JPS60224923A - Suction system for engine - Google Patents

Suction system for engine

Info

Publication number
JPS60224923A
JPS60224923A JP59080919A JP8091984A JPS60224923A JP S60224923 A JPS60224923 A JP S60224923A JP 59080919 A JP59080919 A JP 59080919A JP 8091984 A JP8091984 A JP 8091984A JP S60224923 A JPS60224923 A JP S60224923A
Authority
JP
Japan
Prior art keywords
surge tank
casing
partition wall
engine
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59080919A
Other languages
Japanese (ja)
Other versions
JPH0517376B2 (en
Inventor
Kazuhiko Ueda
和彦 上田
Mitsuo Hitomi
光夫 人見
Junzo Sasaki
潤三 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP59080919A priority Critical patent/JPS60224923A/en
Priority to DE3446377A priority patent/DE3446377C2/en
Priority to US06/683,836 priority patent/US4619226A/en
Publication of JPS60224923A publication Critical patent/JPS60224923A/en
Publication of JPH0517376B2 publication Critical patent/JPH0517376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0257Rotatable plenum chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0205Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the charging effect
    • F02B27/0215Oscillating pipe charging, i.e. variable intake pipe length charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B27/00Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues
    • F02B27/02Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means
    • F02B27/0226Use of kinetic or wave energy of charge in induction systems, or of combustion residues in exhaust systems, for improving quantity of charge or for increasing removal of combustion residues the systems having variable, i.e. adjustable, cross-sectional areas, chambers of variable volume, or like variable means characterised by the means generating the charging effect
    • F02B27/0247Plenum chambers; Resonance chambers or resonance pipes
    • F02B27/0263Plenum chambers; Resonance chambers or resonance pipes the plenum chamber and at least one of the intake ducts having a common wall, and the intake ducts wrap partially around the plenum chamber, i.e. snail-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B2075/1804Number of cylinders
    • F02B2075/1816Number of cylinders four
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/16Engines characterised by number of cylinders, e.g. single-cylinder engines
    • F02B75/18Multi-cylinder engines
    • F02B75/20Multi-cylinder engines with cylinders all in one line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Characterised By The Charging Evacuation (AREA)

Abstract

PURPOSE:To reduce a sliding area between a partition wall and a surge tank as well as to secure favorable sealability, by installing the partition wall solidly in the surge tank as one body along a circumferential surface of the tank, while making an outer end of the partition wall come into contact with a casing of the said tank's circumference. CONSTITUTION:A surge tank 16 is rotatably installed in the downstream side of a manifold suction passage, while a casing 17 is installed in the circumference in the same concentric axial form as the said tank 16. And, independent suction pipes 18 numbered as many as the number of cylinders of an engine are branched off from an upper part of the casing 17, forming a branch passage 19. In this case, a partition wall 17b' partitioning a peripheral empty space 16a in a rotation axial direction of the surge tank 16 is solidly formed in the tip of a partition wall 17b of the casing 17. In addition, an extension part 20 of the branch passage 19 toward the side of the surge tank 16 is made to be independent in the rotation axial direction by means of a partition wall 21, extending over in a circumferential direction, erected in an inner surface of the casing 17. Moreover, a seal member is attached to a concave groove of an inner end part of the partition wall 21.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、吸気の慣性効果を利用する形式のエンジンの
吸気装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an intake system for an engine that utilizes the inertia effect of intake air.

(従来技術) エンジンの吸気の充填効率を高めて出力の向上を図るた
めに、吸気の慣性効果を利用することが知られている。
(Prior Art) It is known to utilize the inertia effect of the intake air in order to improve the engine output by increasing the filling efficiency of the intake air of the engine.

