JPS6022722A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS6022722A
JPS6022722A JP12872183A JP12872183A JPS6022722A JP S6022722 A JPS6022722 A JP S6022722A JP 12872183 A JP12872183 A JP 12872183A JP 12872183 A JP12872183 A JP 12872183A JP S6022722 A JPS6022722 A JP S6022722A
Authority
JP
Japan
Prior art keywords
thin film
core
thin
alloy
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12872183A
Other languages
Japanese (ja)
Inventor
Hiromi Nakajima
中嶋 啓視
Takashi Hatauchi
隆史 畑内
Koichi Mukasa
幸一 武笠
Hiroshi Shimada
寛 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP12872183A priority Critical patent/JPS6022722A/en
Priority to KR1019840002876A priority patent/KR890003043B1/en
Priority to US06/630,900 priority patent/US4641213A/en
Priority to DE19843426117 priority patent/DE3426117A1/en
Publication of JPS6022722A publication Critical patent/JPS6022722A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To improve the recording and reproducing efficiency of a magnetic head by constituting thin core films of a ternary amorphous alloy which consists essentially of cobalt and is added with a small amt. of hafnium and tantalum. CONSTITUTION:A thin core film 2, a thin insulating film 3 consisting of a nonmagnetic material, a thin conductive film 4 and a thin core film 6 via a thin insulating film 5 are formed on a base plate 1. The films 2 and 6 consist of a thin film of a ternary amorphous alloy consisting of Co-Hf-Ta and are obtd. by regulating the respective contents in the alloy to 93.3atom% Co, 2.2atom% Hf and 4.5atom% Ta and heat-treating the alloy in a rotating magnetic field. The treating conditions thereof are 300-400 deg.C temp., 10-20rpm rotating speed and >=100Oe intensity of the magnetic field and >=3hr treating time. The anisotropic magnetic field Hk is decreased to about 4Oe by such treatment.

Description

【発明の詳細な説明】 本発明は、薄膜磁気ヘッドに係り、特にそれのコア薄膜
の材質に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film magnetic head, and particularly to the material of the core thin film thereof.

薄膜磁気記録ヘッドは、非磁性材からなる基板上に第1
のコア薄膜と、非磁性材薄膜と、第2のコア薄膜とがス
パッタリングや蒸着などによって積層状態に形成された
ものから構成されている。
A thin film magnetic recording head has a first magnetic recording head on a substrate made of a non-magnetic material.
The core thin film, a nonmagnetic material thin film, and a second core thin film are formed in a laminated state by sputtering, vapor deposition, or the like.

この薄膜磁気記録ヘッドは薄膜磁気再生ヘッドと対にな
って薄膜磁気ヘッドを構成し、例えば電子計算機の記憶
装置などに用いられる。薄膜磁気記録ヘッドにおいては
記録効率を高めるために第1および第2のコア)Wlじ
冒こ5高、こ磁ヰで亮い飽和磁束密度を有する軟磁性材
料を用いることが必要である。
This thin film magnetic recording head is paired with a thin film magnetic reproducing head to form a thin film magnetic head, which is used, for example, in a storage device of an electronic computer. In a thin film magnetic recording head, in order to increase the recording efficiency, it is necessary to use a soft magnetic material having a high saturation magnetic flux density for the first and second cores.

従来、この種磁気ヘッドの第1および第2のコア薄膜と
して例えばパーマロイなどが用いられていたが、このも
のは飽和磁束密度が低い。低飽和磁束密度であると記録
時にコア薄膜が磁気飽和してしまい、特にメタルテープ
やクロムテープなどのような飽和磁束密度の高い磁気記
録媒体に対して信号を記録する場合、記録効率が悪い。
Conventionally, permalloy or the like has been used as the first and second core thin films of this type of magnetic head, but this material has a low saturation magnetic flux density. If the saturation magnetic flux density is low, the core thin film will become magnetically saturated during recording, resulting in poor recording efficiency, especially when recording signals on a magnetic recording medium with a high saturation magnetic flux density, such as a metal tape or chrome tape.

そのため、コイルのターン数を増やしたり、記録電流を
増大したりして記録効率の低下を抑制することが考えら
れる。しかしコイルのターン数を増やすことは薄膜磁気
ヘッドの構造上困難で、3〜5タ一ン程度に制限され、
十分な効果が得られない。一方、記録電流を増大すると
発熱量が大きくなり、断線を生じたりコア薄膜の磁性劣
化を生じる。
Therefore, it is possible to suppress the decrease in recording efficiency by increasing the number of turns of the coil or increasing the recording current. However, increasing the number of turns in the coil is difficult due to the structure of the thin film magnetic head, and is limited to 3 to 5 turns.
Not enough effect. On the other hand, when the recording current is increased, the amount of heat generated increases, causing wire breakage and magnetic deterioration of the core thin film.

