JPS60222210A - Mold formed by curing laminated carbon fiber prepregs - Google Patents

Mold formed by curing laminated carbon fiber prepregs

Info

Publication number
JPS60222210A
JPS60222210A JP7988384A JP7988384A JPS60222210A JP S60222210 A JPS60222210 A JP S60222210A JP 7988384 A JP7988384 A JP 7988384A JP 7988384 A JP7988384 A JP 7988384A JP S60222210 A JPS60222210 A JP S60222210A
Authority
JP
Japan
Prior art keywords
mold
carbon fiber
prepreg
molding
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7988384A
Other languages
Japanese (ja)
Other versions
JPH0572244B2 (en
Inventor
Keiichi Kawaguchi
川口 佳一
Takao Bannai
伴内 孝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASEI FIBER RAITO KK
Mitsubishi Kasei Corp
Original Assignee
KASEI FIBER RAITO KK
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASEI FIBER RAITO KK, Mitsubishi Kasei Corp filed Critical KASEI FIBER RAITO KK
Priority to JP7988384A priority Critical patent/JPS60222210A/en
Publication of JPS60222210A publication Critical patent/JPS60222210A/en
Publication of JPH0572244B2 publication Critical patent/JPH0572244B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To form a light wt. mold having dimensional accuracy and good heat conductivity, by selecting one or more of a carbon fiber prepreg so as to satisfy a specific thermal condition as the whole of a mold after curing and laminating the same to a specific carbon fiber prepreg being a first layer. CONSTITUTION:A mold is constituted by laminating at least two or more of carbon fiber prepreg layers. In order to enhance the smoothness of the surface part thereof, as a first carbon fiber prepreg, a cloth like one comprising a carbon fiber with a thickness of 0.5mm. or less is used. Further, various carbon fiber prepregs are selected so as to satisfy a physical values wherein the thermal expansivity of the obtained mold is 6.0X10<-6>/ deg.C or less and the heat conductivity thereof is 1.0kcal/m.hr. deg.C or more. By this method, a light wt. mold good in heat conductivity and having high dimensional accuracy is obtained.

Description

【発明の詳細な説明】 本発明は炭素繊維プリプレグを積層し硬化してなるψ成
型用型に関するものであシ、よシ詳しくは熱可塑性樹脂
あるいは熱可塑性樹脂尋の合成樹脂を成型する際に用い
られる炭素繊維クロスプリプレグを積層し硬化してなる
成型用型に関するものである。
[Detailed Description of the Invention] The present invention relates to a mold for ψ molding made by laminating and curing carbon fiber prepreg, and more specifically, it relates to a mold for molding a thermoplastic resin or a synthetic resin similar to a thermoplastic resin. This invention relates to a mold made by laminating and curing carbon fiber cloth prepregs.

一般に、かかる用途に用いられる成型用型には、その作
業の際に加熱及び冷却が行なわれるため、寸法精度及び
良熱伝導性が要求されそおシ1通常、鋼、アルミ合金、
アルミ鋳造等の金属型が多く用いられてきた。しかしな
がら金属型は特に大きな製品を製造する際に重量が大き
く取扱いが困−であシ、かつ高価であるという欠点があ
ったりか、I!+する欠点を解決するものとして石膏型
、樹脂型があるが1石膏型は/ 0’ OC散はガラス
繊維強化樹脂を用いたものが使用されているか−、ガラ
ス繊維であるため熱伝導性が悪く、冷却あるいは加熱に
時間を要するため作業サイクルが非常に長くなシ、更に
剛性及び強度が低く、かつ耐熱性も劣るためその使用は
限定されるという欠点がある。
In general, molds used for such purposes are required to have dimensional accuracy and good thermal conductivity because they are heated and cooled during the operation.1 Usually, molds made of steel, aluminum alloy,
Metal molds such as aluminum casting have been widely used. However, metal molds have the drawbacks of being heavy and difficult to handle, especially when manufacturing large products, and being expensive. There are plaster molds and resin molds that solve the disadvantages of +. On the other hand, the work cycle is very long because cooling or heating takes time, and furthermore, its use is limited because its rigidity and strength are low and its heat resistance is also poor.