つまり、エンジンの吸気工程において、ピストンの下降
に伴って燃焼室内に負圧が発生し、この負圧は、吸気弁
の開作動によって圧力波を発生させる。この圧力波は、
負圧波として表われ吸気通路内を音速で伝播し、サージ
タンク壁面で反射して正圧力波となり燃焼室に戻る。従
って、この反射波が開弁期間中に燃焼室に戻るように吸
気装置を構成すれば、吸気の押し込み効果すなわち、慣
性効果を得ることができ、充填効率を高めることができ
る。反射波が、燃焼室に現われる時間は主として圧力波
の伝播経路の断面積と長さ、すなわち吸気通路の断面積
とサージタンクまでの通路長さにより定まる。これに対
し、吸気弁の開弁期間は、エンジンの回転数によって異
なり、回転数が大きくなる程開弁期間は短くなる。慣性
効果は、吸気工程の終期に反射波の最大圧力が燃焼室内
に現われるような回転数の場合に最も効率的に得られ、
圧力波の伝播経路が単一の場合には、慣性効果は回転数
変化に対し一つのピーク値を有するように現われる。従
って、回転数変化に対するトルク特性でみると、慣性効
果が得られる一定の回転数領域でトルクが増大するとい
う効果として現われる。しかし、エンジンのトルク特性
は回転数の変化に対して、大きく変化しないことが望ま
しく、上述のように特定の一つの回転数域でのみトルク
が増大するような慣性効果を得ることは、トルク特性全
体でみれば、必ずしも好ましいものではない。
That is, during the intake stroke of the engine, negative pressure is generated within the combustion chamber as the piston descends, and this negative pressure generates pressure waves when the intake valve is opened. This pressure wave is
It appears as a negative pressure wave, propagates at the speed of sound in the intake passage, reflects off the surge tank wall, and becomes a positive pressure wave that returns to the combustion chamber. Therefore, if the intake device is configured so that this reflected wave returns to the combustion chamber during the valve opening period, a pushing effect of intake air, that is, an inertial effect can be obtained, and the charging efficiency can be increased. The time during which the reflected waves appear in the combustion chamber is determined mainly by the cross-sectional area and length of the pressure wave propagation path, that is, the cross-sectional area of the intake passage and the length of the passage to the surge tank. On the other hand, the opening period of the intake valve varies depending on the rotational speed of the engine, and the higher the rotational speed, the shorter the valve opening period. The inertia effect is most efficiently obtained at a rotation speed such that the maximum pressure of the reflected wave appears in the combustion chamber at the end of the intake stroke.
When the pressure wave has a single propagation path, the inertial effect appears to have one peak value with respect to changes in rotational speed. Therefore, when looking at the torque characteristics with respect to changes in the rotational speed, the effect appears as an increase in torque in a certain rotational speed region where an inertial effect can be obtained. However, it is desirable that the torque characteristics of the engine do not change significantly with changes in rotation speed, and as mentioned above, obtaining an inertia effect that increases torque only in one specific rotation speed range Overall, this is not necessarily a good thing.

そこで、例えば実開昭56−2023号公報や実開昭5
7−22629号公報に示されているように、吸気系の
途中にサージタンクを設け、該サージタンクから各気筒
に至る吸気通路の状態をエンジンの運転状態に応じて変
化させることにより広い範囲のエンジン運転領域で吸気
慣性効果を利用できるようにした吸気装置が提案されて
いる。
Therefore, for example, Utility Model Application Publication No. 56-2023 and Utility Model Application Publication No. 5
As shown in Japanese Patent No. 7-22629, a surge tank is provided in the middle of the intake system, and the condition of the intake passage from the surge tank to each cylinder is changed according to the operating condition of the engine. An intake system that can utilize the intake inertia effect in the engine operating range has been proposed.

しかしながら、上記公開実用新案に記載された吸気装置
は、いずれも単に固定管に嵌合された可動管を直線方向
にスライドさせることによって通路長を変化させる構成
であるので、所要のエンジン運転領域で利用するために
は、吸気通路の長さの変化を著しく大きくしなければな
らず、このため装置全体が大型化し、当該吸気装置を組
み込んだエンジンを自動車に搭載する場合にスペース上
の問題を生ずることとなる。
However, all of the intake systems described in the above-mentioned published utility models have a structure in which the passage length is changed by simply sliding a movable tube fitted into a fixed tube in a linear direction, so that the passage length can be changed within the required engine operating range. In order to utilize this method, the change in the length of the intake passage must be significantly increased, which increases the size of the entire device and creates space problems when an engine incorporating the intake device is installed in an automobile. That will happen.