本発明者らは、スパッタリングなどによって得られるア
モルファス合金薄膜について種々研究した結果、コバル
ト(Go)を主成分とし、少量のハフニウム(Hf)と
タンタル(T a )を添加したC o −Hf −T
 aの3成分系のアモルファス合金からなる薄膜が、薄
膜磁気ヘッドのコア薄膜として非常に好適であることを
見出した。
As a result of various studies on amorphous alloy thin films obtained by sputtering etc., the present inventors found that Co-Hf-T, which has cobalt (Go) as the main component and added small amounts of hafnium (Hf) and tantalum (Ta),
It has been found that a thin film made of a three-component amorphous alloy is very suitable as a core thin film of a thin-film magnetic head.

基板に結晶化ガラスを用い、コバルトディスク(直径1
01.6mm、厚さ5mm)上にハフニウムのペレット
とタンタルのペレット(いずれのペレットも縦10mm
、横Loam、厚さ1 mm)を中心より放射状に交互
に配置し、ターゲット上のペレットの数を調整すること
により合金組成が変えられるようにする。そして真空度
がI X 10−GTo r r以下の高真空にし、ア
ルゴンガスの雰囲気中で、高周波電力2W/CII+2
でスパッタリングを行ない、基板上にコバルトを主成分
とするC o −Hf−Taの3成分系の、アモルファ
ス合金薄膜を作成することができる。このようにし°C
作成された各種組成の合金試料が後述の各特性試験に使
用される。
Using crystallized glass as the substrate, a cobalt disk (diameter 1
Hafnium pellets and tantalum pellets (both pellets are 10 mm in length) on
, horizontal loam, thickness 1 mm) are arranged alternately radially from the center, and the alloy composition can be changed by adjusting the number of pellets on the target. Then, the degree of vacuum was set to a high vacuum of less than I x 10-GTor r, and a high frequency power of 2W/CII + 2 was applied in an argon gas atmosphere.
By performing sputtering, it is possible to form an amorphous alloy thin film of a three-component system of Co-Hf-Ta, the main component of which is cobalt, on the substrate. Do it like this °C
The prepared alloy samples with various compositions are used for each characteristic test described below.

第1図は、後記の合金組成表において合金中のTa含有
率Yが常に4.5原子%になるようにして、Hf含有率
Xを種々変えた場合の磁気特性図である。
FIG. 1 is a magnetic characteristic diagram when the Hf content X is varied while the Ta content Y in the alloy is always 4.5 atomic % in the alloy composition table described later.

なお図中において曲線Bsは飽和磁束密度9曲線μeは
周波数I M Hzにおける困難軸方向の透磁率9曲線
Heは困難軸方向の保磁力である。この図から明らかな
ように−Hf含有率が0原子%のCo −T a 2成
分系合金は、Bsは高いが、Hcが高過ぎ、μ8が低い
。これにHfを少量添加するとHeが極端に下がり、H
eは逆に高くなる。なお、Hfの含有率がある程度以上
になると。
In the figure, the curve Bs is the saturation magnetic flux density 9, the curve μe is the magnetic permeability in the hard axis direction at the frequency I MHz, and the curve He is the coercive force in the hard axis direction. As is clear from this figure, the Co-Ta binary alloy with a -Hf content of 0 atomic % has high Bs, but too high Hc and low μ8. When a small amount of Hf is added to this, He drops extremely, and H
On the contrary, e becomes higher. Note that when the Hf content exceeds a certain level.

Heは高くなり、Heは低くなる。一方、Bsは極端で
はないがHfの含有率の増大とともに低下する傾向にあ
る。
He becomes high and He becomes low. On the other hand, Bs tends to decrease as the Hf content increases, although it is not extreme.

このような特性傾向のなかで、Bsを高く維持したまま
、Heを下げ、高μeにするためには、Hfの含有率X
を1i子%以上でかつ5原子%未満の範囲、好ましくは
1.5〜3原子%の範囲に規制する必要がある。このこ
とはTa含有率Yを若干変化させても同様である。
Given these characteristic trends, in order to lower He and increase μe while maintaining Bs high, the Hf content X
It is necessary to control the content to a range of at least 1 atomic % and less than 5 atomic %, preferably in the range of 1.5 to 3 atomic %. This holds true even if the Ta content Y is slightly changed.

