JPS60229321A - Manufacture of anisotropic magnet roll - Google Patents

Manufacture of anisotropic magnet roll

Info

Publication number
JPS60229321A
JPS60229321A JP8537684A JP8537684A JPS60229321A JP S60229321 A JPS60229321 A JP S60229321A JP 8537684 A JP8537684 A JP 8537684A JP 8537684 A JP8537684 A JP 8537684A JP S60229321 A JPS60229321 A JP S60229321A
Authority
JP
Japan
Prior art keywords
magnetic
molding space
magnet
permanent magnets
molding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8537684A
Other languages
Japanese (ja)
Inventor
Kazunori Tawara
田原 一憲
Satoru Koizumi
悟 小泉
Chitoshi Hagi
萩 千敏
Shuichi Shiina
椎名 修一
Kenichi Kawana
川名 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP8537684A priority Critical patent/JPS60229321A/en
Publication of JPS60229321A publication Critical patent/JPS60229321A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets

Abstract

PURPOSE:To reduce dispersion in the lengthwise direction at manufacture of an anisotropic magnet roll by a method wherein bung holes of the plural number of pieces are provided on a circumference concentric with the edge surface of molding space, the bung holes are arranged at the positions corresponding to the upper parts of the magnetic poles of a magnetic circuit, and a kneaded material is poured into molding space from the bung holes. CONSTITUTION:A mold has cylindrical molding space 1 provided inside with a core 2 concentrically. Permanent magnets 31-33 magnetized in the radial direction, permanent magnets 41-44 magnetized in the cylindrical direction and a non-magnetic spacer 5 are set up on the periphery of molding space 1. Moreover, the outside periphery thereof is surrounded with a soft magnetic yoke 6, and soft magnetic yokes 71-73 are provided also inside of the permanent magnets 31-33. A kneaded material poured from bung holes 81-84 is sucked to the parts in the neighborhood of the bung holes to touch internally to the yokes 71- 73 parts, and then filled up on the magnetic poles and in the parts between the magnetic poles. The mode of flowing of the kneaded material in a cavity flows in the central part close to the core 2.

Description

【発明の詳細な説明】 本発明は強磁性粉末と高分子化合物を含む混線物を磁場
中で射出成形する工程を含む異方性マグネットロールの
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing an anisotropic magnet roll, which includes a step of injection molding a mixed material containing a ferromagnetic powder and a polymer compound in a magnetic field.

電子写真複写機、ファクシミリ、プリンター等の画像再
生装置(乾式)においては、磁性現像剤(磁性キャリア
とトナーとの混合粉体である二成分現像剤あるいは一成
分系の磁性トナー等)の搬送手段(例えば現像ロールあ
るいはクリーニングロール等)として、非磁性スリーブ
の内部に複数個の磁極を有する永久磁石部材を設置し、
両者を相対的に回転させるように構成したマグネットロ
ールが一般的に使用されている。
In image reproducing devices (dry type) such as electrophotographic copying machines, facsimile machines, and printers, a means for transporting magnetic developer (two-component developer that is a mixed powder of magnetic carrier and toner, or one-component magnetic toner, etc.) A permanent magnet member having a plurality of magnetic poles is installed inside a non-magnetic sleeve as a developing roll or cleaning roll, etc.
A magnetic roll configured to rotate both relative to each other is generally used.

上記のマグネットロールにも種々の構造のものがあり、
例えば実公昭57−9798号公報に記載されているよ
うな、フェライト粉末を磁場中でプレス成形後焼結して
得られる長尺の異方性10ツク磁石を軸の周囲に固定し
て形成した永久磁石部材を用いるもの、あるいはハード
フェライトからなる円筒状永久磁石を軸に固着して形成
した永久磁石部材を用いるもの(例えば特公昭55−6
907号公報、特公昭53−47043号公報参照)な
どが挙げられる。
The above magnetic rolls also have various structures,
For example, as described in Japanese Utility Model Publication No. 57-9798, a long anisotropic 10-piece magnet obtained by press-molding ferrite powder in a magnetic field and then sintering it is fixed around the shaft. Those using a permanent magnet member, or those using a permanent magnet member formed by fixing a cylindrical permanent magnet made of hard ferrite to a shaft (for example,
907, and Japanese Patent Publication No. 53-47043).