この問題を解決するために、サージタンクを外周部に延
長吸気通路部としての延長部を形成してなるケーシング
内に回転自在に設置し、回転スライドさせることにより
、燃焼室からサージタンクの内部空間までの吸気通路長
さを変化させ問るようにした吸気装置が提案されている
。この場合、サージタンクからの吸気を各気筒にそれぞ
れ独立した状態で分配供給する必要があるために、サー
ジタンク外周部に形成される」1記延長部を区画形成す
る仕切壁とサージタンク外面きが摺動接触することとな
る。そして、この摺動部分が大きいき吸気のシール不良
が生じやすく、前記圧力波が1モジれるという問題や、
摺動抵抗の増大による動力損失の問題等が生じる。
In order to solve this problem, the surge tank is rotatably installed inside a casing that has an extension on its outer periphery that serves as an extended intake passage. An intake device has been proposed in which the length of the intake passage is varied. In this case, since it is necessary to distribute and supply the intake air from the surge tank to each cylinder independently, the partition wall that partitions the extension part and the outer surface of the surge tank are formed on the outer periphery of the surge tank. will come into sliding contact. Since this sliding part is large, it is easy to cause a seal failure of the intake air, and there is a problem that the pressure wave is distorted.
Problems such as power loss arise due to increased sliding resistance.

(発明の目的) 本発明は上記サージタンクをケーシング内−C回転スラ
イドさせるような吸気装置において、製茹コスト、組立
て性等を悪化させることなく、1−記仕切壁とサージタ
ンクとの摺動面積を小さくして、」−記両者間のシール
性の向上、上記号−シタ/りを回転スライドさせるため
の動力損失の低減等を有効に図り得るエンジンの吸気装
置を提供することを目的とする。
(Object of the Invention) The present invention provides an air intake device in which the surge tank is rotated and slid inside the casing, and the present invention provides the following advantages: It is an object of the present invention to provide an engine intake device that has a smaller area and can effectively improve the sealing performance between the two and reduce the power loss caused by rotating and sliding the upper symbol. do.

(発明の構成) 本発明は、上記問題の解決に当たり、り下のように構成
される。つまり、本発明の吸気装置は、エンジンの吸気
系に回転自在に設けられたサージタンクと、該づ一ジタ
ンクの周囲を覆いかつ1−ジタンクを回転自在に支持す
るケーシングと、該ケーシングに設けられ前記サージタ
ンクの内部空間と各気筒を連通させる独立吸気管とを備
え、さらに、各気筒に対応してサージタンク周面に設け
られ前記独立吸気管を介してサージタンクの内部空間と
各気筒とを連通させる連通口と、前記サージタンク外面
とケーシング内面との間に配設されサージタンクをとり
まく周囲空間を各気筒毎に互いに独立させてサージタン
クの周方向に仕切る周方向仕切壁と、前記周囲空間をサ
ージタンクの回転軸方向に仕切る回転軸方向仕切壁と、
前記サージタンクをエンジンの運転状態に応じて回転さ
せる駆動機構とを備えており、前記独立吸気管と、周方
向仕切壁と、回転軸方向仕切壁とは前記ケーシングと一
体に形成されているこきを特徴とする。
(Structure of the Invention) In order to solve the above problem, the present invention is structured as follows. In other words, the intake device of the present invention includes a surge tank rotatably provided in the intake system of an engine, a casing that covers the periphery of the surge tank and rotatably supports the surge tank, and a surge tank provided in the casing. An independent intake pipe is provided that communicates the internal space of the surge tank with each cylinder, and is further provided on the circumferential surface of the surge tank corresponding to each cylinder so that the internal space of the surge tank communicates with each cylinder through the independent intake pipe. a circumferential partition wall disposed between the outer surface of the surge tank and the inner surface of the casing and partitioning the surrounding space surrounding the surge tank in the circumferential direction of the surge tank so as to make each cylinder independent of the surrounding space; a rotation axis direction partition wall that partitions the surrounding space in the rotation axis direction of the surge tank;
a drive mechanism that rotates the surge tank according to the operating state of the engine; It is characterized by