上記問題につき本発明者等は鋭意検討した結果特定の炭
素繊維プリプレグを第1層とし、それに更に1層以上の
炭素繊維プリプレグを、硬化後の成型用型全体として熱
膨張係数がt、OX10−”/T:以下、熱伝導率が八
o zca1/m、hr、0以上となる如く選択して積
層し、硬化さ岸れば。
The inventors of the present invention have conducted intensive studies regarding the above-mentioned problems. As a result, a specific carbon fiber prepreg is used as the first layer, and one or more layers of carbon fiber prepreg are added to the first layer.The thermal expansion coefficient of the entire mold after curing is t, OX10- /T: Hereinafter, layers are selected and laminated so that the thermal conductivity is 8 ozca1/m, hr, 0 or more, and then cured.

合成樹脂の成型用型として製作、取扱いが極めて簡便か
つ経済的であり、精度や強度が金型に近い十分な水準の
ものであり、しかも成型時の操作性に優れた斯界待望の
成型用型を提供し得ることを見出し1本発明に到達した
。すなわち本発明の目的は寸法精度が高く、熱伝導性が
良好で、かつ軽量である成型用型を提供することにある
A long-awaited mold for molding in the industry that is extremely easy and economical to manufacture and handle as a synthetic resin molding mold, has sufficient accuracy and strength close to that of a mold, and has excellent operability during molding. The present invention was achieved by discovering that it is possible to provide the following. That is, an object of the present invention is to provide a molding die that has high dimensional accuracy, good thermal conductivity, and is lightweight.

しかしてかかる目的は少なくとも一層以上に炭素繊維ク
ロスプリプレグを積層し硬化して得られる成型用型であ
って、該積層部の第1層がプリプレグ厚み0.!■以下
である炭素繊維クロスプリプレグからなシ、該成型用型
の熱膨張係数がg、o x t 07C以下であシ、か
つ 熱伝導率が八(7Kaal/m、hr、 C以上で
ある炭素繊維プリプレグを積層し硬化してなる成型用型
に′つて達成される。
The object is a mold obtained by laminating and curing at least one layer of carbon fiber cloth prepreg, in which the first layer of the laminated portion has a prepreg thickness of 0. ! ■It is not made of carbon fiber cloth prepreg, and the thermal expansion coefficient of the mold for molding is less than 07C, and the carbon fiber has a thermal conductivity of 8 (7Kaal/m, hr, C or more). This is achieved using a mold made by laminating and curing fiber prepregs.

ここで炭素繊維クロスプリプレグとは炭素繊 維の織布
に熱硬化性樹脂を含浸したもので6!D。
Here, carbon fiber cloth prepreg is a carbon fiber fabric impregnated with thermosetting resin6! D.

炭素繊維としてはPAN系炭素炭素繊維ッチ系炭素繊維
のいずれも使用できるが、高弾性のピッチ系炭素繊維を
使用するのが好ましい。また熱硬化性樹脂線エポキシ樹
脂、フェノール樹脂。
As the carbon fibers, both PAN-based carbon fibers and pitch-based carbon fibers can be used, but highly elastic pitch-based carbon fibers are preferably used. Also thermosetting resin wire epoxy resin, phenolic resin.

イ ポリ岸ミド樹脂、ポリエステル樹脂等から選ばれるが、
なかでもエボΦシ樹脂が好適に用いられる。
Selected from IPori Kishimid resin, polyester resin, etc.
Among them, embossed Φ resin is preferably used.