しかるに前者の場合は、組立工数人となるおよび低温減
磁が生ずるなどの問題があり、一方後者の場合は磁極間
部分にも磁石材料が使用されかつ焼結体の密度も約50
/ C10と大きいため重量が大となるという問題があ
る。またフェライト磁石は、一般に、材料自体が脆弱で
あることから焼結時あるいは焼結後にクラックや割れが
発生し易く、歩留が悪いという問題もある。
However, in the former case, there are problems such as increased assembly man-hours and low-temperature demagnetization, while in the latter case, magnetic material is also used in the part between the magnetic poles, and the density of the sintered body is approximately 50%.
/ C10, so there is a problem that the weight is large. In addition, ferrite magnets generally have the problem of poor yields because the material itself is brittle and tends to crack or crack during or after sintering.

これに対して、主として軽量化のために強磁性粉末(一
般にはフェライト粉末が使用される)と高分子化合物(
一般にはゴム又はプラスデック材料が使用される)を主
体とする混線物を押出成形あるいは、射出成形の手法に
より円筒状に一体に成形し、ついで冷却固化侵着磁した
いわゆる複合磁石を用いたマグネットロールが提案され
、実用化が検討されている。(例えば特開昭56−10
8207号、同57−130407号、同57−164
509号等の各公報参照) この円筒状磁石を製造する場合、複合磁石は焼結磁石よ
りも密度が低いのでフェライト磁石と同等の磁気特性を
得るためには、冷却固化が完了するまでの間に強磁性粉
末の磁化容易軸を着磁後の磁石内部の磁力線方向に一致
させる。いわゆる異方性化の工程が合致なことは周知で
ある。(例えば特開昭51−62396号公報参照)と
ころで、近時、複写機、ファクシミリ、プリンター等に
おいては、コピー速度が8速化されておりまたコピーの
画像自体についても、白ヌケや地力ブリ、現像ムラを防
止覆ることは勿論のこと、解像度も高いことが要求され
る。こうした要求に対応するためには、マグネットロー
ルのトナー搬送力が大きく且つ均一であることが必須の
要件となる。そのためには、マグネットロールの回転方
式は、磁石回転方式よりもスリーブ回転方式が望ましい
。スリーブ回転方式では、磁石は固定されているため、
特定の磁極で現像をおこなうことになる。上述の高精度
な画像を得るためには、この現像磁極の磁力(表面磁束
密度80)のバラツキが例えばスリーブ上でのBoli
Iが900Gとすると長尺方向に亘ってそのバラツキは
、±−10〜.±−20G程度に抑える必要がある。し
かしながら、従来のマグネットロール用異方性複合磁石
では、BOのバラツキを上記の範囲内に制御することは
極めて困難で・ある。
On the other hand, ferromagnetic powder (generally ferrite powder is used) and polymer compounds (
Magnets using so-called composite magnets, which are made by integrally molding a hybrid material (generally made of rubber or plus deck material) into a cylindrical shape by extrusion molding or injection molding, and then cooling it, solidifying it, and magnetizing it. A roll has been proposed and its practical application is being considered. (For example, JP-A-56-10
No. 8207, No. 57-130407, No. 57-164
509, etc.) When manufacturing this cylindrical magnet, composite magnets have a lower density than sintered magnets, so in order to obtain magnetic properties equivalent to ferrite magnets, it is necessary to wait until cooling solidification is complete. The axis of easy magnetization of the ferromagnetic powder is aligned with the direction of the lines of magnetic force inside the magnet after magnetization. It is well known that the so-called anisotropy process is consistent. (For example, see Japanese Patent Application Laid-Open No. 51-62396.) Nowadays, the copying speed of copying machines, facsimiles, printers, etc. has been increased to 8 speeds, and the copied images themselves also have problems such as white spots, blurred spots, etc. Not only is it required to prevent uneven development, but it is also required to have high resolution. In order to meet these demands, it is essential that the toner conveying force of the magnetic roll be large and uniform. For this purpose, the rotation method of the magnet roll is preferably a sleeve rotation method rather than a magnet rotation method. In the sleeve rotation method, the magnet is fixed, so
Development will be performed with a specific magnetic pole. In order to obtain the above-mentioned high-precision image, variations in the magnetic force (surface magnetic flux density 80) of the developing magnetic pole must be
If I is 900G, the variation in the longitudinal direction is ±-10~. It is necessary to suppress it to about ±-20G. However, with conventional anisotropic composite magnets for magnet rolls, it is extremely difficult to control the variation in BO within the above range.