(発明の効果) 本発明によれば、仕切壁をサージタンク外周面に沿って
サージタンクと一体に設け、仕切壁外端でケーシングに
接触させる構造に比し摺動部周長が短くなり摺動部面積
が少なくなる。これによって良好なシール性を確保する
ことが容易になり、また、サージタンクをケーシングに
対して軸方向から挿入して組立てられるのでケーシング
を分割式とする必要がなく製造コストを低減化すること
ができるとともに、ケーシングに対するサージタンクの
摺動抵抗を減少させることができる。なお、仕切壁内端
部にシール機構を設ければ、さらに、シール性を向上さ
せることができる。また、サージタンク周囲空間におい
ては、吸気の慣性力により、外方すなわちケーシング側
の圧力が高くなる。
(Effects of the Invention) According to the present invention, the circumference of the sliding part is shortened compared to a structure in which the partition wall is provided integrally with the surge tank along the outer circumferential surface of the surge tank, and the outer end of the partition wall contacts the casing. The area of moving parts is reduced. This makes it easy to ensure good sealing performance, and since the surge tank can be assembled by inserting it into the casing from the axial direction, there is no need to separate the casing, reducing manufacturing costs. At the same time, the sliding resistance of the surge tank relative to the casing can be reduced. Note that if a sealing mechanism is provided at the inner end of the partition wall, the sealing performance can be further improved. In addition, in the space surrounding the surge tank, the pressure on the outside, that is, on the casing side increases due to the inertial force of the intake air.

従って、ケーシング側でシールするより、内方、すなわ
ち、サージタンク側でシールする方がシール性を有効に
確保することができる。
Therefore, sealing performance can be more effectively ensured by sealing inward, that is, on the surge tank side, rather than sealing on the casing side.

(実施例) 以下、添付図面を参照しつつ、本発明の好ましい実施例
につき、詳細に説明する。
(Embodiments) Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図、第2図及び第3図を参照すれば、エンジン1は
4気筒型エンジンであり、内部をピストン4が往復動す
るシリンダ5が形成されているシリンダブロック2、及
びシリンダヘッド3を有する。シリンダ5の上部には燃
焼室6が形成されており、該燃焼r6には吸気ボート7
及び排気ポート8が開口している。シリンダヘッド3に
は、吸気ポート7及び排気ポート8に連通ずる吸気通路
9及び排気通路10が形成されている。吸気ポート7は
吸気弁11によって開閉されるようになっている。各シ
リンダ5への吸気系として集合吸気通路12の先端にエ
アクリーナ13が設けられ、その下流にはエア70−メ
ータ14が設けられている。エア70−メータ14の下
流にはスロットル弁15が配置され、その下流には回転
自在に略円筒形状のサージタンク16が設けられている
Referring to FIGS. 1, 2, and 3, an engine 1 is a four-cylinder engine, and includes a cylinder block 2 in which a cylinder 5 in which a piston 4 reciprocates is formed, and a cylinder head 3. have A combustion chamber 6 is formed in the upper part of the cylinder 5, and an intake boat 7 is provided in the combustion chamber 6.
and the exhaust port 8 is open. The cylinder head 3 is formed with an intake passage 9 and an exhaust passage 10 that communicate with the intake port 7 and the exhaust port 8. The intake port 7 is opened and closed by an intake valve 11. An air cleaner 13 is provided at the tip of the collective intake passage 12 as an air intake system to each cylinder 5, and an air 70-meter 14 is provided downstream of the air cleaner 13. A throttle valve 15 is disposed downstream of the air 70-meter 14, and a substantially cylindrical surge tank 16 is rotatably disposed downstream of the throttle valve 15.

このサージタンク16の外周には、該サージタンク16
と同軸状に円筒状のケーシング17が設けられている。
On the outer periphery of this surge tank 16,
A cylindrical casing 17 is provided coaxially with.

このケーシング17の上方部からはエンジンlの気筒数
と同数の独立吸気管18が分岐して分岐通路19を形成
しており、該独立吸気管18がシリンダヘッド3の各吸
気通路9に接続されていることにより、サージタンク1
6から各シリンダ5に連通ずる通路が形成される。上記
ケーシング17及び各独立吸気管18は、第2図及び第
3図に示されるように一体で形成されている。
From the upper part of this casing 17, independent intake pipes 18 of the same number as the number of cylinders of the engine 1 are branched to form branch passages 19, and the independent intake pipes 18 are connected to each intake passage 9 of the cylinder head 3. By doing so, the surge tank 1
A passage communicating with each cylinder 5 from the cylinder 6 is formed. The casing 17 and each independent intake pipe 18 are integrally formed as shown in FIGS. 2 and 3.