また1本発明の成型用型は一般に樹脂層と同様の方法に
よシ製造されるが、その製造方法の例として真空バッグ
成形法を挙げると1石膏マスター等0母型の表面部声清
浄にした後・その表面部に離型剤を塗布し1次いで離型
剤が塗布された母型表面部にゲルコート剤を塗布するが
In addition, the mold of the present invention is generally manufactured by the same method as the resin layer, but an example of the manufacturing method is the vacuum bag molding method. After that, a mold release agent is applied to the surface of the mold, and then a gel coat agent is applied to the surface of the mother mold coated with the mold release agent.

かかる塗布は必要に応じて、数度繰シ、返し行なっても
よい。その場合は、ゲルコート剤がある程度硬化した後
に再度塗布するのが好ましい。
Such application may be repeated several times as necessary. In that case, it is preferable to apply the gel coat agent again after it has hardened to some extent.

ここでゲルコート剤は成型用型の表面部に平滑性を付与
するために使用されるものであって。
The gel coat agent is used to impart smoothness to the surface of the mold.

炭素繊維プリプレグとのなじみがよいものであれF1%
特に限定されるものではない。母型表面部に上記方法に
よシゲルコート剤を塗布した後直ちに1炭素繊維プリプ
レグを少なくともλ層板上積層し、真空バッグ成形を行
なう。例えば100 mmHg 以上、to〜1soC
の温度で、硬化させ、硬化終了後、減圧下、5o−ao
Cまで冷却し、次いで常圧に戻した後、硬化し九成型用
型を母型から取シ出す。ここで本発明に用いられる炭素
繊維プリプレグは上記温度で形状を保持する程度に硬化
する熱硬化樹脂が含浸されているものが好ましい。該硬
化した成型用型を、母屋等の形状保持装置を用いず10
0〜lりOC,/−7時間の条件で後硬化さす、完全に
硬化させることによシ1本発明の成型用型が得られる。
F1% if it is compatible with carbon fiber prepreg.
It is not particularly limited. Immediately after applying the Shigel coating agent to the surface of the matrix by the above method, one carbon fiber prepreg is laminated on at least a λ layer plate, and vacuum bag molding is performed. For example, 100 mmHg or more, to ~1soC
After curing, under reduced pressure, 5o-ao
After cooling to C and then returning to normal pressure, the mold is cured and the mold is removed from the mother mold. The carbon fiber prepreg used in the present invention is preferably impregnated with a thermosetting resin that hardens to the extent that it retains its shape at the above temperature. The cured molding die was heated for 10 minutes without using a shape retaining device such as a purlin.
The mold for molding of the present invention can be obtained by post-curing and completely curing under the conditions of 0 to 1 OC for /-7 hours.

またゲルコート剤を使用しないオートハープ硬化法によ
っても製造できる。
It can also be manufactured by an autoharp curing method that does not use a gel coat agent.

かかる方法によって得られる成型用型は炭素繊維プリプ
レグが少なくとも一層以上あればよく、特に層数の限定
はないが、使用時に変形を生じ危い、、程度の剛性を付
与する厚さを有するものが好ましい。尚、場合によシ成
屋用型の外表面部に補強材部を配設し、かかる剛性を補
強してもよい。
The mold obtained by this method only needs to have at least one layer of carbon fiber prepreg, and there is no particular limitation on the number of layers, but the mold must have a thickness that provides enough rigidity to avoid deformation during use. preferable. Incidentally, in some cases, a reinforcing material portion may be provided on the outer surface of the mold for finishing the mold to reinforce such rigidity.

