JPS60225080A - Underwater level measurement - Google Patents

Underwater level measurement

Info

Publication number
JPS60225080A
JPS60225080A JP8137884A JP8137884A JPS60225080A JP S60225080 A JPS60225080 A JP S60225080A JP 8137884 A JP8137884 A JP 8137884A JP 8137884 A JP8137884 A JP 8137884A JP S60225080 A JPS60225080 A JP S60225080A
Authority
JP
Japan
Prior art keywords
response
frequency
sound wave
sonic
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8137884A
Other languages
Japanese (ja)
Inventor
Iichiro Yamamoto
山本 威一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP8137884A priority Critical patent/JPS60225080A/en
Publication of JPS60225080A publication Critical patent/JPS60225080A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/87Combinations of sonar systems
    • G01S15/874Combination of several spaced transponders or reflectors of known location for determining the position of a receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To facilitate a drastic reduction in the measuring time by emitting interrogation signals simultaneously to first and second sound wave responders from a sound wave transmission/reception measuring apparatus. CONSTITUTION:When interrogation signal frequencies f0 and fx are emitted simultaneously to first and second sound responders 12 and 21-23 from a sound wave transmission/reception measuring apparatus 11, the devices 21-23 receive the frequency fx and emits sound waves of frequencies f1, f2 and f3 in response thereto. On the other hand, the device 12 receives the frequency f0 and emits a sound wave of the frequency fx in response thereto. The sound wave is received with the device 11 while done with the devices 21-23, which emit sound waves of frequencies f1-f3 in response thereto and these sound waves are received with the device 11 again. Therefore, the apparatus 11 calculates the distance between the apparatus 11 and the device 12 from a time difference between the time of oscillating the frequency f0 and the time of receiving the frequency fx, and the intervals between the apparatus 11 and devices 21-23 from the time difference between the time of oscillating the frequency fx therewith and the time of receiving the frequencies f1-f3 therewith to determine the distance. Thus, the measurement of level is enabled. At this point, the reduction in the measuring time is made possible by transmitting the interrogation frequencies f0 and fx simultaneously from the apparatus 11.

Description

【発明の詳細な説明】 (技術分野) 不発明は音波信号を用いて水中の目標位置を三次元的に
計測する水中測位方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an underwater positioning method for three-dimensionally measuring a target position underwater using a sound wave signal.

(従来技術) 従来、この種の水中測位方法としては、第1図(a)、
 (b)に示すような音波計測システムが用いられてい
る。すなわち、観測船1上に搭載された位置計測の制御
を行う音波送受信計測装置11と、位置計測すべき潜水
船2(またけ曳航体)に搭載された第1の音波応答装置
(トランスポンダ)12と、あらかじめ海底の所定個所
に設置された複数(3個)の第2の音波応答装置21.
22.23とを用いて、これら第2の音波応答装置21
〜23を基準とした第1の音波応答装置12の位置が泪
測される。
(Prior art) Conventionally, this type of underwater positioning method is as shown in Fig. 1(a).
A sound wave measurement system as shown in (b) is used. That is, a sound wave transmission/reception measurement device 11 mounted on the observation vessel 1 that controls position measurement, and a first sound wave response device (transponder) 12 mounted on the submersible vessel 2 (straddle towing body) whose position is to be measured. and a plurality of (three) second sound wave response devices 21. which are installed in advance at predetermined locations on the seabed.
22 and 23, these second sonic wave response devices 21
The position of the first sonic response device 12 with respect to ~23 is measured.

第2図(al〜山は第1図(a)、 tb)の動作を説
明するタイムチャートである。ロングベースライン方式
においては、まず、第1図fa)のように音波送受信計
測装置11から第1の応答装置11に感応する質問周波
数foの音波を発射する(第2図(a) )。
FIG. 2 is a time chart illustrating the operation of FIG. 1 (a) and tb. In the long baseline method, first, as shown in FIG. 1fa), a sound wave having an interrogation frequency fo that is sensitive to the first response device 11 is emitted from the sound wave transmitting/receiving measuring device 11 (FIG. 2(a)).

