A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、放射性核種含有液、特に原子力発電所や放射
性核種を利用する研究所等から発生ずる放射性核種含有
液の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for treating radionuclide-containing liquids, particularly radionuclide-containing liquids generated from nuclear power plants, laboratories that utilize radionuclides, and the like.

放射性核種含有液、特に原子力発電所や研究所等から発
生ずる放射性核種含有液は無機塩仲や有機物等が共存し
ており、従来は主に蒸発濃縮処理され、その濃縮廃液は
セメント固化あるいはアスファルト固化されて保管され
ている。また、凝縮水は再使用されるかあるいは河川に
放出されている。原子力発電所における放射性核種含有
液は。
Radionuclide-containing liquids, especially radionuclide-containing liquids generated from nuclear power plants, research institutes, etc., coexist with inorganic salts and organic substances. Conventionally, they are mainly treated by evaporation and concentration, and the concentrated waste liquid is solidified with cement or turned into asphalt. solidified and stored. Additionally, condensed water is either reused or discharged into rivers. Liquids containing radionuclides in nuclear power plants.

機器ドレン廃液、床ドレン廃液、イオン交換再生廃液及
び洗濯廃液に大別されており、特に洗濯廃液は放射性核
種濃度が必ずしも高くないこと、有機物含有量が高り、
蒸発処理時に発泡すること等から現状ではフィルタによ
る濾過後に放出されている。しかしながら、環境放出量
の低減化の必要性の点により、このような洗濯廃液も処
理することが望まれており、一方1機器ドレン廃液、イ
オン交換再生廃液、床ドレン廃液等の蒸発濃縮処理は各
種の型のスチーム利用の蒸発器で行われているため、省
エネルギー化の点から他の処理方法の開発が望まれてい
る。また、前記したごと<=a縮液をセメント固化して
保管するため5保管場所の確保に困難をきたしている。
It is broadly classified into equipment drain waste, floor drain waste, ion exchange regeneration waste, and laundry waste.Laundry waste, in particular, does not necessarily have a high concentration of radionuclides, has a high organic matter content,
Currently, it is released after filtration with a filter because it foams during the evaporation process. However, due to the need to reduce the amount released into the environment, it is desired to treat such laundry waste liquid as well.On the other hand, evaporation concentration treatment of single equipment drain waste liquid, ion exchange regeneration waste liquid, floor drain waste liquid, etc. Since various types of steam-based evaporators are used for this process, development of other processing methods is desired from the viewpoint of energy saving. In addition, as mentioned above, it is difficult to secure a storage space because the condensed liquid is solidified with cement and stored.

一方、最近、イオン交換樹脂あるいはキレート樹脂を用
いて放射性核種を除去する方法が検討されている。しか
し、イオン交換樹脂あるいはキレート樹脂は全て化学量
論的な濃度領域はせいぜいppbオーダーであるため、
放射性核種含有液のようにppbオーダーをはるかに下
まわる放射性核種濃度領域ではその処理効果が十分でな
く、特に錯形成性無機物や錯形成性有機物等のさまざま
な不純物を含有する場合にはほとんど処理効果がなくい
まだ研究段階に滞っているのが現状である。
On the other hand, recently, methods of removing radionuclides using ion exchange resins or chelate resins have been studied. However, the stoichiometric concentration range of all ion exchange resins or chelate resins is on the order of ppb at most.
The treatment effect is not sufficient in radionuclide concentration ranges far below the ppb order, such as radionuclide-containing liquids, and in particular, when the solution contains various impurities such as complex-forming inorganic substances and complex-forming organic substances, it is almost impossible to treat it. The current situation is that it is not effective and is still at the research stage.

そこで1本出願人は、先にこのような放射性核種含有液
の処理状況に鑑み、キレート性イオン交換樹脂で単純か
つ省エネルギー的な操作で放射性核種を除去することが
できる放射性核種含有液の処理方法を提供することを目
的として鋭意研究した結果、前処理として活性炭処理、
特に粉末活性炭処理を行うと、上記の目的がすべて達成
しうろことを見い出し、特許出願した(特開昭57−4
8699号公報及び特開昭57−201899号公報参
照。)。
Therefore, in view of the treatment situation of radionuclide-containing liquids, the present applicant has proposed a method for treating radionuclide-containing liquids that can remove radionuclides using a chelating ion exchange resin in a simple and energy-saving operation. As a result of intensive research with the aim of providing
In particular, he discovered that powdered activated carbon treatment could achieve all of the above objectives, and filed a patent application (Japanese Patent Laid-Open No. 57-4
See No. 8699 and Japanese Unexamined Patent Publication No. 57-201899. ).