また、成型用型の表面部の平滑性を向上させる丸めには
表面層に接する炭素繊維プリプレグすなわち、第1層の
炭素繊維プリプレグはプリプレグ厚みが0.2■以下で
あって炭素繊維がクロス状のものを使用する必要がある
。好ましくは0−J III以下Oものがよい。プリプ
レグ厚みが0.1■以上であると、該プリプレグを形成
する炭素繊維束自体の径が大きいため、該表面部に凹凸
を生じ易く、平滑性を損う場合を生じることがある。
In addition, for rounding to improve the smoothness of the surface of the mold, the carbon fiber prepreg in contact with the surface layer, that is, the first layer of carbon fiber prepreg, has a prepreg thickness of 0.2 mm or less and the carbon fibers are in a cross-like shape. You need to use the one. Preferably it is 0-J III or less. When the thickness of the prepreg is 0.1 square centimeters or more, the diameter of the carbon fiber bundle itself forming the prepreg is large, so that the surface tends to be uneven, which may impair smoothness.

なお、本発明で使用するプリプレグ厚みとは硬化前の炭
素繊維クロスプリプレグの厚みをいう。
Note that the prepreg thickness used in the present invention refers to the thickness of the carbon fiber cloth prepreg before curing.

ここで、炭素繊維クロスプリプレグは、炭素繊維布の織
シ方によシ′、平織シ、j枚朱子織シ。
Here, the carbon fiber cloth prepreg may be woven according to the weaving method of the carbon fiber cloth;

クロウフット朱子織11,1枚朱子織シ等の種々が知ら
れている。本発明に使用される炭素繊維クロスプリプレ
グはその織シ方に関し特に限定されるものではないが好
ましくは平織シ、クロウフット朱子織シのものがよい。
Various types such as Crowfoot Satin Weave 11 and Single-Piece Satin Weave are known. The weaving method of the carbon fiber cloth prepreg used in the present invention is not particularly limited, but plain weave and crowfoot satin weave are preferred.

また積層する際には目的に応じて織シ方及びプリプレグ
厚みの異なった炭素繊維クロスプリプレグ又は、その他
の炭素繊維プリプレグを併用し、第1層から順にプリプ
レグ厚みの小さなものから積層するのが好ましい。
In addition, when laminating, it is preferable to use carbon fiber cloth prepregs or other carbon fiber prepregs with different weaving methods and prepreg thicknesses depending on the purpose, and to laminate the prepregs in order from the first layer starting from the one with the smallest prepreg thickness. .

上記方法によシ得られる成型用型は、熱膨張係数が6.
0 X / 0 / C以下、好ましくは、3ρ×/ 
0 ””’/ C以下、かつ熱伝導率が八〇 ICOa
 ym * hr −C以上、好ましくはs J −O
KOa’1.7m −hr −C以上の亀のであって、
かかる物性値を満尼するように各種の炭素繊維プリプレ
グを選択使用することによシ、ガラス繊維等を用いた一
般の樹脂層に比較し、・熱伝導性が良好で、寸法精度が
高く、軽量な成型用型が得られる。
The mold obtained by the above method has a coefficient of thermal expansion of 6.
0X/0/C or less, preferably 3ρ×/
0 ``”'/ C or less and thermal conductivity 80 ICOa
ym*hr −C or more, preferably s J −O
A turtle with a KOa'1.7m -hr -C or higher,
By selecting and using various carbon fiber prepregs that satisfy these physical property values, compared to general resin layers using glass fiber etc., it has good thermal conductivity, high dimensional accuracy, A lightweight mold can be obtained.

本発明の成型用型は種々の成層に用いられるものである
が、そ0@性を活し、ポリエチレン、ポリプロピレン、
フェノール樹脂、エポキシ樹脂等の熟成臘(真空成製、
圧空成型)、RIM成型、発泡成型、圧縮成型あるいは
積層成型に用いられる成型用型に使用するのが最も好ま
しい。
The molding mold of the present invention is used for various layering, and by taking advantage of its zero @ property, it can be used for polyethylene, polypropylene,
Aged resin such as phenol resin and epoxy resin (vacuum-formed,
It is most preferable to use it in a mold used for air pressure molding), RIM molding, foam molding, compression molding, or lamination molding.