一般に異方性複合磁石を射出成形で製造する場合、一般
にプラスチックの成形と同様に原料混練物をノズル口か
らスプルー、ランナーを経て注入口(ゲート)から金型
のキャビティ(成形空間)内に射出して成形品を得てい
る。(例えば特開昭51−21198号及び同SL 2
1199号)成形品が複雑な形状の場合、キャビティ内
の各部分に均一に原料混線物の充填することが困難とな
るため、フィルムゲート、ダイレクトゲートなどの各種
ゲートが提案されている。ゲート位置は成形品を使用す
る場合に、寸法精度、磁気特性等の物性上問題とならな
い位置に通常設けられる。
Generally, when anisotropic composite magnets are manufactured by injection molding, the raw material mixture is injected from the nozzle port through the sprue, runner, and injection port (gate) into the cavity (molding space) of the mold, similar to plastic molding. to obtain molded products. (For example, JP-A No. 51-21198 and SL 2
No. 1199) When the molded product has a complicated shape, it becomes difficult to uniformly fill each part of the cavity with raw material contaminants, so various gates such as film gates and direct gates have been proposed. When using a molded product, the gate position is usually provided at a position that does not pose problems in terms of physical properties such as dimensional accuracy and magnetic properties.

複写機およびプリンターなどに組み込まれるマグネット
ロール用の複合磁石(プラスチック磁石、ゴム磁石など
)は、通常長さ/直径比が5以上の長尺形状であるため
、均一に原料混練物(コンパウンド)を充填するために
は、円筒状キャビティの外周面上より、フィルムゲート
、多点ピンポイントゲート等の注入口を設置ノ、ここか
ら]ンバウンドを射出注入する方法が望ましいといえる
。しかしながら、キャビティ外周には、異方性を付′う
させるための磁場発生用の磁気回路が設置されているこ
と、更に円筒状複合磁石の磁気特性を低Tさせる等の問
題があるため、上述の注入方法を採用することは極めて
困難である。従ってコンパウンドはキャビティの端面に
ゲートを設置し、長尺方向へと注入する方が有利である
。ゲート形状はリングゲートとビンポイントゲートが考
えられるが、前者は均一充填には効果的で・あるが離型
時のゲート切断が困難となる。また1点のビンポイント
ゲートでは充填不足やウェルディングラインが発生し、
所望の磁気特性が得られないという問題があった。
Composite magnets (plastic magnets, rubber magnets, etc.) for magnetic rolls incorporated into copying machines, printers, etc. are usually elongated with a length/diameter ratio of 5 or more, so it is difficult to uniformly distribute the raw material kneaded material (compound). In order to fill the cavity, it is preferable to install an injection port such as a film gate or a multi-point pinpoint gate on the outer peripheral surface of the cylindrical cavity, and then inject the liquid from there. However, there are problems such as the fact that a magnetic circuit for generating a magnetic field is installed on the outer periphery of the cavity to impart anisotropy, and that the magnetic properties of the cylindrical composite magnet are reduced to a low T. It is extremely difficult to adopt this injection method. Therefore, it is more advantageous to install a gate on the end face of the cavity and inject the compound in the longitudinal direction. The gate shape can be a ring gate or a bottle point gate, but the former is effective for uniform filling, but it is difficult to cut the gate during mold release. Also, with one bin point gate, insufficient filling and welding lines may occur.
There was a problem that desired magnetic properties could not be obtained.

本発明の目的は、上述の従来技術の問題点を解消し、磁
気特性が良好な異方性複合磁石、特にスリーブ回転方式
を主体とする磁気特性に優れ、しかも現像極における表
面磁束密度のバラツキが小さい極異方性円筒状複合磁石
を備えた異方竹マグネットロールを得ることのできる製
造方法を提供することである。
It is an object of the present invention to solve the problems of the prior art described above, and to produce an anisotropic composite magnet with good magnetic properties, especially a sleeve rotation method, which has excellent magnetic properties, and which is free from variations in surface magnetic flux density at the developing pole. An object of the present invention is to provide a manufacturing method capable of obtaining an anisotropic bamboo magnet roll having a polar anisotropic cylindrical composite magnet with a small polarity.