ケーシング17には内方に向ってうず巻状に画成される
通路のうち、独立吸気管18内の分岐通路19から上流
側すなわち、サージタンク外周面に延びる通路部分を構
成する延長部2oが形成される。延長部20は外側は第
3図における接続部Δにおいてなだらかに独立吸気管1
8に接続されるケーシング外壁17aにより、内側は独
立吸気管18の管壁の延長線上に連続して、上記外壁1
7aとほぼ平行してサージタンク側に延びる隔壁+7b
とで画成されており、この隔壁17bの先端にはサージ
タンク16外面と摺接して周囲空間16aが周方向に連
通ずるのを隔離、ずなゎち周囲空間16aをサージタン
ク16の回転軸方向に仕切る回転軸方向仕切壁17b′
が一体に形成されている。サージタンク16は、軸受2
2.23を介して、ケーシング17に、軸24のまわり
に回転自在に軸支されている。そして、この延長部20
は、ケーシング17の内面に立設され周方向に延びる周
方向仕切壁21によって回転軸方向に夫々独立させられ
ている。周方向仕切壁21の内端部には、凹溝21aが
形成されており、その凹溝21aにはリング状のテフロ
ン等の材料で作られるシール部材28が取付けられてい
る。このシール部材28の先端は、サージタンク16の
外周面と摺接している。第2図に示すように、サージタ
ンク16はほぼ円筒状の外形を成しており、回転軸24
の方向に延びている。その軸方向の一端は開口して吸気
導入口26が設けられている。その先端部を覆うように
ケーシング17の開口部17’cが延び、該開口部17
cにスロットル弁15を内部に配設するスロットルボデ
ィ15aが接続されている。これによって集合吸気通路
12はサージタンク16の内部空間16bと連通ずる。
The casing 17 has an extension portion 2o that constitutes a passage portion extending upstream from the branch passage 19 in the independent intake pipe 18, that is, toward the outer peripheral surface of the surge tank, among the passages defined inward in a spiral shape. It is formed. The extension part 20 is connected to the independent intake pipe 1 gently on the outside at the connection part Δ in FIG.
The casing outer wall 17a is connected to the outer wall 17a, so that the inner side is continuous on the extension line of the pipe wall of the independent intake pipe 18 and the outer wall 17a is connected to the outer wall 17a.
Partition wall +7b extending toward the surge tank side almost parallel to 7a
The tip of the partition wall 17b is in sliding contact with the outer surface of the surge tank 16 to isolate the surrounding space 16a from communicating in the circumferential direction. Rotation axis direction partition wall 17b' that partitions in the direction
are integrally formed. The surge tank 16 is connected to the bearing 2
2.23, it is rotatably supported on the casing 17 around a shaft 24. And this extension part 20
are separated from each other in the rotational axis direction by a circumferential partition wall 21 that is erected on the inner surface of the casing 17 and extends in the circumferential direction. A groove 21a is formed at the inner end of the circumferential partition wall 21, and a ring-shaped sealing member 28 made of a material such as Teflon is attached to the groove 21a. The tip of this seal member 28 is in sliding contact with the outer peripheral surface of the surge tank 16. As shown in FIG. 2, the surge tank 16 has an approximately cylindrical outer shape, and has a rotating shaft 2
extends in the direction of One end in the axial direction is open and an intake inlet 26 is provided. An opening 17'c of the casing 17 extends to cover the tip of the opening 17'c.
A throttle body 15a in which a throttle valve 15 is disposed is connected to c. Thereby, the collective intake passage 12 communicates with the internal space 16b of the surge tank 16.