以下本発明を実施例によシ具体的に説明するが1本発明
はかかる実施例に限定されるものではない。
EXAMPLES The present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 直径コ108の半円球が一個違った形の表面部がエポキ
シ樹脂でコーティングされた石膏マスター表面部を清浄
にし、離型剤を塗布した。
Example 1 A gypsum master surface whose surface was coated with epoxy resin and had a different semicircular shape with a diameter of 108 mm was cleaned and a mold release agent was applied thereto.

塗布された離型剤の上にゲルコート層が厚さ約0.21
簡となるようにゲルコート剤(米国7ア同様のゲルコー
ト剤を厚さ約0.J j園となるよう再度塗布した後直
ちにプリプレグ厚み0.2173園、平織シの炭素繊維
クロスプリプレグ(米国ファイバーライト社製商品名M
XG−7tコ0/コj3μ以下「プリプレグ#l」とい
う。)を一層積層し、更にプリプレグ厚み0.117コ
■。
The gel coat layer has a thickness of approximately 0.21 mm on the applied mold release agent.
To make it easier, apply a gel coat agent similar to the one used in US 7A to a thickness of approximately 0.2 cm, and then immediately apply prepreg with a thickness of 0.217 mm and plain weave carbon fiber cloth prepreg (US Fiberlite). Company product name M
XG-7tCo0/Coj3μ or less is called "prepreg #l". ) is laminated in one layer, and the prepreg thickness is further increased to 0.117 mm.

クロウフット朱子織シの炭素繊維クロスプリプレグ(米
国ファイバーライト社製商品名MXG−74J (7/
 J j4’ r s以下「ブリプレグコ」という。)
をλ層積層した後、石膏マスター上か に多孔質のテフロンコートしたガラスクロスを載せ、更
にブリーダーを載せる。次いで熱電対を積層体の厚み方
向中央部に挿入し、減圧用治具を取り付けた。熱電対が
挿入された積層体を含む石膏マスター全体をナイロンフ
ィルムで覆い、7JOmmHg の減圧下吸引した。こ
れを加熱炉内に載置し、減圧状態のまtJc/分で昇温
し、温度制御を熱電対によシ行ない、tコ、Cで1時間
保持し脱泡を行なった。脱泡が完全に終了した後s J
 I Ctで減圧状態で冷却し、加熱炉から取シ出し、
常圧に戻し石膏マスターからナイロンフィルム、ブリー
ダー、ガラスクロス、熱電対等を除去した。脱泡処理を
行なった積層体上にプリプレグ厚み0.7 J 7■、
平織シの炭素繊維クロスプリプレグ(米国フィバ−ライ
ト社製商品名M X G −7420/λ!77、以下
「プリプレグ3」という。)を参層積層し、その上に加
熱及び冷却用液体を流通させるための外径10n、内径
tmの鋼管を70WI1.間隔で第7図の如く配置した
後、更にその上に前出のプリプレグ7t−%層積層した
。かかる積層体を含む石膏マスターを前記の手順で真空
パ3、ラグ成形装置を取ル付け、7.20mmHHの減
圧下で吸引した。これを前記同様の脱泡処理を行なうた
め。
Crowfoot satin weave carbon fiber cloth prepreg (trade name: MXG-74J (manufactured by Fiberlite, USA) (7/
J j4'rshereinafter referred to as "Buri Pregco". )
After laminating the λ layer, a porous Teflon-coated glass cloth is placed on top of the plaster master, and then a bleeder is placed on top. Next, a thermocouple was inserted into the center of the laminate in the thickness direction, and a pressure reducing jig was attached. The entire plaster master including the laminate in which the thermocouple was inserted was covered with a nylon film and vacuumed under a reduced pressure of 7 JOmmHg. This was placed in a heating furnace, the temperature was raised at a rate of tJc/min under reduced pressure, the temperature was controlled by a thermocouple, and the temperature was maintained at tJc/min for 1 hour to degas. After defoaming is completely completed s J
Cool it under reduced pressure with I Ct, remove it from the heating furnace,
The pressure was returned to normal and the nylon film, bleeder, glass cloth, thermocouple, etc. were removed from the plaster master. Prepreg thickness 0.7 J 7■ on the degassing laminate,
Plain weave carbon fiber cloth prepreg (trade name: M A steel pipe with an outer diameter of 10n and an inner diameter of tm is 70WI1. After arranging them at intervals as shown in FIG. 7, a 7t-% layer of the aforementioned prepreg was further laminated thereon. A gypsum master containing such a laminate was attached with a vacuum pump 3 and a lag molding device according to the procedure described above, and suctioned under a reduced pressure of 7.20 mmHH. In order to perform the same defoaming treatment as above.