本発明は、強磁性粉末と高分子化合物を主体とする混線
物を磁場存在下で円筒状キャビティを有する金型内に射
出成形する工程を含む異方性マグネットロールの製造方
法において、前記成形空間の端面にこれと同心の円周上
に複数個の注入口を設け、かつ該注入口の内の少く共1
つを前記成形空間の周囲に設けられた磁気回路の磁極上
に対応する位置に配置し、該注入口より上記混線物(コ
ンパウンド)を該成形空間内に注入することを特徴とす
る異方性マグネットロールの製造方法である。
The present invention provides a method for manufacturing an anisotropic magnet roll, which includes a step of injection molding a mixed material mainly composed of ferromagnetic powder and a polymer compound into a mold having a cylindrical cavity in the presence of a magnetic field, in which the molding space is A plurality of inlets are provided on the circumference concentric with the end face of the inlet, and at least one of the inlets is
The anisotropic method is characterized in that the compound is placed at a position corresponding to the magnetic pole of a magnetic circuit provided around the molding space, and the mixer (compound) is injected into the molding space from the injection port. This is a method for manufacturing a magnet roll.

本発明の方法によって、注入口のひとつを現像極上に対
応する位置に設置することにより、得られた複合磁石の
BOの長尺方向のバラツキはマー20G以下となり、い
わゆる直線性に優れたマグロールを得ることができる。
By installing one of the injection ports at a position corresponding to the top of the developing layer according to the method of the present invention, the variation in the longitudinal direction of the BO of the obtained composite magnet becomes less than 20G, making it possible to create a so-called mag roll with excellent linearity. Obtainable.

以下本発明の詳細を図面により説明する。The details of the present invention will be explained below with reference to the drawings.

第1図は本発明に使用される射出成形用金型の一例を示
す横断面図、第2図は第1図のへ一Δ′断面図である。
FIG. 1 is a cross-sectional view showing an example of an injection mold used in the present invention, and FIG. 2 is a cross-sectional view along the line Δ' of FIG.

両図において、金型は内部にコア2を同心に設けてなる
円筒状の成形空間1を有している。成形空間1の周辺に
は、Y径方向に着磁した永久磁石31〜33と、円周方
向に着磁した永久磁石41〜44と、非磁性スペーサ5
が設置されている。またこれらの外周lま軟!fl性体
からなるヨーク6で包囲され、永久磁石31〜33の内
側にも軟磁性体からなるヨーク71〜73が設()られ
ている。第1図において現像極となる磁極は71である
。永久磁石の着磁極については、S、Nを全て逆極性に
した場合でも効果は同じである。
In both figures, the mold has a cylindrical molding space 1 in which a core 2 is provided concentrically. Around the molding space 1, there are permanent magnets 31 to 33 magnetized in the Y radial direction, permanent magnets 41 to 44 magnetized in the circumferential direction, and a nonmagnetic spacer 5.
is installed. Also, these outer circumferences are soft! It is surrounded by a yoke 6 made of a magnetic material, and yokes 71 to 73 made of a soft magnetic material are also provided inside the permanent magnets 31 to 33. In FIG. 1, the magnetic pole 71 is the developing pole. Regarding the magnetized poles of the permanent magnet, the effect is the same even if both S and N are set to opposite polarities.

このようにして永久磁石の磁束は右動に成形空間内に収
束され、十分な磁場配向が可能となる。
In this way, the magnetic flux of the permanent magnet is converged in the molding space in a rightward direction, and sufficient magnetic field orientation is possible.

(磁気回路の説明については、特願昭58−11785
7号参照) さて、第1図および第2図に示す磁気回路付金型キャビ
ティ内に混線物が注入される際の挙動はショートショッ
ト(充填不十分の状態)の実験から次のように言える。
(For an explanation of the magnetic circuit, see Japanese Patent Application No. 58-11785.
(Refer to No. 7) Now, the behavior when a crosstalk is injected into the mold cavity with magnetic circuit shown in Figures 1 and 2 can be said to be as follows based on a short shot (insufficient filling state) experiment. .