しかしながら、これらの方法においても放射性核種を吸
着したキレート性イオン交換樹脂の減容1 やその取り
扱いに問題があり、検討の余地を残している。
However, even with these methods, there are problems with the volume reduction of the chelating ion exchange resin that has adsorbed radionuclides1 and its handling, and there is still room for further investigation.

そこで1本発明者らはこのような放射性核種含有液の処
理の現況に鑑み、放射性核種を非常にコンパクトに固定
化できる放射性核種含有液の処理方法を提供することを
目的として鋭意研究した結果、放射性核種含有液を非放
射性重金属の存在下で電気分解すると、放射性核種を効
率良く電極板に電板させることができ、上記の目的が達
成されることを見い出し2本発明を完成した。
Therefore, in view of the current state of treatment of radionuclide-containing liquids, the present inventors have conducted extensive research with the aim of providing a method for processing radionuclide-containing liquids that can immobilize radionuclides in a very compact manner. The present inventors have found that when a radionuclide-containing liquid is electrolyzed in the presence of non-radioactive heavy metals, the radionuclides can be efficiently transferred to the electrode plate, and the above object is achieved.The present invention has been completed.

すなわち1本発明は放射性核種含有液中の放射性核種を
除去するに際し、放射性核種含有液を非放射性重金属の
存在下で電気分解して放射性核種を電極板に電着させる
ことを特徴とする放射性核種含有液の処理方法である。
That is, 1. The present invention is a method for removing radionuclides from a radionuclide-containing liquid, in which the radionuclide-containing liquid is electrolyzed in the presence of a non-radioactive heavy metal to electrodeposit the radionuclide on an electrode plate. This is a method for treating the liquid contained therein.

本発明によれば1例えばCo−60,Mn−54,Fe
−59を含有する液は1通常のメッキ処理又は電解回収
が行われる液体とは異なり、極めて金属濃度が低く 、
 ppb−pptオーダーであり、このような液を電気
分解して効率良く電着できることはまさに驚くべきこと
である。 1 本発明にいう放射性核種含有液とは、核***反応又は放
射性反応により発生する放射性核種5例えばMn−54
,Cr−51,Go−58,Co−60,Fe−59,
Zn−65゜Ag−110n+等の1種又は2種以上を
含む液をいう。
According to the invention, 1 e.g. Co-60, Mn-54, Fe
-59-containing liquid has an extremely low metal concentration, unlike liquids that undergo normal plating or electrolytic recovery.
It is on the ppb-ppt order, and it is truly surprising that such a liquid can be electrolyzed and electrodeposited efficiently. 1 The radionuclide-containing liquid referred to in the present invention refers to radionuclides 5 generated by nuclear fission reactions or radioactive reactions, such as Mn-54.
, Cr-51, Go-58, Co-60, Fe-59,
It refers to a liquid containing one or more types of Zn-65°Ag-110n+ and the like.

この放射性核種含有液の具体例として、原子力発電所よ
り発生する機器ドレン廃液、床ドレン廃液。
Specific examples of radionuclide-containing liquids include equipment drain liquid and floor drain waste liquid generated from nuclear power plants.

イオン交換再生廃液あるいはこれらを濃縮した濃縮廃液
があげられる。
Examples include ion exchange regenerated waste liquid and concentrated waste liquid obtained by concentrating these.

本発明において、上記の廃液の中で大量に発生する低濃
度(]X104〜10’ /lci/ml)廃液でも電
解可能であるが、廃液量が多いために電解槽。
In the present invention, it is possible to electrolyze even the low concentration (]X104~10'/lci/ml) waste liquid that is generated in large quantities among the above waste liquids, but since the amount of waste liquid is large, an electrolytic cell is not used.

凝集沈殿(以下凝沈という。)設備が大きくなり。Coagulation and sedimentation (hereinafter referred to as coagulation) equipment has become larger.