そして、勺−ジタンク16の周面には、各燃焼室6に連
通ずる延長部20の対応する位置に4つの連通口27が
設けられている。尚、この実施例においては、第2図に
示すように中央に位置する2つの延長部20間に予備空
間30が設けられていると共に、該空間3、Oとサージ
タンク16の内部空間16bとが連通口31によって連
通されている。この空間30は、各種の制御用として安
定した吸気負圧を取出したり、EGR通路を接続したり
するのに用いられる。
Four communication ports 27 are provided on the circumferential surface of the engine tank 16 at corresponding positions of the extension portions 20 that communicate with the respective combustion chambers 6. In this embodiment, as shown in FIG. 2, a preliminary space 30 is provided between the two centrally located extensions 20, and the space 3, O and the internal space 16b of the surge tank 16 are connected to each other. are communicated through a communication port 31. This space 30 is used for extracting stable intake negative pressure for various control purposes and for connecting an EGR passage.

また、第4図に示すように、サージタンク16を軸24
の回りに回転させるだめの駆動機構132が設けられて
いる。この駆動機構32は、ケーシング17の側端から
突出したサージタンク16の軸24の先端に取付けられ
たピニオン33と、該ピニオン33と噛合するセクター
ギヤ34と、このセクターギヤ34を、レバー35を介
して駆動するダイヤフラム装置36から構成されており
、該ダイヤフラム装置36にはエンジンjの排気圧が導
入されるようになっている。
Further, as shown in FIG. 4, the surge tank 16 is connected to the shaft 24.
A drive mechanism 132 is provided for rotating the shaft. This drive mechanism 32 includes a pinion 33 attached to the tip of the shaft 24 of the surge tank 16 that protrudes from the side end of the casing 17, a sector gear 34 that meshes with the pinion 33, and a lever 35 that connects the sector gear 34 with the lever 35. The exhaust pressure of the engine j is introduced into the diaphragm device 36, which is driven through the diaphragm device 36.

上記排気圧はエンジンの高回転時には高く、低回転時に
は低くなるから、エンジン回転数の上昇に従って上記セ
クターギヤ34及びピニオン33が夫々図示の位置から
a方向に回動し、これに伴ってサージタンク16も第3
図に示すa方向に回動する。
Since the exhaust pressure is high when the engine speed is high and low when the engine speed is low, as the engine speed increases, the sector gear 34 and pinion 33 rotate from the positions shown in the figure in the direction a, and accordingly, the surge tank 16 is also the third
It rotates in the direction a shown in the figure.

すなわち、圧力波の伝播経路は回転数の増大に応じて短
くなり、燃焼室6内に反射波が現われる時間間隔が短く
なる。また、第3図に示すように各独立吸気管18の上
方部には、燃料供給管37からの燃料を噴射する燃料噴
射弁38が取付けられている。なお、第3図に示すよう
に連通口27の吸気流出方向(実線矢印の方向)の端面
には傾斜面27aが設けられ、流路抵抗を減少させるよ
うに構成している。さらに第5図示すサージタンク16
の連通口27及び31の内面側もなだらかな曲面になる
ように形成されており、これによって連通口27.31
から流出する吸気の流路抵抗が減少する。
That is, the propagation path of the pressure wave becomes shorter as the rotational speed increases, and the time interval at which reflected waves appear in the combustion chamber 6 becomes shorter. Further, as shown in FIG. 3, a fuel injection valve 38 for injecting fuel from a fuel supply pipe 37 is attached to the upper part of each independent intake pipe 18. As shown in FIG. 3, an inclined surface 27a is provided on the end surface of the communication port 27 in the intake and outflow direction (in the direction of the solid arrow), so as to reduce the flow path resistance. Furthermore, the surge tank 16 shown in FIG.
The inner surfaces of the communication ports 27 and 31 are also formed to have gently curved surfaces.
The flow path resistance of the intake air flowing out from the pump is reduced.