注入口8+ 、82.83.84から注入された混線物
は、最初にキトじティ内で磁極となるヨーク71.72
.73部に内接する注入口近傍の部分に吸引され、次い
で注入口から離れた1atfi上および磁極間部分く第
1図で41〜44および5の部分)に充填されてゆく。
The crosstalk injected from the injection ports 8+ and 82, 83, and 84 first flows into the yoke 71, 72, which becomes the magnetic pole in the kitojiti.
.. It is sucked into the part near the injection port inscribed in part 73, and then filled into the part above 1atfi and between the magnetic poles (parts 41 to 44 and 5 in FIG. 1) which are away from the injection port.

その際混練物は、7+ 、72.73の磁力に吸引され
て、これらの磁極に沿った表面部分がまず充填されるた
め、混線物のキャビティ内での流れ方は、第2図のコア
2に近接した中央部分を流れることになる。スリーブ回
転方式を採用するマグネットロールについて現像極上に
おいて、直線性に優れていることが重要であることは上
述の通りである。
At this time, the mixed material is attracted by the magnetic force of 7+ and 72.73, and the surface area along these magnetic poles is first filled, so the flow of the mixed material in the cavity is similar to that of core 2 in Figure 2. It will flow in the central part close to. As mentioned above, it is important for a magnet roll that employs the sleeve rotation method to have excellent linearity for the best development.

現像極上において優れた直線性を得るためには、注入さ
れた混線物が確実にしかも均一に配向されながら現像極
上に充填される必要がある。本発明者は種々検討した結
果、第1図に示すように注入口の1つを現像極上に対応
する位置に設けることにより、高い磁気特性を有すると
共に、極めて直線性に優れたマグネットロールを得るこ
とができるのを見出した。
In order to obtain excellent linearity on the developing top, the injected crosstalk must be reliably and uniformly oriented and filled onto the developing top. As a result of various studies, the inventor of the present invention has found that by providing one of the inlets at a position corresponding to the top of the developing layer as shown in Figure 1, a magnet roll with high magnetic properties and extremely excellent linearity can be obtained. I found out that it is possible.

このようにして得られた成形体は、必要に応じて外径を
所定の寸法にIJDIシ、ついで軸を固定した後異方性
方向と同方向に着磁して、第3図【こ小すようなマグネ
ットロールが得られる。第3図において、16は外周に
3極を有づる円筒状磁石、17は軸をそれぞれ示してい
る。
The molded body thus obtained is subjected to IJDI to have its outer diameter adjusted to a predetermined size as required, and then after fixing the shaft, it is magnetized in the same direction as the anisotropic direction. A magnetic roll that looks like this can be obtained. In FIG. 3, reference numeral 16 indicates a cylindrical magnet having three poles on the outer periphery, and reference numeral 17 indicates a shaft.

なお第2図においてコア2の代替として下台9にマグネ
ットロールの軸を立設することにより一体射出成形マグ
ネットロールの製造も可能となる。
In addition, in FIG. 2, by erecting the shaft of the magnet roll on the lower stand 9 instead of the core 2, it is also possible to manufacture an integral injection molded magnet roll.

上記の説明では、3極の首班を施した円筒状磁石の製造
について述べたが、金型の磁石の数を増やすことにより
5極以上のものを製造できることはもちろん、磁石配置
を変更することにより4極、6極、8極等の偶数極のも
のが得られるしく特願昭58102127号参照)、又
多数個数も可能ぐある(特願昭58−155975号参
照)。なお、本発明は永久磁石方式の金型に限らず、永
久磁石とパルス磁場を使用した金型や1!磁石方式の金
型にも適用できるが、設備の小型化および簡略化の点か
ら永久磁石式金型が最も適当である。
In the above explanation, we talked about manufacturing a cylindrical magnet with a three-pole neck, but it is possible to manufacture five or more poles by increasing the number of magnets in the mold, and by changing the magnet arrangement. Even-numbered poles such as 4-pole, 6-pole, 8-pole, etc. can be obtained (see Japanese Patent Application No. 58102127), and a larger number is also possible (see Japanese Patent Application No. 58-155975). Note that the present invention is not limited to molds using permanent magnets, but also molds using permanent magnets and pulsed magnetic fields, and 1! Although it can be applied to a magnet type mold, a permanent magnet type mold is most suitable from the viewpoint of downsizing and simplifying the equipment.

また本発明では原料混練物は、通常の複合磁石に使用さ
れる次のような材料を用いてt!!備すればよい。
In addition, in the present invention, the raw material kneaded material is made of the following materials used in ordinary composite magnets. ! All you have to do is prepare.