設備費も高く、保守点検が必要となり、好ましくない。Equipment costs are also high and maintenance and inspection are required, which is not desirable.

この場合には、あらかじめキレート性イオン交換樹脂又
はイオン交換樹脂と接触させて放射性核種をキレート性
イオン交換樹脂又はイオン交換樹脂に吸着させ2次いで
吸着させた放射性核種を溶離剤で溶離さセて得た液(こ
の液は濃縮されている。)を電気分解した方が好ましい
In this case, the radionuclide is adsorbed onto the chelating ion exchange resin or ion exchange resin by contacting it with the chelating ion exchange resin or ion exchange resin, and then the adsorbed radionuclide is eluted with an eluent. It is preferable to electrolyze the liquid (this liquid is concentrated).

本発明において、キレート性イオン交換樹脂として2例
えばフェノール系、スチレン系、エポキシ系、アクリル
エステル系の樹脂母体に官能基として、ジエチレントリ
アミン、トリエチレンテトラミン、テトラエチレンペン
タミン、ペンタエチレンへキサミン等のアミン類、イミ
ノジ酢酸等のアミノカルボン酸類、ジブロバノールアミ
ン等のアルコールアミン類、尿素、チオ尿素等の尿素類
を導入したもの等がいずれも適用できる。また。
In the present invention, as a chelating ion exchange resin, an amine such as diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, etc. , aminocarboxylic acids such as iminodiacetic acid, alcohol amines such as dibrobanolamine, and those incorporating ureas such as urea and thiourea can be used. Also.

イオン交換樹脂としては1例えばフェノール系。Examples of ion exchange resins include phenolic resins.

スチレン系、エポキシ系、アクリルエステル系の樹脂母
体に官能基として、カルボン酸、スルホン酸等を導入し
たものがいずれも適用できる。
Any styrene-based, epoxy-based, or acrylic ester-based resin matrix into which carboxylic acid, sulfonic acid, or the like is introduced as a functional group can be used.

本発明において、放射性核種含有液をイオン交換樹脂あ
るいはキレート性イオン交換樹脂と接触させる際にはp
)lを1〜10.好ましくは2〜Bに調整しておくこと
が望ましい。
In the present invention, when bringing a radionuclide-containing liquid into contact with an ion exchange resin or a chelating ion exchange resin, p
)l from 1 to 10. Preferably, it is desirable to adjust it to 2-B.

本発明において、イオン交換樹脂又はキレート性イオン
交換樹脂に放射性核種を吸着させるには。
In the present invention, in order to adsorb a radionuclide on an ion exchange resin or a chelating ion exchange resin.

例えばイオン交換樹脂あるいはキレート性イオン交換樹
脂を充填した塔に通常はSV 101/Hr以下。
For example, a column packed with an ion exchange resin or a chelating ion exchange resin usually has a SV of 101/Hr or less.

好ましくは21/I(rの速度で通液ずればよい。通液
の方法としては、上向流、下向流のどちらでもよい。
Preferably, the liquid may be passed at a rate of 21/I (r).The method of passing the liquid may be either an upward flow or a downward flow.

次に、吸着させた放射性稜種を溶離剤で溶離するが、そ
の溶離剤として2例えば硫酸、塩酸等の無機酸、酢酸、
酪酸、ギ酸等の有機酸が使用できる。特に0.5〜6規
定の硫酸水溶液が好ましい。
Next, the adsorbed radioactive species are eluted with an eluent, such as inorganic acids such as sulfuric acid and hydrochloric acid, acetic acid,
Organic acids such as butyric acid and formic acid can be used. Particularly preferred is a 0.5-6N sulfuric acid aqueous solution.

本発明では、放射性核種含有液を非放射性重金属の存在
下で電気分解することが必要である。そのためには2例
えば整流器、電解槽からなる市販の電解設備にppm整
槽合併けた簡単な装置で電気分解すればよい。そのとき
、非放射性重金属を少なくとも1100va/ it存
在させることが望まれ、特に1〜20g/l存在させる
ことが好ましいが、電流効率2電解時間あるいは後工程
の凝沈処理の負荷等の経済性を考えれば、1〜2’g/
j!存在させることが好ましい。電解方式としては、隔
膜式。
In the present invention, it is necessary to electrolyze a radionuclide-containing liquid in the presence of non-radioactive heavy metals. For this purpose, electrolysis can be carried out using a simple device, for example, a commercially available electrolytic equipment consisting of a rectifier and an electrolytic cell combined with a ppm regulating tank. At that time, it is desired that the non-radioactive heavy metal be present at least 1100 va/it, and particularly preferably 1 to 20 g/l, but the current efficiency 2 electrolysis time or the economic efficiency such as the load of the post-process coagulation treatment etc. If you think about it, 1~2'g/
j! Preferably, it is present. The electrolysis method is a diaphragm type.