第2図は、前記合金組成表において合金中のHf含有率
Xが常に2.2原子%になるようにして、Ta含有率Y
を種々変えた場合の磁気特性図である。
FIG. 2 shows that in the alloy composition table, the Hf content X in the alloy is always 2.2 atomic %, and the Ta content Y
It is a magnetic characteristic diagram when changing variously.

この図から明らかなように、Ta含有率が0原子%のC
o−Hf2成分系合金も前述と同様に、Bsは高いが、
Hcが高過ぎ、Heが低い。これにTaを少量添加する
ことによりHeが極端に下がり、Heが逆に高くなる。
As is clear from this figure, C with a Ta content of 0 at%
As mentioned above, the o-Hf binary alloy also has high Bs, but
Hc is too high and He is low. By adding a small amount of Ta to this, He is extremely reduced, and on the contrary, He becomes high.

なお、Taの含有率がある程度以上になると、Hcは高
くなり、μ8は低くなる。一方、Bsは極端ではないが
Taの含有率の増大とともに低下する傾向がある。
Note that when the Ta content exceeds a certain level, Hc becomes high and μ8 becomes low. On the other hand, Bs tends to decrease as the Ta content increases, although it is not extreme.

このような特性傾向のなかで、Bsを高く維持したまま
、Heを下げ、高μeにするためには、Taの含有率Y
を4〜lO原子%、好ましくは6〜8原子%の範囲に規
制する必要がある。このことはHf含有率Xを若干変化
させても同様である。
Given these characteristic trends, in order to lower He and increase μe while maintaining Bs high, the Ta content Y
It is necessary to regulate the amount of oxide in the range of 4 to 10 atomic %, preferably 6 to 8 atomic %. This holds true even if the Hf content X is slightly changed.

第3図は、本発明に係るGo(93,3原子%)−Hf
 (2,2原子%)−Ta (4,5原子%)の3成分
系アモルファス合金(曲線A)と、c。
FIG. 3 shows Go (93.3 atomic%)-Hf according to the present invention.
(2,2 atomic %)-Ta (4,5 atomic %) ternary amorphous alloy (curve A) and c.

(97,8原子%)、−Hf (2,2i子%)の2成
分系アモルファス合金(曲線B)の各周波数におけるH
eを比較して示す図である。この図からも明らかなよう
に、本発明のアモルファス合金は各周波数においても常
に高い周波数を有し、広い周波数領域において特性が安
定している。
Hf (97.8 atomic%) and -Hf (2.2i atomic%) at each frequency of the binary amorphous alloy (curve B)
It is a figure which compares and shows e. As is clear from this figure, the amorphous alloy of the present invention always has a high frequency at each frequency, and its characteristics are stable in a wide frequency range.

本発明に係るGo−Hf−Taの3成分系アモルファス
合金は誘導磁気異方性が出やすいため、高周波特性を考
慮して、アモルファス合金の磁化困難軸方向をコア薄膜
の動作方向に向けることができる。ところでGo−Hf
−Taの3成分系合金は、スパッタリング直後の薄膜の
異方性磁界Hkは大きい。この異方性磁界を小さくする
手段について種々検討した結果、コア薄膜として形成さ
れた前記3成分系のアモルファス合金薄膜を回転磁界中
で熱処理する方法が有効であることを見出した。この回
転磁界中の熱処理で、温度は300〜4oo(’c)、
回転速度は−10〜20 (r、p、m、)、磁界の強
さは100(Os)以上、処理時間は3時間以上が適当
である。例えば温度を350(’C)、回転速度を10
 (r、p、m、)磁界の強さを100(Oe)、処理
時間を3時間に設定して、スパッタリングによって形成
したコア薄膜を処理すれば、異方性磁界Hkを約4(O
s)程度まで下げることができる。
Since the Go-Hf-Ta three-component amorphous alloy according to the present invention tends to exhibit induced magnetic anisotropy, it is necessary to orient the difficult axis of magnetization of the amorphous alloy to the operating direction of the core thin film in consideration of high frequency characteristics. can. By the way, Go-Hf
In the -Ta ternary alloy, the anisotropic magnetic field Hk of the thin film immediately after sputtering is large. As a result of various studies on means for reducing this anisotropic magnetic field, it has been found that a method of heat-treating the three-component amorphous alloy thin film formed as the core thin film in a rotating magnetic field is effective. In this heat treatment in a rotating magnetic field, the temperature is 300~4oo('c),
Appropriately, the rotation speed is -10 to 20 (r, p, m,), the strength of the magnetic field is 100 (Os) or more, and the processing time is 3 hours or more. For example, the temperature is 350 ('C) and the rotation speed is 10
(r, p, m,) If the core thin film formed by sputtering is processed by setting the magnetic field strength to 100 (Oe) and the processing time to 3 hours, the anisotropic magnetic field Hk will be approximately 4 (Oe).
s).