強磁性粉末としては、[3aフエライトあるいは3rフ
エライト等のマグネットブランバイト型結晶構造を有す
るフェライト粉末、ACL−Ni−CO系磁石粉末、F
e −Cr−Go系磁石粉末、希土類コバルト磁石粉末
、希土類鉄磁石粉末等の公知の磁石粉末が使用できる。
Examples of the ferromagnetic powder include [ferrite powder having a magnetic brambite crystal structure such as 3a ferrite or 3r ferrite, ACL-Ni-CO magnet powder, F
Known magnet powders such as e-Cr-Go magnet powder, rare earth cobalt magnet powder, and rare earth iron magnet powder can be used.

また高分子化合物としては、秒々の熱可塑性樹脂、例え
ばポリアミド樹脂、ポリエチレン、エチレン酢酸ビニル
共重合体、エチレンエチルアクリレート共重合体、ポリ
プロピレン等が使用できる。またこの他にも、成形性を
改善するためにステアリン酸カルシウム等の滑剤を9渋
(数重量%)加えてもよく、更に強磁性粉末のぬれ性を
改善するために、その表面を有機ケイ素化合物、有機チ
タネート化合物で予め処理することもできる。強磁性粉
末の配合量は、強磁性粉末:樹脂=80〜94 : 2
0〜6の重量比となるようにすることが好ましい。これ
は、強磁性粉末の配合色が上記範囲より少いと磁気特性
が低トし、その配合量が上記範囲より多いと成形が実質
的に困難となるからである。
Further, as the polymer compound, thermoplastic resins such as polyamide resin, polyethylene, ethylene vinyl acetate copolymer, ethylene ethyl acrylate copolymer, polypropylene, etc. can be used. In addition to this, a lubricant such as calcium stearate (several percent by weight) may be added to improve moldability, and in order to further improve the wettability of the ferromagnetic powder, the surface of the ferromagnetic powder may be coated with an organosilicon compound. , it is also possible to pre-treat with an organic titanate compound. The blending amount of the ferromagnetic powder is ferromagnetic powder:resin=80-94:2
Preferably, the weight ratio is 0 to 6. This is because if the blended color of the ferromagnetic powder is less than the above range, the magnetic properties will be poor, and if the blended amount is greater than the above range, molding will become substantially difficult.

以下本発明を実施例によって更に詳細に説明するが、こ
れにより本発明が限定されるものではない。
EXAMPLES The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited thereto.

実施例1 平均粒径1.2μ鴎のSrフェライト粉末8kllにエ
チレンエチルアクリレート共重合体く日本ユニカー(株
)製D P D J −8026) 1 kaを加えて
、ニーダ−により混練した。この混線物を第1図に示す
金型を備えた射出成形機に投入し、温度220℃圧力9
00kg/cm’2の条件で金型内に射出しついで冷却
固化した。ここで金型の永久磁石としてはBr=9.0
1(G、IHC=10KOeの希土類コバルト磁石(日
立金属製H−22A )を用いた。成形空間内の磁束密
度分布は第4図に示す通りである。
Example 1 1 ka of ethylene ethyl acrylate copolymer (DPD J-8026) manufactured by Nippon Unicar Co., Ltd. was added to 8 kl of Sr ferrite powder having an average particle size of 1.2 μm, and kneaded with a kneader. This mixed wire was put into an injection molding machine equipped with the mold shown in Figure 1, and the temperature was 220°C and the pressure was 9.
The mixture was injected into a mold under the condition of 00 kg/cm'2, and then cooled and solidified. Here, as the permanent magnet of the mold, Br=9.0
A rare earth cobalt magnet (H-22A manufactured by Hitachi Metals) with 1 (G, IHC = 10 KOe) was used. The magnetic flux density distribution in the molding space is as shown in FIG.