無隔膜式のどちらの方式でもよく、また電極とし。Either type without diaphragm may be used, and it may also be used as an electrode.

では、市販されている電極であればどれでも使用できる
が、陽極には白金、二酸化鉛、鉛等の不溶性電極が望ま
しく、また陰極には、廃棄したりするので安価なAI、
 Feが好ましい。また、電解に際し、 pH1i整が
必要な場合には1例えばカセイソーダ水溶液でpHを2
〜8に調整すればよい。
Any commercially available electrode can be used, but it is preferable to use an insoluble electrode such as platinum, lead dioxide, or lead for the anode, and for the cathode, cheap AI, which can be discarded, is preferable.
Fe is preferred. In addition, if it is necessary to adjust the pH to 1i during electrolysis, adjust the pH to 1i, for example, by adjusting the pH to 2 with a caustic soda aqueous solution.
It should be adjusted to ~8.

本発明における非放射性重金属としては、電気分解でき
る金属ならばいかなるものでもよい。そのような具体例
として+ CO+ NL Mn+ Cu、 Zr++^
1の金属及びその塩があげられる。
The non-radioactive heavy metal in the present invention may be any metal as long as it can be electrolyzed. Such specific examples include + CO+ NL Mn+ Cu, Zr++^
Examples include metals No. 1 and their salts.

上記で電解の終了した液(電解残液)は、再度電解槽に
戻してもよいが、 pHを5〜8に調整して°高分子凝
集剤を添加し、上澄水と凝集沈殿物(この中に前記した
非放射性重金属が含まれている。)とに分離し、その上
澄水は、前記したキレート性イオン交換樹脂で処理を行
い、無害化とすることができる。また、上記凝集沈殿物
は再度電解槽に戻され、電解に供すればよい。
The solution that has been electrolyzed above (electrolyzed residual solution) may be returned to the electrolytic cell again, but the pH is adjusted to 5 to 8, a polymer flocculant is added, and the supernatant water and coagulated precipitate (this The supernatant water can be treated with the chelating ion exchange resin described above to render it harmless. Moreover, the above-mentioned coagulated precipitate may be returned to the electrolytic cell again and subjected to electrolysis.

本発明によれば、放射性核種含有液中より放射性核種を
電気分解により効率的に電極に電着することができ、従
来の処理方法になかった大きな減容効果が得られる。ま
た、余剰の金属は系内を循環するため、完全クローズド
化ができる等の特徴を有している。また、キレート性イ
オン交換樹脂を通過した被処理水は環境に放出できる放
組生〜レベルになづている。
According to the present invention, a radionuclide can be efficiently electrodeposited on an electrode from a radionuclide-containing liquid by electrolysis, and a large volume reduction effect not available in conventional treatment methods can be obtained. In addition, since excess metal circulates within the system, it has features such as being able to be completely closed. Furthermore, the water to be treated that has passed through the chelating ion exchange resin has reached a level where it can be released into the environment.

次に9本発明を実施例により具体的に説明する。Next, the present invention will be specifically explained using examples.

実施例l Fe−59; 2X10”μct/+*IGo−60 
i 4 XlO4#Ci/+ml電導度i 12500
 μs/cm pi ; 7.8 上記のような組成を持つ放射性イオン交換再生廃液を0
.4 p mのカートリッジフィルターを通過せしめ、
その後キレート性イオン交換樹脂ユ二セレンクの0R−
10(ユニチカ株式会社、末端Na型)500 mlに
下向流にて空間速度5 (1/l()の速度で樹脂量に
対し、 1000倍量通液した。
Example l Fe-59; 2X10"μct/+*IGo-60
i 4 XlO4#Ci/+ml conductivity i 12500
μs/cm pi; 7.8 The radioactive ion exchange regenerated waste liquid having the above composition was
.. Passed through a 4 pm cartridge filter,
Then, the 0R-
10 (Unitika Co., Ltd., Na-terminated type) 1000 times the amount of resin was passed through it in a downward flow at a space velocity of 5 (1/l).