以上の構成において、吸気は、エアクリーナ13、エア
70−メータ14及びスロットルボディ15aを介して
ケーシング17内に入り、サージタンク16の吸気導入
口26よりサージタンク16の回転軸方向からサージタ
ンク16内に導入される。そしてほぼ直角方向に屈曲し
連通口27を通って該連通口27から延長部20を通っ
−C各分岐通路19に導かれ、さらに各燃焼室6に導か
れる。そして、ピストン4が上死点から下降し始める際
、負圧波が発生し、この負圧波は、各吸気通路9、およ
び各分岐通路19内を上流側に伝播し、サージタンク1
6に入ってその壁面で反射して、正負が反転するととも
に、燃焼室6に伝播して吸気の慣性効果をもたらし、充
填効率を向上させる。
In the above configuration, intake air enters the casing 17 via the air cleaner 13, air 70-meter 14, and throttle body 15a, and enters the surge tank 16 from the rotation axis direction of the surge tank 16 from the intake inlet 26 of the surge tank 16. will be introduced in Then, it is bent in a substantially right angle direction, passes through a communication port 27, passes from the communication port 27 through the extension portion 20, is guided to each -C branch passage 19, and is further guided to each combustion chamber 6. Then, when the piston 4 starts to descend from the top dead center, a negative pressure wave is generated, and this negative pressure wave propagates upstream in each intake passage 9 and each branch passage 19, and the surge tank 1
The air enters the combustion chamber 6 and is reflected by its wall surface, inverting its polarity and propagating into the combustion chamber 6 to bring about an inertial effect on the intake air, improving charging efficiency.

そして、本例では、周方向仕切壁21及び回転軸方向仕
切壁17b′がケーシング17と一体に設けられている
ため、摺動部分の面積が少なく、従って、容易にシール
効果を高めることができ、かつ、独立吸気管18もケー
シング17と一体に設けられているため、製造面でも、
性能面でも有利な結果を得ることができる。
In this example, since the circumferential partition wall 21 and the rotation axis partition wall 17b' are provided integrally with the casing 17, the area of the sliding portion is small, and therefore the sealing effect can be easily enhanced. In addition, since the independent intake pipe 18 is also provided integrally with the casing 17, it is easy to manufacture.
Advantageous results can also be obtained in terms of performance.

第6図を参照すれば本発明の他の実施例が示されており
、本例では、仕切壁21の先端部にフッ素樹脂等のシー
ル材料39が塗布されており、このシール材料39がサ
ージタンク16外面に摺接するようになっている。本例
においても前例と同様な効果を得ることができる。
Referring to FIG. 6, another embodiment of the present invention is shown. In this embodiment, a sealing material 39 such as fluororesin is applied to the tip of the partition wall 21, and this sealing material 39 It is designed to come into sliding contact with the outer surface of the tank 16. In this example as well, the same effects as in the previous example can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に従う吸気装置を備えたエンジンの外
形M、第2図は、第1図のn−n断面図、第3図は第2
図におけるIII−I[1断面図、第4図は駆動機構の
1例を示す正面図、第5図は第3図におけるV−V断面
図、第6図は他の実施例を示す第2図と同様の図である
。 l・・・・エンジン 2・・・・・シリンタフロック3
・・・・・シリンダへラド 4・・・・・・ピストンl
l・・・・・吸気弁 15・・・・・・スロットル弁1
6・・・・サージタンク 16a・・・・・周囲空間1
6b・・・・・・内部空間 17・・・・・・ケーシン
グ17b’・・・・・回転軸方向仕切壁 18・・・独立吸気管 21・・・・・・周方向仕切壁
27 ・・・連通口 32・・・・・・駆動機構筒 1
 図
FIG. 1 shows the external shape M of an engine equipped with an intake system according to the present invention, FIG. 2 is a sectional view taken along line nn in FIG. 1, and FIG.
III-I[1 sectional view in the figure, FIG. 4 is a front view showing one example of the drive mechanism, FIG. 5 is a V-V sectional view in FIG. FIG. l...Engine 2...Cylinder lock 3
・・・・・・Rad to cylinder 4・・・・・・Piston l
l...Intake valve 15...Throttle valve 1
6... Surge tank 16a... Surrounding space 1
6b...Internal space 17...Casing 17b'...Rotation axis direction partition wall 18...Independent intake pipe 21......Circumferential direction partition wall 27...・Communication port 32...Drive mechanism cylinder 1
figure

Claims (1)