得られた成形体く外径φ22u+、内径φ1h+m、長
さ250mm )にシャフトを固定した後、成形時の異
り性方向と同方向に着磁を施して第3図に示す通りのマ
グネットロール用磁石を得た。次いで上記マグネットロ
ールにφ25III11のスリーブをかぶせ、その両端
をシャフト上でフランジにより固定したのち、スリーブ
上における各磁極上での表面磁束密度の長尺方向の変化
を測定した。結果を第5図に示す。図において81が現
像11極であり、直線性は+ 20Q以下と極めて良好
である。成形時の注入口はS1極に対応する位置に設け
ている。またN1、S2極は現像材の搬送に寄与する極
、N2、N2’ はS2、S1極に対する逆極である。
After fixing the shaft to the obtained molded body (outer diameter φ22u+, inner diameter φ1h+m, length 250mm), it was magnetized in the same direction as the direction of dispersion during molding to form a magnet roll as shown in Figure 3. I got a magnet. Next, a sleeve of φ25III11 was placed over the magnet roll, and both ends of the sleeve were fixed on the shaft with flanges, and then changes in the surface magnetic flux density on each magnetic pole on the sleeve in the longitudinal direction were measured. The results are shown in Figure 5. In the figure, 81 is the 11 developing pole, and the linearity is +20Q or less, which is extremely good. The injection port during molding is provided at a position corresponding to the S1 pole. Further, the N1 and S2 poles are poles that contribute to the conveyance of the developing material, and the N2 and N2' are opposite poles to the S2 and S1 poles.

実施例2 実施例1と同様の原料混練物、金型および射出条件を用
いて、第2図における下台9にSUS 304シヤフト
を立設し一体射出成形を行なった。次いで実施例1と同
様に着磁および組立てた後、スリーブ上での表面磁束密
度の長尺方向の変化を測定したところ、第5図と略同様
の直線性に優れたS1極を有する磁気特性を得た。
Example 2 Using the same raw material kneaded material, mold, and injection conditions as in Example 1, an SUS 304 shaft was erected on the lower stand 9 in FIG. 2, and integral injection molding was performed. Next, after magnetization and assembly in the same manner as in Example 1, changes in surface magnetic flux density on the sleeve in the longitudinal direction were measured, and the magnetic properties were found to have an S1 pole with excellent linearity, similar to that shown in Fig. 5. I got it.

比較例1 第1図において現像極に対応する注入口81を閉じた以
外は同様の条件でマグネットロールを作成した。しかし
ながら、注入口から遠くなるにしたがって、第6図に示
すように長尺方向の磁力は漸次低下すると共に、特にS
1上での80値のバラツキが人であった。
Comparative Example 1 A magnet roll was produced under the same conditions as shown in FIG. 1 except that the injection port 81 corresponding to the developing pole was closed. However, as the distance from the injection port increases, the magnetic force in the longitudinal direction gradually decreases as shown in FIG.
The variation in the 80 value above 1 was between people.

比較例2 第1図において、注入口81を時計方向に45゜回転さ
せた位置にセットした後、実施例2と同様の条件で一体
インサート射出成形をおこなった。
Comparative Example 2 In FIG. 1, after setting the injection port 81 at a position rotated by 45 degrees clockwise, integral insert injection molding was performed under the same conditions as in Example 2.

以上同様の方法でマグネットロールを作成しBO値の変
化を調べたところ、略第6図と同様の結果を得た。
When magnetic rolls were prepared in the same manner as above and changes in BO values were examined, results approximately similar to those shown in FIG. 6 were obtained.

以下詳述した如く本発明の方法を用いることにより、長
手方向の表面磁束密度のバラツキが極める小さい異方性
複合磁石よりなるマグネッ1へロールを得ることができ
る。
As detailed below, by using the method of the present invention, it is possible to obtain a roll of magnet 1 made of an anisotropic composite magnet with extremely small variations in surface magnetic flux density in the longitudinal direction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に使用される金型の一例を示づ断面図、
第2図は第1図のA−A’断面図、第3図はマグネット
ロールの斜視図、第4図は第1図の金型内面の磁束密度
分布を示す図、第5図は本発明によって得られた異方性
マグネットロールの軸方向の磁束密度分布を示づ図、第
6図は従来法によって得られた異方性ングネットロール
の軸方向の磁束密度分布を示づ図ぐある。 1:成形空間、2:]ア、3.4:永久磁石、8+ 、
82.83 :注入口 第1図 第3図 7 第5図 Bo(G’)
FIG. 1 is a sectional view showing an example of a mold used in the present invention;
Fig. 2 is a sectional view taken along the line A-A' in Fig. 1, Fig. 3 is a perspective view of the magnet roll, Fig. 4 is a diagram showing the magnetic flux density distribution on the inner surface of the mold shown in Fig. 1, and Fig. 5 is a diagram showing the present invention. Figure 6 shows the axial magnetic flux density distribution of the anisotropic magnet roll obtained by the conventional method. . 1: Molding space, 2: A, 3.4: Permanent magnet, 8+,
82.83: Inlet Figure 1 Figure 3 Figure 7 Figure 5 Bo (G')