その時の処理水の放射性濃度は、 Co−60は5×1
0″?μC4/it以下、 Fe−59は2×10−フ
、pct/+wl以下であった。
The radioactive concentration of the treated water at that time was 5 x 1 for Co-60.
0''?μC4/it or less, Fe-59 was less than 2×10-f, pct/+wl.

その後、2規定硫酸21t/l樹脂を使用し、吸着した
放射性核種を溶離した。
Thereafter, the adsorbed radionuclides were eluted using 21 t/l of 2N sulfuric acid resin.

得られた溶離液Bを力性ソーダにてpH5に調整した。The pH of the obtained eluent B was adjusted to 5 with sodium hydroxide.

このpH調整した液の放射性核種濃度は。What is the radionuclide concentration of this pH-adjusted solution?

Fe−594xto4/JCi/ml、 Co−608
XlO4/jci/+mlであった。この液に非放射性
硫酸コバルトをコバルトとして2g/lにな条ように添
加して電解した。電解装置はセレン整流器、 pH―整
付整理循環槽量200m1) 、電解槽(容量IIt)
陽極板はpb(IOM)、陰極板は^l (100c+
4) 、極間距離3CI11の仕様である。この電解槽
に送られた液は、浴電圧3v、電流密度5 A/d r
rrの条件で24時間。
Fe-594xto4/JCi/ml, Co-608
It was XlO4/jci/+ml. Non-radioactive cobalt sulfate was added to this solution in a linear manner of 2 g/l as cobalt for electrolysis. The electrolyzer is a selenium rectifier, pH-ordered circulation tank volume 200m1), electrolytic tank (capacity IIt)
The anode plate is pb (IOM), the cathode plate is ^l (100c+
4) The specification is for a distance between poles of 3CI11. The liquid sent to this electrolytic cell has a bath voltage of 3 V and a current density of 5 A/d r
24 hours under rr conditions.

浴のpHを5に保ちながら電気分解を続けた結果。Results of continuing electrolysis while maintaining the pH of the bath at 5.

液中の放射性核種濃度はCo−60; 1.4 X 1
04μCi/+al、 Fe−59i 1 XIO’ 
μCf/mlに減少しており。
The radionuclide concentration in the liquid is Co-60; 1.4 x 1
04μCi/+al, Fe-59i 1 XIO'
It has decreased to μCf/ml.

陰極板に放射性核種が電着していることが確認された。It was confirmed that radionuclides were electrodeposited on the cathode plate.

電解残液は沈殿槽に移され、pl+8に調整し。The electrolytic residual solution was transferred to a settling tank and adjusted to pl+8.

高分子凝集剤(OF−105ユニチカ株式会社製)5m
g/e添加し、凝集沈殿を行い、沈殿物を電解槽に戻し
た。
Polymer flocculant (OF-105 manufactured by Unitika Co., Ltd.) 5m
g/e was added to perform coagulation and precipitation, and the precipitate was returned to the electrolytic cell.

実施例2 実施例1と同様の方法により得られたキレート性イオン
交換樹脂溶離液IIlを水酸化鉄含有物(水分率95%
、 Fe 3.1重量%) 100gと力性ソーダにて
peaに調整した。
Example 2 The chelating ion exchange resin eluent IIl obtained by the same method as Example 1 was mixed with iron hydroxide-containing material (moisture content 95%).
, Fe 3.1% by weight) and 100 g of sodium chloride were adjusted to pea.

この時の放射性核種濃度は、 Fe−59は3.8X1
0−3p ci / ml + Co−60は7.6 
X 10°”μct/mlであった。
The radionuclide concentration at this time is 3.8X1 for Fe-59
0-3 pci/ml + Co-60 is 7.6
x 10°”μct/ml.

次ぎに、電気分解は実施例1と同様の方法で行い、電解
浴pnに保ち、さらに亜硫酸ソーダを0.3g/時間の
割合で添加しながら、50時間間を続けた。
Next, electrolysis was carried out in the same manner as in Example 1, and continued for 50 hours while maintaining the electrolytic bath pn and adding sodium sulfite at a rate of 0.3 g/hour.