t3C1で加熱炉内で昇温し、7時間保持した後、更に
り3Cまで昇温した。その状態で2時間保持し、硬化さ
せた。硬化終了後、stc’*で減圧上冷却し、常圧に
戻した後、石膏マスターを除去し、硬化した成型用型を
得た。これを加熱炉内に載置しs / ” Cs ’時
間で後硬化させ1本発明の成型用型を得た。
The temperature was raised in the heating furnace at t3C1, held for 7 hours, and then further raised to 3C. It was kept in that state for 2 hours to harden it. After curing, the mixture was cooled under reduced pressure with stc'* and returned to normal pressure, and the gypsum master was removed to obtain a hardened mold. This was placed in a heating furnace and post-cured for a time of s/"Cs" to obtain a mold for molding of the present invention.

得られた成型用型の加熱及び冷却用鋼管の一方の入口か
らvoCの恒温水を一2200dl1分0は中間点、A
及びEはπ==BO1DB=:ODとなるような点で、
各点の間隔は約3jtWmである。
From one inlet of the heating and cooling steel pipe of the obtained mold, voC constant temperature water is added to -2200 dl 1 minute 0 is the middle point, A
and E is such that π==BO1DB=:OD,
The interval between each point is approximately 3jtWm.

実施例コ & 00 ttas X J 00間の平板を母型とし
、実施例1と同様の方法で長さ300簡、巾/!011
Illのプリプレグ11プリプレグ−、プリプレグ3を
それぞれ一層、コ層%参層、計r層をこの願で積層した
。これを実施例/と同様の操作によシ硬化し積層体平板
を得た。この場合の積層体平板面内の各点の反〕量を積
層体平板中央点3弘 を基準とし測定した。その結果を第!図に示す。
Example Using a flat plate between KO & 00 ttas 011
In this application, prepreg 11 prepreg and prepreg 3 of Ill were laminated in one layer each, and a total of r layers, with a third layer and a third layer. This was cured in the same manner as in Example/1 to obtain a laminate flat plate. In this case, the amount of reaction at each point within the plane of the flat plate of the laminate was measured using the center point of the flat plate of the laminate as a reference point. Check out the results! As shown in the figure.

次いでこの硬化した積層体平板を/rOCで一時間、後
硬化した。後硬化した積層体平板の面内各点の反υ点を
上記と同様にして測定した。
The cured laminate slabs were then post-cured with /rOC for one hour. The inversion point at each in-plane point of the post-cured laminate flat plate was measured in the same manner as above.

その結果を第φ図゛に示す。なおaは!olIIII、
bは一2!鵡で、Oが各測定点を表わし、数字が反シ量
(単位m)を表わす。
The results are shown in Figure φ. Furthermore, a is! olIII,
b is one two! In the parrot, O represents each measurement point, and the number represents the amount (unit: m).