第4図は、本発明の実施例に係る薄膜磁気記録ヘッドの
一部を断面にした斜視図である。ガラスやシリコンなど
の非磁性材からなる基板1の上には、最初第1のコア薄
膜2が形成され、その上に非磁性材の絶縁薄膜3.導電
薄膜4ならびに絶縁薄膜5を介して第2のコア薄膜6が
形成される。
FIG. 4 is a partially sectional perspective view of a thin film magnetic recording head according to an embodiment of the present invention. A first core thin film 2 is first formed on a substrate 1 made of a non-magnetic material such as glass or silicon, and an insulating thin film 3 made of a non-magnetic material is formed thereon. A second core thin film 6 is formed via the conductive thin film 4 and the insulating thin film 5.

これら第1のコア薄膜2.絶縁薄膜3.導電薄膜4、絶
縁薄膜5ならびに第2のコア薄膜6は、スパッタリング
などの成膜技術によって順次所定の厚さに形成される。
These first core thin films 2. Insulating thin film 3. The conductive thin film 4, the insulating thin film 5, and the second core thin film 6 are sequentially formed to a predetermined thickness by a film forming technique such as sputtering.

なお、4a、4bは外部接続用端子部である。Note that 4a and 4b are terminal portions for external connection.

前記第1のコア薄膜2ならびに第2のコア薄膜6 i;
t、 G o −Hf −T aの3成分系アモルファ
ス合金薄膜からなりCOの含有率は93.3原子%。
the first core thin film 2 and the second core thin film 6i;
It is made of a three-component amorphous alloy thin film of T, Go - Hf - Ta, and the CO content is 93.3 at%.

Hfの含有率は2.2原子%、Taの含有率は4.5m
子%であり、前述の条件下において回転磁界中で熱処理
される。
Hf content is 2.2 at%, Ta content is 4.5m
% and is heat treated in a rotating magnetic field under the conditions described above.

本発明は前述のように薄膜磁気ヘッドのコア薄膜を、コ
バルトを主成分とし、それにハフニウムとタンタルを少
量添加した3成分系アモルファス合金で構成したことを
特徴とするものである。この3成分系アモルファス合金
は、高い飽和磁束密度ど透磁率とを有しているから、磁
気ヘッドの記録効率および再生′@率を高めることがで
きる。
As described above, the present invention is characterized in that the core thin film of the thin film magnetic head is composed of a three-component amorphous alloy containing cobalt as a main component and small amounts of hafnium and tantalum added thereto. Since this three-component amorphous alloy has a high saturation magnetic flux density and magnetic permeability, it is possible to improve the recording efficiency and reproduction rate of the magnetic head.

【図面の簡単な説明】[Brief explanation of drawings]

第112Iは本発明に係るC o Hf −T a系ア
モルファス合金中のHf含有率と各種磁気特性との関係
を示す特性図、第2図は前記合金中のT’ a含有率と
各種磁気特性との関係を示す特性図、第3図は前記公金
と比較例の合金との各周波数における磁気特性図、第4
図は本発明の実施例に係る薄膜磁気ヘッドの一部を断面
にした斜視図である。 1・・・基板、2・・・第1のコア薄膜、3・・・絶@
薄膜、4・・・導電薄膜、5・・・絶縁薄膜、6・・・
第2のコア薄膜。 周左佐(MHz)
No. 112I is a characteristic diagram showing the relationship between the Hf content and various magnetic properties in the Co Hf -Ta amorphous alloy according to the present invention, and FIG. 2 is a characteristic diagram showing the relationship between the T'a content and various magnetic properties in the alloy. FIG. 3 is a magnetic characteristic diagram at each frequency of the public money and the comparative example alloy, and FIG. 4 is a characteristic diagram showing the relationship between
The figure is a partially sectional perspective view of a thin film magnetic head according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... First core thin film, 3... Absolute @
Thin film, 4... Conductive thin film, 5... Insulating thin film, 6...
Second core thin film. Shuzasa (MHz)

Claims (1)