その結果、液中の放射性核種濃度はFe−59; 8×
10″6μC3/ml、 (:o−60i 1.lX1
0(#Ci/m+に減少しており、陰極板に放射性核種
が電着されていた。 。
As a result, the radionuclide concentration in the liquid was Fe-59; 8×
10″6μC3/ml, (:o-60i 1.lX1
0 (#Ci/m+), and radionuclides were electrodeposited on the cathode plate.

電解残液は実施例1と同様に処理した。The electrolytic residual solution was treated in the same manner as in Example 1.

比較例1 実施例1と同様の方法により得られたキレート性イオン
交換樹脂溶離液11を力性ソーダにてpn5に調整した
。この時の放射性核種濃度はFe−59は3.9X10
’ #Ci/mL Co−60は7.4X10°”/j
ci、’ /mlであった。。
Comparative Example 1 A chelating ion exchange resin eluate 11 obtained by the same method as in Example 1 was adjusted to pn5 with sodium hydroxide. The radionuclide concentration at this time is 3.9X10 for Fe-59.
'#Ci/mL Co-60 is 7.4X10°"/j
ci,'/ml. .

次に、電気分解は実施例1と同様の方法で行い。Next, electrolysis was performed in the same manner as in Example 1.

電解浴pHを5に保ちながら、50時間電解をつづけた
Electrolysis was continued for 50 hours while maintaining the pH of the electrolytic bath at 5.

その結果、液中の放射性核種濃度はFe−59; 2.
0×10棒μCi/ml、 Co−60; 6.lX1
04°μCi/mlとなり、実施例1,2と比較してそ
の濃度の減少効果はほとんどみられなかった。
As a result, the radionuclide concentration in the liquid was Fe-59; 2.
0x10 bar μCi/ml, Co-60; 6. lX1
The concentration was 0.04 μCi/ml, and compared to Examples 1 and 2, there was almost no effect of reducing the concentration.

実施例3 Fe−59; 2 X 10’μCi/m1Co−60
 ; 3.5×10′4μCi/m1Mn−54; 2
.5X10’ μci/mlNag 504 ; 10
0 g/ 1po;7.0 上記の組成を持つ放射性濃縮°廃液に非放射性硫酸コバ
ルトをコバルトとして1 g/βになるように添加し、
実施例1と同様の電解装置で9Nを4に調整しながら浴
電圧2.5V、電流密度10^/d n?で50時間電
解を続けた。
Example 3 Fe-59; 2 x 10'μCi/m1Co-60
; 3.5×10'4μCi/m1Mn-54; 2
.. 5X10'μci/mlNag 504; 10
0 g/1po; 7.0 Non-radioactive cobalt sulfate was added to the radioactive concentrated waste liquid having the above composition to give a concentration of 1 g/β as cobalt,
Using the same electrolyzer as in Example 1, adjusting 9N to 4, bath voltage 2.5V, current density 10^/d n? Electrolysis continued for 50 hours.

その結果、電解残液はPe−59; I XIO’μC
i/ml、 Co−60; 2 XIO’μCi/ml
、 Mn−54; 2 XlO4,’C4/61であり
、陰極板に放射性核種が電着されていた。
As a result, the residual electrolyte was Pe-59;
i/ml, Co-60; 2 XIO'μCi/ml
, Mn-54;2XlO4,'C4/61, and a radionuclide was electrodeposited on the cathode plate.

次に、この液をp)1Bに調整し、高分子凝集剤(OF
−105,ユニチカ株式会社製)5mg/ffiを添加
し。
Next, this solution was adjusted to p)1B, and a polymer flocculant (OF
-105, manufactured by Unitika Co., Ltd.) 5 mg/ffi was added.

凝集沈殿処理を行った。その上澄水をキレート性イオン
交換樹脂ユニセレツク@IIR−10(ユニチカ株式会
社製、末端Na型)に通液し、 Fe−59,Go−6
0゜Mn−54の濃度をそれぞれ5×10°’#Ct/
+al以下とした。この液は十分に処理されており、放
流基準値以下であった。
Coagulation and sedimentation treatment was performed. The supernatant water was passed through a chelating ion exchange resin UniSelect@IIR-10 (manufactured by Unitika Co., Ltd., Na-terminal type) to obtain Fe-59, Go-6.
The concentration of 0°Mn-54 was 5×10°'#Ct/
+al or less. This liquid was sufficiently treated and was below the discharge standard value.