実施例3 引張弾性率−μ、OX / O”kl/−のPAN系炭
素炭素繊維いたプリプレグ、同jコ、t X / os
kI/−のピッチ系炭素繊維を用いたプリプレグ及び同
7.μX / O”kg / dのガラス繊維を用いた
籠、厚みへI瓢のシートを得た。このシートから長さコ
oom、巾/J111mのテストピースを取シ出し、下
記の通シ伝熱測定を行なった。
Example 3 Prepreg made of PAN-based carbon fiber with tensile modulus -μ, OX/O"kl/-, tX/os
Prepreg using pitch-based carbon fiber of kI/- and 7. A glass fiber basket of μX/O"kg/d and a sheet with a thickness of I gourd were obtained. A test piece with a length of 111 m and a width of 111 m was taken from this sheet, and the heat transfer through the glass was conducted as described below. Measurements were made.

各テストピース短辺部の−゛端を大容量の加熱に取り付
け、取シ付は部からJOttm離れた°個所の温度上昇
の経時変化を表面温度計で測定した。加熱ヒーターの温
度は1rors意温λ3Cの条件で3分後の各テストピ
ースの測定個所の平衡温度を測定した。その結果を第1
表に示す。なお同形状のアルミ板の値も参考の為第1表
に挙げた。
The -' end of each test piece's short side was attached to a large-capacity heating device, and the change in temperature over time at a point JOttm away from the attachment point was measured using a surface thermometer. The temperature of the heater was set to 1rors and the ambient temperature λ3C, and the equilibrium temperature at the measurement point of each test piece was measured after 3 minutes. The result is the first
Shown in the table. The values for an aluminum plate of the same shape are also listed in Table 1 for reference.

第 / 表 餐室温2JC 麗を用いた時間に対する表面温度の変化を示した図、第
参図は236で硬托した実施例−の積層平板の反り量(
単位間)を示した図及び第3図は、trocで後硬化し
た同積層平板の反シ量を示した図である。
Figure 1 shows the change in surface temperature with respect to time when using 2JC Rei.
Figures 3 and 3 are diagrams showing the amount of warping of the same laminated flat plate post-cured with troc.

l; □実施例1の成形用型 2; 銅 管 に 実施例コの積層板中央点 出 願 人 三菱化成工業株式会社 化成ファイバーライト株式会社 代 理 人 長谷用 − 〇欲か1名) メ1 図 第2図 晃3 図 妊譜時間l; □Molding mold of Example 1 2; Copper pipe The center point of the laminate of the example Sender: Mitsubishi Chemical Industries, Ltd. Kasei Fiber Light Co., Ltd. Representative for Hase - 〇Greed or 1 person) Figure 1 Figure 2 Akira 3 figure fertility time

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも2層以上に炭素繊維クロスプリプレグ
を積層し、次いで硬化して得られる成型用型であって、
該積層部の第1層がプリプレグ厚みo、r■以下である
炭素繊維クロスプリプレグからなり、該成型用型の熱膨
張係数がA、OX / 0− / C以下であシ、かつ
熱伝導率が/、OKca1/m、hr、C以1であるこ
とを特徴とする炭素繊維プリプレグを積層し硬化してな
る成型用型
(1) A molding mold obtained by laminating at least two layers of carbon fiber cloth prepreg and then curing,
The first layer of the laminated part is made of carbon fiber cloth prepreg with a prepreg thickness of o, r or less, and the mold has a thermal expansion coefficient of A, OX / 0- / C or less, and a thermal conductivity of A mold made by laminating and curing carbon fiber prepreg, characterized in that: /, OKca1/m, hr, C or more
(2)前記成型用型が熱成型用型、Rr M成型用型。 発泡成型用型、圧縮成型用型あるいは積層成型用型であ
ることを特徴とする特許請求の範囲第7項記載の炭素繊
維プリプレグを積層し硬化してなる成型用型 □
(2) The mold for molding is a mold for thermoforming, and a mold for RrM molding. A mold made by laminating and curing the carbon fiber prepreg according to claim 7, which is a mold for foam molding, a mold for compression molding, or a mold for lamination molding.
(3)前記炭素繊維クロスプリプレグがピッチ系炭素繊
維クロスプリプレグであることを特徴とする特許請求の
範囲第1項記載の炭素繊維ブ1ヒプレグを積層し硬化し
てなる成型用型
(3) A mold formed by laminating and curing the carbon fiber prepregs set forth in claim 1, wherein the carbon fiber cloth prepreg is a pitch-based carbon fiber cloth prepreg.
JP7988384A 1984-04-20 1984-04-20 Mold formed by curing laminated carbon fiber prepregs Granted JPS60222210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7988384A JPS60222210A (en) 1984-04-20 1984-04-20 Mold formed by curing laminated carbon fiber prepregs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7988384A JPS60222210A (en) 1984-04-20 1984-04-20 Mold formed by curing laminated carbon fiber prepregs