Claims (1)

【特許請求の範囲】 1、強磁性粉末と高分子化合物を主体と】る混練物を磁
場の存在下において、円筒状成形空間を有する金型内に
射出成形する工程を含む異方性マグネットロールの製造
方法において、前記成形空間の端面に成形空間と同心の
円周上に複数個の注入口を設け、かつ該注入口の内の少
く共1つを前記成形空間の周囲に設けられた磁気回路の
磁極上に対応する位置に配置し、該注入口より上記混線
物を該成形空間内に導入することを特徴とする異方性マ
グネットロールの製造方法。 2、永久磁石による磁場中で射出成形を行なう特許請求
の範囲第1項記載の異方性マグネットロールの製造方法
[Claims] 1. An anisotropic magnetic roll comprising the step of injection molding a kneaded material consisting mainly of ferromagnetic powder and a polymer compound into a mold having a cylindrical molding space in the presence of a magnetic field. In the manufacturing method, a plurality of inlets are provided on an end face of the molding space on a circumference concentric with the molding space, and at least one of the inlets is connected to a magnetic field provided around the molding space. A method for manufacturing an anisotropic magnet roll, characterized in that the crosstalk is placed at a position corresponding to the magnetic pole of a circuit, and the crosstalk is introduced into the molding space from the injection port. 2. A method for manufacturing an anisotropic magnet roll according to claim 1, wherein injection molding is carried out in a magnetic field by permanent magnets.
JP8537684A 1984-04-27 1984-04-27 Manufacture of anisotropic magnet roll Pending JPS60229321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8537684A JPS60229321A (en) 1984-04-27 1984-04-27 Manufacture of anisotropic magnet roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8537684A JPS60229321A (en) 1984-04-27 1984-04-27 Manufacture of anisotropic magnet roll

Publications (1)

Publication Number Publication Date
JPS60229321A true JPS60229321A (en) 1985-11-14

Family

ID=13857002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8537684A Pending JPS60229321A (en) 1984-04-27 1984-04-27 Manufacture of anisotropic magnet roll

Country Status (1)

Country Link
JP (1) JPS60229321A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9731456B2 (en) 2013-03-14 2017-08-15 Sabic Global Technologies B.V. Method of manufacturing a functionally graded article

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9731456B2 (en) 2013-03-14 2017-08-15 Sabic Global Technologies B.V. Method of manufacturing a functionally graded article

Similar Documents

Publication Publication Date Title
EP0016960B1 (en) Anisotropic polymeric magnet in the tubular form and process for producing the same
US6021296A (en) Magnet roller and manufacturing method thereof
JPS60229321A (en) Manufacture of anisotropic magnet roll
JPS6252913A (en) Method and device for manufacture of multipolar anisotropic cylindrical magnet
JPS60246614A (en) Manufacture of anisotropic magnet roll
JPS60202912A (en) Manufacture of anisotropic magnet roll
JP3116890B2 (en) Magnet roller and method of manufacturing magnet roller
JP2006062314A (en) Mold and molding method of bond magnet for magnetic roll
JPS60202913A (en) Manufacture of anisotropic magnet roll
JPH04122008A (en) Production method for anisotropic magnet roll
GB2226789A (en) Injection moulding permanent magnets
JP2005303115A (en) Metal mold for molding magnet roller and magnet piece
JP2000153540A (en) Manufacture of resin magnet moldings
JP3119231B2 (en) Magnet roller and method of manufacturing magnet roller
JPS62130813A (en) Manufacture of cylindrical multipolar anisotropic magnet and device therefor
JPS60220917A (en) Manufacture for anisotropic magnetic roll
JP4120721B2 (en) Magnet roller manufacturing method
JPS60218812A (en) Manufacture of anisotropic composite magnet
JP2000164443A (en) Manufacture of resin magnet molding
JPS6212105A (en) Magnet roll
JPS61125010A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JPS61119017A (en) Manufacture of anisotropic composite magnet
JPH0470782A (en) Developing device
JPS61125011A (en) Method and device for manufacturing multipolar anisotropic cylindrical magnet
JPS6179213A (en) Manufacture of magnetic roll