【特許請求の範囲】[Claims] エンジンの吸気系に回転自在に設けられたサージタンク
と、該サージタンクの周囲を覆いかつサージタンクを回
転自在に支持するケーシングと、該ケーシングに設けら
れ前記サージタンクの内部空間と各気筒を連通させる独
立吸気管とを備えたエンジンの吸気装置であって、各気
筒に対応してサージタンク周面に設けられ前記独立吸気
管を介してサージタンクの内部空間と各気筒とを連通さ
せる連通口と、前記サージタンク外面とケーシング内面
との間に配設されサージタンクをとりまく周囲空間を各
気筒毎に互いに独立させてサージタンクの周方向に仕切
る周方向仕切壁と、前記周囲空間をサージタンクの回転
軸方向に仕切る回転軸方向仕切壁と、前記サージタンク
をエンジンの運転状態に応じて回転させる駆動機構とを
備えており、前記独立吸気管と、周方向仕切壁と、回転
軸方向仕切壁とは前記ケーシングと一体に形成されてい
ることを特徴とするエンジンの吸気装置。
A surge tank rotatably provided in the intake system of an engine; a casing that covers the surge tank and rotatably supports the surge tank; and a casing provided in the casing that communicates the internal space of the surge tank with each cylinder. An intake system for an engine comprising an independent intake pipe, the communication port being provided on the circumferential surface of a surge tank corresponding to each cylinder and communicating the internal space of the surge tank with each cylinder via the independent intake pipe. a circumferential partition wall disposed between the outer surface of the surge tank and the inner surface of the casing and partitioning the surrounding space surrounding the surge tank in the circumferential direction of the surge tank so as to make each cylinder independent from each other; and a drive mechanism that rotates the surge tank according to the operating state of the engine, and the independent intake pipe, the circumferential partition wall, and the rotation axis direction partition wall. An intake device for an engine, wherein the wall is formed integrally with the casing.
JP59080919A 1983-12-21 1984-04-20 Suction system for engine Granted JPS60224923A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59080919A JPS60224923A (en) 1984-04-20 1984-04-20 Suction system for engine
DE3446377A DE3446377C2 (en) 1983-12-21 1984-12-19 Intake device for a piston internal combustion engine
US06/683,836 US4619226A (en) 1983-12-21 1984-12-19 Intake device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59080919A JPS60224923A (en) 1984-04-20 1984-04-20 Suction system for engine

Publications (2)

Publication Number Publication Date
JPS60224923A true JPS60224923A (en) 1985-11-09
JPH0517376B2 JPH0517376B2 (en) 1993-03-09

Family

ID=13731816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59080919A Granted JPS60224923A (en) 1983-12-21 1984-04-20 Suction system for engine

Country Status (1)

Country Link
JP (1) JPS60224923A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950587A (en) * 1998-07-22 1999-09-14 Basf Corporation Continuously variable runner length manifold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5950587A (en) * 1998-07-22 1999-09-14 Basf Corporation Continuously variable runner length manifold

Also Published As

Publication number Publication date
JPH0517376B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
JP4706775B2 (en) Intake device for internal combustion engine
JP4508453B2 (en) Variable intake system for multi-cylinder internal combustion engine
JPH0217686B2 (en)
JP3304751B2 (en) Intake passage structure of internal combustion engine
US4756284A (en) Intake system for internal combustion engine
JPH0730703B2 (en) Engine exhaust control device
JPS60224923A (en) Suction system for engine
JPS60224922A (en) Suction system for multicylinder engine
JPS60216029A (en) Suction apparatus for engine
JP3235436B2 (en) Variable intake system for engine
JP5206604B2 (en) Intake control device for internal combustion engine
JPS60228723A (en) Intake device of engine
JP3482078B2 (en) Intake manifold and intake control system
JP3106936B2 (en) Variable intake device
JPS60224924A (en) Suction system for multicylinder engine
JPS60216064A (en) Intake unit for multi-cylinder engine
JPS6019914A (en) Intake air device for internal-combustion engine
JPH0439368Y2 (en)
JP4007009B2 (en) Intake device
JP3624540B2 (en) Engine intake system
US4062326A (en) Rotary engine with rotary intake valve
JP3295605B2 (en) Intake control device
JPH08338251A (en) Inlet pipe length variable mechanism
JPH0320497Y2 (en)
KR200149879Y1 (en) Intake apparatus in engine

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees