JPS6022484B2 - Manufacturing method of oxide permanent magnet - Google Patents

Manufacturing method of oxide permanent magnet

Info

Publication number
JPS6022484B2
JPS6022484B2 JP52132462A JP13246277A JPS6022484B2 JP S6022484 B2 JPS6022484 B2 JP S6022484B2 JP 52132462 A JP52132462 A JP 52132462A JP 13246277 A JP13246277 A JP 13246277A JP S6022484 B2 JPS6022484 B2 JP S6022484B2
Authority
JP
Japan
Prior art keywords
powder
moldability
magnetic field
molding
ferrite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52132462A
Other languages
Japanese (ja)
Other versions
JPS5466497A (en
Inventor
忠邦 佐藤
義路 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP52132462A priority Critical patent/JPS6022484B2/en
Publication of JPS5466497A publication Critical patent/JPS5466497A/en
Publication of JPS6022484B2 publication Critical patent/JPS6022484B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 本発明は、酸化物永久磁石の製造方法に関し、特にフェ
ライト粉末の磁界中成形に用いる結着剤に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an oxide permanent magnet, and more particularly to a binder used for molding ferrite powder in a magnetic field.

磁界中でマグネトプランバィト構造を有するフェライト
磁石微粉末を配向させた異方性磁石の製造方法として、
湿式法と乾式法の二通りが知られている。
As a method for manufacturing an anisotropic magnet in which fine ferrite magnet powder having a magnetoplumbite structure is oriented in a magnetic field,
Two methods are known: wet method and dry method.

緑式法はフェライト微粉末に分散媒として、水、ポリビ
ニルアルコール(PVA)水溶液、アルコール等を加え
、懸濁させ、金型中で磁界整列し、成形するものである
。この方法は加圧成形中に分散媒を金型外に排出する必
要があり、このため成形に要する時間が長くなる。強制
的排液の手段を講ずると成形装置が大がかりなものとな
る。また成形圧力を大きくすると、成形体に亀烈がはい
り易い等の欠点を有している。一方、乾式法はフェライ
ト磁石微粉末に結着剤としてPVA、酢酸ビニル、ショ
ウノウ、デンプン、ステアリン酸、パラフィンワックス
等を混合し、乾燥した粉末を磁界中で加圧成形するもの
である。この方法は湿式法に比較し、成形所要時間が短
く、装置が小さくてすみ、また複雑な形状の成形にも適
している等の長所を有している。しかし、乾式磁場成形
法においては、緑式法に比較し、フェライト磁石粉末の
配向性は低く、したがって磁石の性能が低くなるという
欠点も有している。また、フェライト磁石微粉末(一般
には2〃以下)は成形性が悪いという欠点も合わせて考
慮しなければならない。従釆、フェライト磁石粉末の成
形性と配向性に関しては相反する頚向を示しており、成
形性が良く、しかもフェライト粉末の配向を阻害しない
ような結着剤を使用することは、工業上非常に重要なこ
とである。乾式磁場成形用フェライト磁石粉末の結着剤
として、特公昭47−21197号公報ではステアリン
酸系統のM′〔C瓜(C馬),6C02〕但しMはCa
,聡,Sr,Pbが好適であるとしている。
The Green method involves adding water, polyvinyl alcohol (PVA) aqueous solution, alcohol, etc. as a dispersion medium to fine ferrite powder, suspending it, aligning it with a magnetic field in a mold, and molding it. This method requires discharging the dispersion medium out of the mold during pressure molding, which increases the time required for molding. If a means of forced liquid drainage is taken, the molding apparatus becomes large-scale. Furthermore, when the molding pressure is increased, there are drawbacks such as the tendency for cracks to form in the molded product. On the other hand, in the dry method, fine ferrite magnet powder is mixed with binders such as PVA, vinyl acetate, camphor, starch, stearic acid, paraffin wax, etc., and the dried powder is pressure-molded in a magnetic field. Compared to the wet method, this method has advantages such as shorter molding time, smaller equipment, and suitability for molding complex shapes. However, the dry magnetic field forming method has the disadvantage that the orientation of the ferrite magnet powder is lower than that of the green method, and therefore the performance of the magnet is lowered. In addition, the disadvantage that ferrite magnet fine powder (generally 2 or less) has poor moldability must also be taken into consideration. However, the moldability and orientation of ferrite magnet powder are contradictory, and it is industrially extremely difficult to use a binder that has good moldability and does not inhibit the orientation of ferrite powder. This is important. As a binder for ferrite magnet powder for dry magnetic field forming, Japanese Patent Publication No. 47-21197 discloses a stearic acid-based M' [C quince, 6C02], where M is Ca.
, Satoshi, Sr, and Pb are preferred.

乾式磁場成形において、PVA、酢酸ピニル等溶液でフ
ェライト粉末に混合後乾燥した粉末、パラフィンワック
ス混合等の粉末は、成形性は良いが、フェライト粒子の
配向が不十分である。
In dry magnetic field molding, powders prepared by mixing ferrite powder with a solution of PVA, pinyl acetate, etc. and then drying them, and powders mixed with paraffin wax have good moldability, but the orientation of the ferrite particles is insufficient.

ショウノウを結着剤とした粉末は成形性、配向性におい
て好適であるが、ショウ/ウが昇華するために、フェラ
イト粉末との混合比率が時間の経過とともに変化し、成
形作業に支障をきたしたり、成形体の強度低下をもたら
すという欠点を有している。/上記に鑑み、種々研究を
重ねた結果、乾式磁場成形用フェライト粉末の結着剤と
して、ステアリン酸マグネシウムや成形性に優れ、磁界
による鯨向性が良好であり、経時に対して安定な物質で
あることを発見した。
Powders using camphor as a binder are suitable for moldability and orientation, but because the camphor sublimes, the mixing ratio with ferrite powder changes over time, which may impede molding work. However, it has the disadvantage of causing a decrease in the strength of the molded product. / In view of the above, as a result of various studies, we have found magnesium stearate, a material that has excellent moldability, good whale tropism due to magnetic fields, and is stable over time as a binder for ferrite powder for dry magnetic field molding. I discovered that.

本発明はこの発見にもとづくもので、ステアリン酸マグ
ネシウムを結着剤として使用することによって、乾式磁
場成形用として好適な粉末を製造することが可能となっ
た。以下にこの発明での実施例を示す。実施例 1 炭酸ストロンチウム(S℃03)と酸化第二鉄(Fe2
Q)をモル比で1:5.6の割合で混合し、123ぴ0
で1時間仮焼成し、ボールミルで1ム以下に微粉砕した
The present invention is based on this discovery, and by using magnesium stearate as a binder, it has become possible to produce a powder suitable for dry magnetic field molding. Examples of this invention are shown below. Example 1 Strontium carbonate (S°C03) and ferric oxide (Fe2
Q) was mixed at a molar ratio of 1:5.6, and 123 pi
The mixture was calcined for 1 hour using a ball mill and pulverized to less than 1 µm.

この粉末を乾燥し、実験用粉末とした。上記粉末に、ス
テアリン酸、ステアリン酸カルシウム、ステアリン酸ア
ルミニウム、ステアリン酸亜鉛、ステアリン酸マグネシ
ウム、ショウノウの粉末を各1.5%混合、またPVA
を10%水溶液にして、パラフィンワックスは45%懸
濁液の形で、各々実質1.5%混合後乾燥した。
This powder was dried and used as an experimental powder. The above powder is mixed with 1.5% each of stearic acid, calcium stearate, aluminum stearate, zinc stearate, magnesium stearate, and camphor powder, and PVA
were made into a 10% aqueous solution, and the paraffin wax was made into a 45% suspension, each of which was mixed at a substantially 1.5% concentration and then dried.

この乾燥粒魂を鱗砕後、約4戊の磁界中で直径約4物吻
、高さ約10側の円盤状に、試料圧lton/地で成形
した後、1220qoで1時間本焼成を行ない、成形性
、配向性、磁気特性について調べた。その結果を第1表
に示す。第1表 ステアリン酸マグネシウムを結着剤として使用したもの
は、成形性が良好であり、配何度、磁気特性に優れてい
た。
After scaling the dried grains, it was formed into a disk shape with a diameter of about 4 mm and a height of about 10 mm in a magnetic field of about 4 mm using a sample pressure of lton/ground, and then main firing was performed at 1220 qo for 1 hour. , moldability, orientation, and magnetic properties were investigated. The results are shown in Table 1. Those using magnesium stearate as a binder in Table 1 had good moldability, and were excellent in alignment degree and magnetic properties.

実施例 2 実施例1と同様の方法で製造したストロンチウムフェラ
イト微粉末に、ステアリン酸マグネシウム・ショウノウ
、ステアリン酸、ステアリン酸亜鉛粉末を各0.5〜6
%混合した後、鯛砕し、実施例1と同機の乾式磁場成形
を行なった。
Example 2 Magnesium stearate/camphor, stearic acid, and zinc stearate powder were added to strontium ferrite fine powder produced in the same manner as in Example 1 by 0.5 to 6% each.
%, the sea bream was crushed, and dry magnetic field molding was performed using the same machine as in Example 1.

成形体を120℃で1時間焼成し、成形性、磁気特性に
ついて調べた。その成形性の結果を第2表に、磁気特性
の結果を第3表に示す。第2表 表中、不可は成形体を得ることが困難な状態、 可は成形条件を変化させることにより成形体を得ること
が可能な状態、 良好は成形体内部にスリップの存在しない成形体が得ら
れる状態、 優秀はスリップがなく、強度の高い成形体が得られる状
態、 であり、実用的には「良好」以上の成形性が必要である
The molded body was fired at 120° C. for 1 hour, and its moldability and magnetic properties were examined. The moldability results are shown in Table 2, and the magnetic properties results are shown in Table 3. In Table 2, "Fail" means that it is difficult to obtain a molded product, "Good" means that it is possible to obtain a molded product by changing the molding conditions, and "Good" means that there is no slip inside the molded product. An excellent state is one in which a molded article with high strength and no slippage can be obtained, and for practical purposes, moldability of "good" or better is required.

第3表 ステアリン酸マグネシウムを0.5〜6%混入したもの
は成形性、磁気特性共に優れていたが、混入量が7%に
達すると暁結体の密度の低下が顕著となり、磁気特性の
低下も著しくなりつつあった。
Table 3: Products containing 0.5 to 6% magnesium stearate had excellent moldability and magnetic properties, but when the content reached 7%, the density of Akatsuki compacts decreased significantly, and the magnetic properties deteriorated. The decline was also becoming noticeable.

実施例 3 実施例1と同様の方法で製造したストロンチウムフェラ
イト微粉末に、結着剤としてステアリン酸マグネシウム
1%とショウノウ0.5%とを同時に混合し、解砕後、
実施例1と同様の条件で乾式磁場成形し、122000
で1時間焼成し、成形性、磁気特性について調べた。
Example 3 1% magnesium stearate and 0.5% camphor were simultaneously mixed as a binder to strontium ferrite fine powder produced in the same manner as in Example 1, and after crushing,
Dry magnetic field molding was carried out under the same conditions as in Example 1, and 122,000
After firing for 1 hour, the moldability and magnetic properties were examined.

その結果を第4表に示す。第4表 成形性、磁気特性共に非常に優れていた。The results are shown in Table 4. Table 4 Both moldability and magnetic properties were excellent.

実施例 4 実施例1と同様の方法で製造したストロンチウムフェラ
イト微粉末に、結着剤としてステアリン酸マグネシウム
1%とステアリン酸アルミニウム0.5%とを同時に混
合し、解砕後、実施例1と同様の条件で乾式磁場成形し
、1220℃で1時間焼成し、成形性、磁気特性につい
て調べた。
Example 4 1% magnesium stearate and 0.5% aluminum stearate were simultaneously mixed as a binder to strontium ferrite fine powder produced in the same manner as in Example 1, and after crushing, the powder was prepared as in Example 1. Dry magnetic field molding was carried out under the same conditions, followed by firing at 1220° C. for 1 hour, and the moldability and magnetic properties were examined.

その結果を第5表に示す。第5表 成形性、磁気特性共に良好であった。The results are shown in Table 5. Table 5 Both moldability and magnetic properties were good.

一般に、従来の異方性乾式磁場成形法において、フェラ
イト磁石の成形性と異万性は相反する煩向を示していた
が、本発明はこの点を著しく改善するものであり、工業
上非常に有益である。
In general, in the conventional anisotropic dry magnetic field forming method, the formability and anisotropy of ferrite magnets have shown contradictory problems, but the present invention significantly improves this point and is extremely useful in industry. Beneficial.

以上の実施例1と実施例2、実施例3、実施例4で明ら
かなように、ストロンチウムフェライト微粉末にステア
リン酸マグネシウムを0.5〜6Wt%混合することに
より、乾式磁場成形において、成形性に優れ、また異万
性が高く、高性能の酸化物磁石を製造することができる
。尚、粉末の成形性並びに結着剤の混合量増加による焼
成工程に要する時間の増加と磁気特性とを考慮すると、
ステアリン酸マグネシウムの混合量は1〜2%程度が最
適である。上記実施例では、ストロンチウムフェライト
磁石のみについて述べたが、本発明は乾式磁場成形にお
ける成形体の配向性と成形性を向上するものであるから
、これのみに限定されることなく、バリウム、ストロン
チウム、鉛、ガルシウム等の1種又は2種以上を含むフ
ェライト磁石についても適用できるものである。
As is clear from the above Examples 1, 2, 3, and 4, by mixing 0.5 to 6 wt% of magnesium stearate to the fine strontium ferrite powder, the moldability is improved in dry magnetic field forming. It is possible to manufacture high-performance oxide magnets with excellent properties and high anisotropy. In addition, considering the moldability of the powder, the increase in time required for the firing process due to the increase in the amount of binder mixed, and the magnetic properties,
The optimum mixing amount of magnesium stearate is about 1 to 2%. In the above embodiments, only strontium ferrite magnets were described, but since the present invention improves the orientation and formability of compacts in dry magnetic field forming, barium, strontium, It can also be applied to ferrite magnets containing one or more of lead, galcium, etc.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化物磁石粉末に、結着剤としてステアリン酸マグ
ネシウムを0.5〜6wt.%混入し、これを乾式で磁
界中加圧成形後、焼成することを特徴とする異方性酸化
物磁石の製造方法。
1 Add 0.5 to 6 wt. of magnesium stearate as a binder to oxide magnet powder. %, dry pressure molded in a magnetic field, and then fired.
JP52132462A 1977-11-07 1977-11-07 Manufacturing method of oxide permanent magnet Expired JPS6022484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52132462A JPS6022484B2 (en) 1977-11-07 1977-11-07 Manufacturing method of oxide permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52132462A JPS6022484B2 (en) 1977-11-07 1977-11-07 Manufacturing method of oxide permanent magnet

Publications (2)

Publication Number Publication Date
JPS5466497A JPS5466497A (en) 1979-05-29
JPS6022484B2 true JPS6022484B2 (en) 1985-06-03

Family

ID=15081921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52132462A Expired JPS6022484B2 (en) 1977-11-07 1977-11-07 Manufacturing method of oxide permanent magnet

Country Status (1)

Country Link
JP (1) JPS6022484B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165188U (en) * 1986-04-10 1987-10-20

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2545603B2 (en) * 1989-03-10 1996-10-23 住友特殊金属株式会社 Method for manufacturing anisotropic sintered magnet
JP2006156743A (en) * 2004-11-30 2006-06-15 Tdk Corp Process for producing oxide magnetic body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165188U (en) * 1986-04-10 1987-10-20

Also Published As

Publication number Publication date
JPS5466497A (en) 1979-05-29

Similar Documents

Publication Publication Date Title
JP4236285B2 (en) Process for producing molded articles from ceramic and metal powders
JPH02219889A (en) Ceramic alumina abrasive grain planted with iron oxide
JP2001509770A (en) Preparation and use of water-soluble polymers with pendant derivatized amide, ester or ether functionalities as ceramic dispersants and binders
JPS63288909A (en) Method of obtaining alpha-alumina powder with submicron grain diameter
JPH02239113A (en) Production of boehmite
JP3368507B2 (en) Zirconia powder and method for producing the same
JPS6022484B2 (en) Manufacturing method of oxide permanent magnet
US3198603A (en) Method for producing ferric oxide particles
Abe et al. Mechanochemically assisted preparation process of barium hexaferrite powders
JP2999968B2 (en) Oxide permanent magnet and method of manufacturing the same
US3421914A (en) Process for making porous light-weight zirconia bodies
US3794720A (en) Process for producing hard ferrites
JPH0369545A (en) Manufacturing white ware ceramic product
US4117058A (en) Method of making boron containing strontium ferrite
JPH0684264B2 (en) Method for producing anisotropic oxide permanent magnet
JP2002255556A (en) Zirconium oxide powder and grain comprising the same
JPS647030B2 (en)
JP3257095B2 (en) Method for producing zirconia powder
JPS6343359B2 (en)
JPH01117002A (en) Manufacture of oxide permanent magnet
JPH0684263B2 (en) Method for producing anisotropic oxide permanent magnet
JPS61222206A (en) Manufacture of oxide permanent magnet
JPS6022483B2 (en) Manufacturing method of oxide permanent magnet
JPH02160610A (en) Production of aluminum nitride powder
JP2602717B2 (en) Manufacturing method of ceramic powder