【特許請求の範囲】 (1)非磁性材からなる基板上に第1のコア薄膜と非磁
性材薄膜と、第2のコア薄膜とが積層状態で形成される
薄膜磁気番録ヘッドにおいて、前記コア?t[E4が、
コバルトを主成分とし、夕景のハフニウムとタンタルと
を添加した3成分系のアモルファス合金で構成されてい
ることを特徴とする薄膜磁気ヘッド。 (2、特許請求の範囲第(1)項記載において、前記ハ
フニウムの岩有牢が1原子%以上でかつ57M子%未満
、タンタルの含有率が4g子%以上でかっ10原子%以
下に規制されていることを特徴とする薄膜磁気ヘッド。 (3)特許請求の範囲第(1)項記載において、前記コ
ア薄膜として形成されたコバルト−ハフニウム−タンタ
ルの3成分系アモルファス合金薄膜が回転磁界中で熱処
理されたことを特徴とする薄膜磁気ヘッド。
[Scope of Claims] (1) A thin film magnetic recording head in which a first core thin film, a nonmagnetic material thin film, and a second core thin film are formed in a laminated state on a substrate made of a nonmagnetic material, core? t[E4 is
A thin film magnetic head characterized in that it is composed of a three-component amorphous alloy containing cobalt as a main component and adding hafnium and tantalum. (2. In claim (1), the hafnium content is regulated to be 1 atomic % or more and less than 57 M %, and the tantalum content is regulated to be 4 gram % or more and 10 atomic % or less. (3) In claim (1), the ternary amorphous alloy thin film of cobalt-hafnium-tantalum formed as the core thin film is exposed to a rotating magnetic field. A thin film magnetic head characterized by being heat-treated.
JP12872183A 1983-07-16 1983-07-16 Thin film magnetic head Pending JPS6022722A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP12872183A JPS6022722A (en) 1983-07-16 1983-07-16 Thin film magnetic head
KR1019840002876A KR890003043B1 (en) 1983-07-16 1984-05-25 Magnetic head
US06/630,900 US4641213A (en) 1983-07-16 1984-07-16 Magnetic head
DE19843426117 DE3426117A1 (en) 1983-07-16 1984-07-16 MAGNETIC HEAD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12872183A JPS6022722A (en) 1983-07-16 1983-07-16 Thin film magnetic head

Publications (1)

Publication Number Publication Date
JPS6022722A true JPS6022722A (en) 1985-02-05

Family

ID=14991784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12872183A Pending JPS6022722A (en) 1983-07-16 1983-07-16 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPS6022722A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282713A (en) * 1987-11-09 1989-11-14 Hitachi Ltd Thin-film magnetic head and magnetic disk device
US4943883A (en) * 1987-11-09 1990-07-24 Hitachi, Ltd. Quarternary amorphous magnetic alloy thin film and magnetic head including same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185742A (en) * 1982-04-21 1983-10-29 Showa Denko Kk Amorphous magnetic alloy magnetic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185742A (en) * 1982-04-21 1983-10-29 Showa Denko Kk Amorphous magnetic alloy magnetic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282713A (en) * 1987-11-09 1989-11-14 Hitachi Ltd Thin-film magnetic head and magnetic disk device
US4943883A (en) * 1987-11-09 1990-07-24 Hitachi, Ltd. Quarternary amorphous magnetic alloy thin film and magnetic head including same

Similar Documents

Publication Publication Date Title
EP0105705B1 (en) Perpendicular magnetic recording medium
US4609593A (en) Magnetic recording medium
JPH07254116A (en) Method of heat treatment for thin film magnetic head
JPS6022722A (en) Thin film magnetic head
US4641213A (en) Magnetic head
JPH07141641A (en) Magnetic recording medium and its production
JPS6022721A (en) Thin film magnetic head
JP2579184B2 (en) Magnetic recording media
JPS6022723A (en) Thin film magnetic head
JPS6022726A (en) Thin film magnetic playback head
JPS6022715A (en) Magnetic head for vertical magnetic recording
JPS59125607A (en) High saturation magnetization and high permeability magnetic film
JPS6022728A (en) Thin film magnetic playback head
JPS5990222A (en) Thin-film magnetic reproducing head
JPS5996518A (en) Magnetic head for vertical magnetic recording
JP2000215437A (en) Magnetic recording medium and magnetic recorder using same
JPS6022714A (en) Magnetic head for vertical magnetic recording
JPS5998318A (en) Magnetic reproducing thin film head
JPH03178105A (en) Thin garnet film for magneto-optical recording medium
JPS6022727A (en) Thin film magnetic playback head
JPS58164018A (en) Manufacture of vertical magnetic recording medium
JPS6022713A (en) Magnetic head for vertical magnetic recording
JP2979557B2 (en) Soft magnetic film
JPH0130219B2 (en)
JPH05234751A (en) Soft magnetic alloy film and magnetic head having high saturation magnetic flux density for thin film magnetic head