Publications (2)

Publication Number Publication Date
JPS60222210A true JPS60222210A (en) 1985-11-06
JPH0572244B2 JPH0572244B2 (en) 1993-10-08

Family

ID=13702647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7988384A Granted JPS60222210A (en) 1984-04-20 1984-04-20 Mold formed by curing laminated carbon fiber prepregs

Country Status (1)

Country Link
JP (1) JPS60222210A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275107A (en) * 1988-04-28 1989-11-02 Fuji Heavy Ind Ltd Preparation of mold made of composite material
WO2014083662A1 (en) * 2012-11-29 2014-06-05 国立大学法人岐阜大学 Molding jig manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132064A (en) * 1974-04-08 1975-10-18
JPS5376166U (en) * 1976-11-29 1978-06-24

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132064A (en) * 1974-04-08 1975-10-18
JPS5376166U (en) * 1976-11-29 1978-06-24

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01275107A (en) * 1988-04-28 1989-11-02 Fuji Heavy Ind Ltd Preparation of mold made of composite material
WO2014083662A1 (en) * 2012-11-29 2014-06-05 国立大学法人岐阜大学 Molding jig manufacturing method

Also Published As

Publication number Publication date
JPH0572244B2 (en) 1993-10-08

Similar Documents

Publication Publication Date Title
US4851280A (en) Composite tooling for composites manufacture
JP6094668B2 (en) Method for producing coated fiber reinforced resin molded article
US5071338A (en) Tool for forming complex composite articles
JPH02258221A (en) Production of mold for manufacturing complex material
US5217669A (en) Method for forming complex composite articles
CA1313491C (en) Tooling and method for forming complex composite articles
WO2019244994A1 (en) Prepreg sheet and manufacturing method therefor, fiber-reinforced composite material molded article and manufacturing method therefor, and method for manufacturing preform
JP2008230020A (en) Preform, its manufacturing method, and method for manufacturing frp
JPS60222210A (en) Mold formed by curing laminated carbon fiber prepregs
JP6717105B2 (en) Method for producing fiber-reinforced resin molding
EP0662380A2 (en) Mould for fibre-reinforced plastics
JPH0356333Y2 (en)
JP2008302498A (en) Resin transfer molding method and composite material
JP2004035604A (en) Semi-impregnated prepreg
JPH04176611A (en) Molding die made of fiber reinforced composite material
JP2767329B2 (en) Prepreg for resin mold to form surface layer of resin mold
JPH03236943A (en) Composite molded product composed of prepreg and molding material
JP2017087516A (en) Method for producing fiber-reinforced composite material molded product
JP2004338270A (en) Method for producing fiber-reinforced resin composite material and fiber-reinforced resin composite material
JP7139296B2 (en) Fiber-reinforced resin composite molding and method for producing the same
JP2007190854A (en) Molding method for hollow or solid frp moldings
JP2004517796A (en) Process for manufacturing carbon / carbon components
JP4052381B2 (en) Resin coat molding method
JPH04284225A (en) Molding method for fiber reinforced resin composite material
JPH03150155A (en) Manufacture of composite material made of aluminum and reinforced plastic

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term