この音波f、は第1の応答装置12が受信しく第2図(
d)、この応答装置12は第2の応答装置21〜23に
感応する周波数fxの応答信号を発射する(第2図(C
) )、この周波数fxの信号は、音波送受信計測装置
11で受信される(@2図(b))と共に、第2の応答
装置21〜23でも受信される( E42図1f1. 
(h)、 [1)、コレGJ 2 ノZ答装置121〜
23は、周波数fxヲそれぞれ受信すると、装置毎に異
なる周波数ft 、 fx、 fsの音波全それぞれ発
射しく第2図(e)、 (g)、 (i) ) 、音波
送受信計測装置11においてこれら周波数f1.h、f
sの音波がそれぞれ受波される(第2図(b) )。
This sound wave f is not received by the first response device 12 as shown in FIG.
d), this response device 12 emits a response signal of frequency fx that is sensitive to the second response devices 21 to 23 (see FIG. 2(C)).
)), this signal of frequency fx is received by the sound wave transmitting/receiving measuring device 11 (@2 (b)), and is also received by the second response devices 21 to 23 (E42, 1f1.
(h), [1), Kore GJ 2 no Z answer device 121 ~
When 23 receives each frequency fx, it emits all sound waves of frequencies ft, fx, and fs, which are different for each device. f1. h, f
Each of the sound waves of s is received (Fig. 2(b)).

次の段階では、第1図(b)に示すように、音波送受信
計測装置11から第2の応答装置21〜23が感応する
周波数fxの音波が発射され(第2図(a))、i2の
応答装置21〜23がそれぞれ受け(第2図げ)、 (
h)、 (j))、第2の応答装置21〜23は装置毎
に異る周波数f1.f雪、fs’fc発射しく第2図(
e)、 (g)、 (il )、再び音波送受信計測装
置11で受波する(用2図+bl )。
In the next step, as shown in FIG. 1(b), the sound wave transmitting/receiving measuring device 11 emits a sound wave with a frequency fx that is sensitive to the second response devices 21 to 23 (FIG. 2(a)), i2 The response devices 21 to 23 each receive (second figure), (
h), (j)), the second response devices 21 to 23 have different frequencies f1. f snow, fs'fc firing Figure 2 (
e), (g), (il), the wave is received again by the sound wave transmitting/receiving measuring device 11 (Figure 2 + bl).

したがって、音波送受信計測装置11は、質問周波数f
o及びfxk送信し、第1の音波応答装置12の応答周
波数fx及び第2の音波応答装置21.22.23の応
答周波数ft 、f−、f−を受信し、その質問周波数
の送信時点から応答周波数の受信時点までの時間を計測
し、海中の音波伝播速度を乗じ、音波の走行距離を算出
し、これらのデータから、第2の音波応答装置21,2
2゜23を基準とした第1の音波応答装置12の位置を
算出することができる。
Therefore, the sound wave transmission/reception measuring device 11 has the interrogation frequency f
o and fxk, and receive the response frequency fx of the first sonic response device 12 and the response frequencies ft, f-, f- of the second sonic response device 21.22.23, and from the time of transmission of the interrogation frequency. The time until the response frequency is received is measured, multiplied by the sound wave propagation speed in the sea, the traveling distance of the sound wave is calculated, and from these data, the second sound wave response device 21, 2
The position of the first sonic response device 12 with respect to 2°23 can be calculated.

また%第1の音波応答装置12は、音波送受信計測装置
11より発射された周波数f、の信号を受けて、応答周
波数fxを発射し、ふたたび音波送受信計測装置11で
受信されるので、音波送受信計測装置11においては、
周波数fo発射時と周波数fx受信時との時間差から音
波送受信装置11(即ち観測船1)と第1の音波応答装
置12(即ち潜水船又は曳航体2)の距離を算出するこ
とができる。
In addition, the first sound wave response device 12 receives a signal of frequency f emitted from the sound wave transmission/reception measurement device 11, emits a response frequency fx, and is received again by the sound wave transmission/reception measurement device 11. In the measuring device 11,
The distance between the sonic wave transmitting/receiving device 11 (i.e., the observation vessel 1) and the first sonic wave response device 12 (i.e., the submersible vessel or the towing body 2) can be calculated from the time difference between when the frequency fo is emitted and when the frequency fx is received.

さらに、音波送受信計測装置11より発射された周波数
fxけ、第2の音波応答装置21,22゜23にて受信
され、第2の音波応答装置21,22゜23はそれぞれ
応答周波数ft、fx−fsを発射し、ふたたび音波送
受信計測装置11で受信されるので、音波送受信計測装
置11では1周波数fo発射時と周波数f+ 、fx 
、fs受信時の時間差から、音波送受信計測装置11か
ら、第1の音波応答装置12.第2の音波応答装置21
,22゜23を経由してふたたび音波送受信計測装置1
1へ戻る経路、即ち三角形の三辺の和の距離を算出する
ことができる。
Further, the frequency fx emitted from the sound wave transmission/reception measuring device 11 is received by the second sound wave response device 21, 22° 23, and the second sound wave response device 21, 22° 23 has a response frequency ft, fx−, respectively. fs is emitted and received again by the sound wave transmitting/receiving measuring device 11, so the sound wave transmitting/receiving measuring device 11 can detect the frequencies f+, fx when one frequency fo is emitted.
, fs reception time, from the sound wave transmission/reception measurement device 11 to the first sound wave response device 12 . Second sound wave response device 21
, 22° 23, and the sound wave transmitting/receiving measuring device 1 again.
The path back to 1, that is, the distance of the sum of the three sides of the triangle can be calculated.

また、音波送受信計測装置11から発射された周波数f
xは、第2の音波応答装置21,22゜23で受信され
、第2の音波応答装置21,22゜23はそれぞれ応答
周波数ft 、fx 、fs k発射し、音波送受信計
測装置11で受信されるので。
Also, the frequency f emitted from the sound wave transmission/reception measurement device 11
x is received by the second sonic response device 21, 22゜23, and the second sonic response device 21, 22゜23 emits response frequencies ft, fx, fsk, respectively, and is received by the sonic wave transmitting/receiving measuring device 11. Because.

音波送受信計測装置11では周波数fxの発射時と周波
数ft 、f−、fs受信時の時間差から。
In the sound wave transmission/reception measuring device 11, the difference is determined from the time difference between when the frequency fx is emitted and when the frequencies ft, f-, and fs are received.

音波送受信計測装置11と、m2の音波応答装置21.
22及び23との間隔全算出することができる。
A sound wave transmission/reception measurement device 11, and a sound wave response device 21 of m2.
The entire interval between 22 and 23 can be calculated.

従って、第3図に示すように、音波送受信計測装置11
、第1の音波応答装置12、第2の音波応答装置21,
22.又は23で構成する三角形が決足され、あらかじ
め位置が設電されている第2の音波応答装置21,22
.23に対して、音波送受信計測装置11(観測船1)
、第1の音波応答装置12(潜水船又は曳航体)の位置
が決足される。
Therefore, as shown in FIG.
, first sonic response device 12, second sonic response device 21,
22. or the second sonic wave response devices 21 and 22, in which a triangle consisting of 23 is determined and the position is set in advance.
.. 23, the sound wave transmission/reception measurement device 11 (observation ship 1)
, the position of the first sonic transponder 12 (submersible or towed vehicle) is determined.

このように従来の計測方法でf′i、音波送受信計測装
置の二段階の送信操作によって距離を計測している。こ
のため1例えば音波送受信計測装置と第2の音波応答装
置との間隔が7500m程度あったとすると、一段階の
操作に約10秒要するので。
In this manner, the distance is measured by the conventional measurement method by f'i and the two-step transmission operation of the acoustic wave transmission/reception measuring device. For this reason, 1. For example, if the distance between the sonic wave transmitting/receiving measuring device and the second sonic wave responding device is about 7500 m, it will take about 10 seconds for one step of operation.

二段階操作では約20秒要することになる。この計測に
ある程度のマージンを考慮すると、−回の計測が約30
秒かかることになシ、このように計測時間がかかること
は、水中航行体の制御が充分にできないということにな
り、水中航行体制御上の欠点となっていた。
A two-step operation would require approximately 20 seconds. Considering a certain margin in this measurement, the -times measurement is approximately 30
However, this long measurement time means that the underwater vehicle cannot be controlled sufficiently, which is a disadvantage in controlling the underwater vehicle.

(発明の目的) 本発明の目的は、このような欠点を除き、音波送受信計
測装置から、第1の音波応答装置と第2の音波応答装置
への質時信号周波数f、及びfxを同時に、又は若干時
間差を設けて発射することにより、計測時間を大幅に減
少させた水中測位方法を提供することiCある。
(Object of the Invention) An object of the present invention is to eliminate such drawbacks and simultaneously transmit quality time signal frequencies f and fx from a sound wave transmission/reception measurement device to a first sound wave response device and a second sound wave response device, Alternatively, it is possible to provide an underwater positioning method in which the measurement time is significantly reduced by emitting signals with a slight time difference.

(発明の構成) 本発明の水中測位方法の構成は、所定の第1および第2
の質問周波数を同時あるいは殆んど同時に船上の音波送
受信計測装置から水中に送信し。
(Structure of the Invention) The structure of the underwater positioning method of the present invention is that a predetermined first and second
The interrogation frequencies are simultaneously or almost simultaneously transmitted into the water from a sound wave transmitting/receiving and measuring device onboard the ship.

測位すべき測位体に搭載された第1の音波応答装置によ
り受信された前記第1の質問周波数に応答して前記第2
の質問周波数と同じ質問周波数を送信し、水中固定個所
に設置された複数の第2の音波応答装置によりそれぞれ
受信された前記音波計測装置および@1の音波応答装置
からの6第2の質問周波数にそれぞれ応答してこれら各
応答装置により異なる応答周波数をそれぞれ送信し、前
記音波送受信計測装置により前記第1の音波応答装置か
らの質問周波数および前記第2の音波応答装置からの各
応答周波数をそれぞれ受けて測位することを特徴とする
In response to the first interrogation frequency received by the first sound wave response device mounted on the positioning object to be positioned, the second
6 second interrogation frequencies from the sonic wave measurement device and the sonic wave response device @1, which are transmitted with the same interrogation frequency as the interrogation frequency of @1 and received by the plurality of second sonic response devices installed at fixed underwater locations, respectively. In response to these, each of the response devices transmits a different response frequency, and the sonic wave transmission/reception measurement device measures the interrogation frequency from the first sonic response device and each response frequency from the second sonic response device, respectively. It is characterized by receiving and positioning.

(実施例) 次に図面によフ本発明の詳細な説明する。(Example) Next, the present invention will be explained in detail with reference to the drawings.

第4図fa)〜(i)は本発明の実施例の音波計測シス
テムを用いて計測する場合のタイムチャートを示す0本
実施例において、音波計測システムは、第1図(a)、
 (b)に示される構成をそのまま用いて、音波送受信
計測装置11が質問周波数f、およびfxを同時に送信
すること罠より、計測時間を短縮することを特徴とする
FIGS. 4 fa) to (i) show time charts when measuring using the sonic wave measurement system according to the embodiment of the present invention. In this embodiment, the sonic wave measurement system is as shown in FIG.
Using the configuration shown in (b) as is, the sonic wave transmission/reception measuring device 11 transmits the interrogation frequencies f and fx at the same time, thereby shortening the measurement time.

本実施例においては、第4図ia)に示すように、音波
送受信計測装置11が、第1の音波応答装置12に感応
する周波数fo および第2の音波応答装置21〜23
に感応する周波数fXを同時に発射すると、第1の音波
応答装置12は1周波数fo iを受信しく第4図1a
l ) 、かつこの受信信号に応答して1周波数fXの
音波が発射される(第4図1cI)。
In the present embodiment, as shown in FIG.
When simultaneously emitting frequencies fX that are sensitive to
l), and in response to this received signal, a sound wave of one frequency fX is emitted (FIG. 4 1cI).

この第1の音波応答装置fi12からの周波数fXの音
波は、音波送受信計測装置11で、第4図+b)のより
に受信されるt!1か、第2の音波応答装置21〜23
で、第4図げ)、 (h)、 fjlのように(図の彼
方パルス)受信され、これら受信信号に応答して第2の
音波応答装置21〜23から、第4図1al、 (g)
The sound wave of frequency fX from the first sound wave response device fi12 is received by the sound wave transmission/reception measurement device 11 at t! 1 or the second sonic response device 21 to 23
In response to these received signals, the second sonic wave response devices 21 to 23 transmit pulses as shown in Fig. 4, 1al, (g). )
.

(ハのようにそれぞれ周波数f1.f*、fsの音波が
発射される。これらの周波数fr、fx、fsはふたた
び音波送受信計測装置11でS第4図(b)のように受
信されることがわかる。
(Sound waves with frequencies f1, f*, and fs are emitted, respectively, as shown in C.) These frequencies fr, fx, and fs are again received by the sound wave transmitting/receiving measuring device 11 as shown in FIG. 4(b). I understand.

また、音波送受信計測装置11において、第4図1al
において周波数f、と同時に発射された周波数fXは、
第2の音波応答装置21〜23で、第4図げ)、 (h
)、 fjtの先行パルスとして受信され、これら受4
M倍号に応答して第2の音波応答装置21〜23から、
第4図(e)s (g)−10の先行パルスのように周
波数f+ 、fx、fsでそれぞれ発射され。
In addition, in the sound wave transmission/reception measuring device 11, FIG.
The frequency fX emitted at the same time as the frequency f is
In the second sonic response devices 21 to 23,
), are received as leading pulses of fjt, and these receivers 4
From the second sound wave response devices 21 to 23 in response to the M multiple,
FIG. 4(e) s (g) The leading pulses of -10 are emitted at frequencies f+, fx, and fs, respectively.

音波送受信計測装置11で、第4図(blの先行パルス
のように、ふたたび受信される。
The sound wave transmission/reception measuring device 11 receives the pulse again as shown in the preceding pulse in FIG. 4 (bl).

この音波送受信計測装置11では、第4図tb)のよう
に、周波数f1r fz r fs kそれぞれ2度受
信することになる。音波送受信計測装置11の送信タイ
ムチャート(第4図(すの周波数f0と。
This sound wave transmission/reception measuring device 11 receives frequencies f1r, fz, r fs, and k twice, respectively, as shown in FIG. 4tb). Transmission time chart of the sound wave transmission/reception measuring device 11 (Fig. 4).

これに対応する同受信タイムチャート(第4図(b))
上の周波数ft 、f−、fs との時間差は、第5図
(alに示すように、音波送受信計測装置11がら第1
の音波応答装置12と第2の音波応答装置21゜22又
は23を径由して、音波送受信計測装置11に至る距離
の音波伝送時間に相当する。また、音波送受信計測装置
11の送信タイムチャート(第4図(a))の周波数f
Xと、これに対応するI同受信タイムチャート(第4図
(b))の周波数fl+f!nfs との時間差は、第
5図fb)に示すように、音波送受信計測装置11と、
@2の音波応答装置21゜22又は23との距離の往復
伝送時間に相当する。
The corresponding reception time chart (Fig. 4(b))
The time difference with the above frequencies ft, f-, fs is as shown in FIG.
This corresponds to the sound wave transmission time of the distance to the sound wave transmission/reception measuring device 11 via the sound wave response device 12 and the second sound wave response device 21, 22 or 23. In addition, the frequency f of the transmission time chart of the sound wave transmission/reception measuring device 11 (FIG. 4(a))
X and the frequency fl+f! of the corresponding I reception time chart (Fig. 4(b)). nfs, as shown in FIG.
This corresponds to the round trip transmission time of the distance between @2 and the sonic response device 21, 22 or 23.

従って、音波送受信計測装置11の送信タイムチャート
(@4図(a)のfoに対応する同受信タイムチャート
(第4図(b))のfl、f−、f−の方が、送信タイ
ムチャート11TのfXVc対応する受信タイムチャー
トIIRのf、、f、、f、よりも遅れて到看すること
により、これら周波数f r +f!、f3の判別をす
ることが可能である・また、音波送受信計測装置の受信
タイムチャート11R上で、周波数ft、f−、fsの
分離がでできないときは、これが分解できるように送信
タイムチャート11T上で周波数f、とfXとの間隔を
若干ずらすことによシ分離することが可能となる。
Therefore, the transmission time chart fl, f-, f- of the same reception time chart (Fig. 4 (b)) corresponding to the transmission time chart (fo of @ Fig. 4 (a)) of the sound wave transmission/reception measuring device 11 is By arriving later than f, , f, , f in the reception time chart IIR corresponding to fXVc of 11T, it is possible to determine these frequencies f r +f!, f3. If the frequencies ft, f-, and fs cannot be separated on the reception time chart 11R of the measuring device, the intervals between frequencies f and fX can be slightly shifted on the transmission time chart 11T so that they can be resolved. It becomes possible to separate the two.

(発明の効果) 以上説明したように1本発明によれは% 2段階にわた
る計測を同時に実施して1段階とすることによフ、海底
面に設置された応答装置(トランスポンダ)を基準とし
た、潜水船又は曳航体等の水中の測位の所要時間をほぼ
半分に短縮することができる。
(Effects of the Invention) As explained above, the present invention achieves 1.0% by simultaneously performing two steps of measurement and making it into one step. , the time required for underwater positioning of a submersible, a towed vehicle, etc. can be reduced by almost half.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(al、 (b)は従来の水中測位システムの第
1段階および第2段階の質問応答の径路を示す構成図、
第2図(al〜(j)は第1図の動作を示す超音波信号
のタイムチャート、第3図は第1図による測位システム
の構成図、第4図(a)〜(」)は不発明の実施である
0図において、1・・・・・観測、2・・・・潜水船。 11・・・・音波送受信、計測装置、12・・ 第1の
音波応答装置、21.22.23・・・・第2の音波応
答装置、である。 □t 87図 84図
FIGS. 1(al) and 1(b) are configuration diagrams showing the route of question answering in the first and second stages of a conventional underwater positioning system;
Fig. 2 (al to (j)) is a time chart of ultrasonic signals showing the operation of Fig. 1, Fig. 3 is a block diagram of the positioning system according to Fig. 1, and Fig. 4 (a) to ('') are not shown. In Figure 0, which is an implementation of the invention, 1... Observation, 2... Submersible vessel, 11... Sound wave transmission/reception, measuring device, 12... First sound wave response device, 21.22. 23...Second sonic response device. □t 87Figure 84

Claims (1)

【特許請求の範囲】[Claims] 所定の第1および第2の質問波数を同時あるいは殆んど
同時に船上の音波送受信計装置から水中に送信し、測位
すべき測位体に搭載されfc第1の音波応答装置により
受信された前記@1の質問周波数に応答して前記第2の
質問周波数と同じ質問波数を送信し、水中固定個所に設
置された複数の第2の音波応答装置によりそれぞれ受信
された前記音波応答装置および第1の音波応答装置から
の各軍2の質問周波数にそれぞれ応答してこれら各応答
装置により異なる応答周波数音それぞれ送信し、前記音
波送受信計測装置によシ前記第1の音波応答装置からの
質問周波数および前記第2の音波応答装置からの各応答
周波数をそれぞれ受けて測位することを特徴とする水中
測位方法。
Predetermined first and second interrogation wave numbers are simultaneously or almost simultaneously transmitted into the water from the sonic transceiver device on board the ship, and are received by the fc first sonic response device mounted on the positioning object to be positioned. The sonic wave transponder transmits the same interrogation wave number as the second interrogation frequency in response to the first interrogation frequency, and is received by each of the plurality of second sonic wave transponders installed at fixed locations underwater. In response to the interrogation frequency of each group 2 from the sonic transponder, each of the transponders transmits a sound with a different response frequency, and the sonic wave transmitting/receiving measuring device transmits the interrogation frequency from the first sonic transponder and the An underwater positioning method characterized in that positioning is performed by receiving each response frequency from a second sound wave response device.
JP8137884A 1984-04-23 1984-04-23 Underwater level measurement Pending JPS60225080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8137884A JPS60225080A (en) 1984-04-23 1984-04-23 Underwater level measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8137884A JPS60225080A (en) 1984-04-23 1984-04-23 Underwater level measurement

Publications (1)

Publication Number Publication Date
JPS60225080A true JPS60225080A (en) 1985-11-09

Family

ID=13744636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8137884A Pending JPS60225080A (en) 1984-04-23 1984-04-23 Underwater level measurement

Country Status (1)

Country Link
JP (1) JPS60225080A (en)

Similar Documents

Publication Publication Date Title
US4516226A (en) Acoustic positioning system
US6859419B1 (en) Laser-based acousto-optic uplink communications technique
US4669067A (en) Method and apparatus for locating a submerged marine streamer
US4845686A (en) Method and device for determining the position of immersed objects with respect to the ship which tows them
EP0298165B1 (en) System and method for measuring ice thickness
NO160883C (en) SYSTEM AND PROCEDURE FOR LOCATING A TOWED MARINE REMARKS IN TERMS OF A TOWING VESSEL.
JPS58213271A (en) Method and device for telemeter-measuring relative position of underwater object to carrying body by sound wave
US3949605A (en) Acoustic current/flow measuring system
GB1170955A (en) Improvements in or relating to Methods and Apparatus for Recording the Contour Lines of Topographic Surfaces.
US4924446A (en) Navigation system and method for determining the position of a relatively noisy platform using underwater transponders
NO20060016L (en) Architecture for an acoustic multistatic system
JPS60225080A (en) Underwater level measurement
US5122989A (en) Digital echo repeater
US6215732B1 (en) Expendable device for measurement of sound velocity profile
JPS6037432B2 (en) Ultrasonic distance measuring device
US4042904A (en) Hydroways
US5062088A (en) Acoustic measuring system
US5426617A (en) Long baseline tracking system
NO139938B (en) PROCEDURE FOR DETERMINING THE MOVEMENT OF MOVEMENT THROUGH BY A VESSEL
JP3202327B2 (en) Acoustic signage equipment for submersible guidance
JPH0474990A (en) Distance meter
JPS626540Y2 (en)
JPS5830556B2 (en) Wave transceiver device
JPS6217737Y2 (en)
JP2811832B2 (en) Undersea terrain display