一方、沈殿物を電解槽に戻し、電解に供した。Meanwhile, the precipitate was returned to the electrolytic cell and subjected to electrolysis.

特許出願人 ユニ手力株式会社 日揮株式会社 代理人 児玉雄三Patent Applicant: Uni-Teiki Co., Ltd. JGC Corporation Agent Yuzo Kodama

Claims (1)

【特許請求の範囲】 +11放射性核種含有液中の放射性核種を除去するに際
し、放射性核種含有液を非放射性重金属の存在下で電気
分解して放射性核種を電極板に電着させることを特徴と
する放射性核種含有液の処理方法。 (2)非放射性重金属を少なくとも100mg/ e存
在させる特許請求の範囲第1項記載の処理方法。
[Claims] +11 In removing radionuclides from a radionuclide-containing solution, the radionuclide-containing solution is electrolyzed in the presence of a non-radioactive heavy metal to electrodeposit the radionuclides on an electrode plate. Method of processing radionuclide-containing liquid. (2) The treatment method according to claim 1, wherein at least 100 mg/e of non-radioactive heavy metals are present.
JP8586084A 1984-04-27 1984-04-27 Method of processing liquid containing radionuclide Pending JPS60230097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8586084A JPS60230097A (en) 1984-04-27 1984-04-27 Method of processing liquid containing radionuclide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8586084A JPS60230097A (en) 1984-04-27 1984-04-27 Method of processing liquid containing radionuclide

Publications (1)

Publication Number Publication Date
JPS60230097A true JPS60230097A (en) 1985-11-15

Family

ID=13870630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8586084A Pending JPS60230097A (en) 1984-04-27 1984-04-27 Method of processing liquid containing radionuclide

Country Status (1)

Country Link
JP (1) JPS60230097A (en)

Similar Documents

Publication Publication Date Title
US6368510B2 (en) Method and apparatus for the removal of arsenic from water
CA2035187C (en) Separation method
CN108911102A (en) A kind of method that high-efficiency electrochemical restores uranium in enriching and recovering uranium-containing waste water and underground water
US4210530A (en) Treatment of metal plating wastes with an unexpanded vermiculite cation exchange column
EP3279900A1 (en) Method and device for treating metal ion-containing liquids
US5804057A (en) Method of removing metal salts from solution by electrolysis an electrode closely associated with an ion exchange resin
Xu et al. Highly efficient and energy-conserved flocculation of copper in wastewater by pulse-alternating current
JP2015081898A (en) Decontamination method and decontamination device for radioactive waste ion exchange resin
CN105836936A (en) An ammonia nitrogen recovering method based on membrane electroadsorption and ion exchange
Hammaini et al. Activated sludge as biosorbent of heavy metals
US4159930A (en) Process for recovering heavy metal ions from dilute aqueous solution
JPS60230097A (en) Method of processing liquid containing radionuclide
Epimakhov et al. Reverse-osmosis filtration based water treatment and special water purification for nuclear power systems
US20210205779A1 (en) Process for uranium removal from near neutral aqueous solutions by freshly prepared fine ferrihydrite generated during ultrasonic assisted corrosion of mild steel wool
KR20050120312A (en) Method for recovering of the spent ion exchange materials selective for the cs and sr ion sorption
Calmon et al. New directions in ion exchange
JPH0684998B2 (en) Method for treating wastewater containing radioactive organic iodine
JPS61231496A (en) Method of decontaminating radioactive metallic waste
GB2240550A (en) Separating metals in aqueous liquid by electrochemical ion-exchange
JPH0240200B2 (en)
JPH0527093A (en) Processing of radioactive metallic sludge
ANDERSON Some examples of the concentration of trace heavy metals with ion exchange resins
JP2016191691A (en) Method for processing metal ion-containing acid liquid, and processing unit
JPH0720285A (en) Removing method of underwater radioactive substance
Mina Silver Recovery from Process ECP-2 Washwaters by Ion-Exchange Methods