JPS60221332A - Manufacture of optical fiber base material - Google Patents

Manufacture of optical fiber base material

Info

Publication number
JPS60221332A
JPS60221332A JP7537884A JP7537884A JPS60221332A JP S60221332 A JPS60221332 A JP S60221332A JP 7537884 A JP7537884 A JP 7537884A JP 7537884 A JP7537884 A JP 7537884A JP S60221332 A JPS60221332 A JP S60221332A
Authority
JP
Japan
Prior art keywords
glass
fine powder
optical fiber
quartz
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7537884A
Other languages
Japanese (ja)
Inventor
Jiyuu Kee Goo
ゴー・ジユー・ケー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP7537884A priority Critical patent/JPS60221332A/en
Publication of JPS60221332A publication Critical patent/JPS60221332A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/0128Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass
    • C03B37/01291Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process
    • C03B37/01294Manufacture of preforms for drawing fibres or filaments starting from pulverulent glass by progressive melting, e.g. melting glass powder during delivery to and adhering the so-formed melt to a target or preform, e.g. the Plasma Oxidation Deposition [POD] process by delivering pulverulent glass to the deposition target or preform where the powder is progressively melted, e.g. accretion

Abstract

PURPOSE:To obtain the titled base material which has a stair-shaped refractive index distribution in the direction of radius and is uniform in composition in the lengthwise direction by supplying the pulverized glass powder of high purity on the base plate of quartz glass rotated and driven and irradiating laser beams thereon to make it molten transparent glass. CONSTITUTION:After the porous quartz body of 0.1-0.3g/cm<3> density obtained by the flame decomposition reaction is crushed, it is treated in the atomosphere of chlorine and helium to obtain anhydrous pulverized glass powder 2 of high purity. Next, the pulverized powder 2 is introduced into a quartz vessel 1 and continuously allowed to fall off on a base plate 5 of quartz glass rotating and driving by means of a rotary driving apparatus 4 via a regulating part 3 to form a thin glass powder layer and also the layer is made to molten transparent glass by irradiating uniformly the laser beams 6 supplied from gaseous CO2 laser on the peripheral side from the center of the powder layer via a lens 7 and a movable reaction mirror 8 and a transparent glass rod 9 having desired length is grown on the base plate 5. Then, the rod 9 is cut off and introduced into a quartz tube for crack and optical fiber base material is manufactured with a rod-in tube method.

Description

【発明の詳細な説明】 〔発明の背景と目的〕 本発明は光ファイバ@利の製造方法に係り、特に半径方
向に階段状屈折率分布を有し、長さ方向に均一な組成を
有する光ファイバ母材を安価に製造するのに好適な光フ
ァイバ四相の製造方法に関するものである。
Detailed Description of the Invention [Background and Objectives of the Invention] The present invention relates to a method for manufacturing an optical fiber @, and in particular to a method for manufacturing an optical fiber, particularly for manufacturing optical fibers having a step-like refractive index distribution in the radial direction and a uniform composition in the length direction. The present invention relates to a method for manufacturing a four-phase optical fiber suitable for manufacturing a fiber base material at low cost.

光ファイバ旬月の製造方法とし現在広く用いられている
方法には、CV ])法(化学気相堆積法。
The currently widely used methods for manufacturing optical fibers include the CV]) method (chemical vapor deposition method).

MCVD法ともいう)とVAD法(気相軸付法)とがあ
る。CVD法は、酸素などをキャリアガスとして主原料
の四塩化硅素(S + C4)とJNI折率を制御する
だめの原料(BI3r3、POCl3 、Qe C14
など)とを回転中の石英パイプ内に導ひき、外から酸水
素バーナで加熱して煤状の石英と酸化物とを生成させ、
パイプ内に堆積させ、続いてこれを加熱溶融して透明ガ
ラス化する。その後、パイプ内を減圧し、1750℃程
度に加熱すると、パイプが軟化してパイプが大気圧でつ
ぶされ、中空部がなくなって光ファイバ母相となる。一
方、VAD法では、CVI)法の場合と同じ原料と屈折
率制御用原料とを使用する′が、それらの原料ガスを直
接酸水素バーナ火炎中で加水分解反応させて直径約0.
111+nのカラス微粒子を発生させ、垂直方向に配置
した回転中の棒状のガラス基村上に堆積させる。このよ
うにして得られた多孔質ガラス母相を(J I−(水除
去塩素処理をした後、約1ooo℃の電気炉中で加熱し
て透明ガラス化して光ファイバ母料を得る。
There are two methods: the MCVD method) and the VAD method (vapor phase attachment method). The CVD method uses silicon tetrachloride (S + C4) as the main raw material and other raw materials (BI3r3, POCl3, Qe C14) to control the JNI refractive index using oxygen etc. as a carrier gas.
etc.) is introduced into a rotating quartz pipe and heated from the outside with an oxyhydrogen burner to generate sooty quartz and oxides.
It is deposited in a pipe and then heated and melted to form transparent glass. Thereafter, the inside of the pipe is reduced in pressure and heated to about 1750° C., which softens the pipe and collapses it under atmospheric pressure, eliminating the hollow portion and forming an optical fiber matrix. On the other hand, in the VAD method, the same raw materials and refractive index control materials as in the CVI) method are used, but these raw material gases are directly subjected to a hydrolysis reaction in an oxyhydrogen burner flame, resulting in a diameter of approximately 0.
Glass particles of 111+n are generated and deposited on a rotating rod-shaped glass substrate arranged vertically. The porous glass matrix thus obtained is subjected to water removal chlorine treatment and then heated in an electric furnace at about 100° C. to make it transparent vitrified to obtain an optical fiber matrix.

上記のCVD法は、水が発生し7ない酸化反応を使う/
Cめ、0I−1基除去処理工程が省けるという利点があ
るが、その反面、生産速度が遅いほか、酸化反応および
ガラス化の高温(約1500℃以上)によるガラス成分
の蒸発などの問題がある。またVAD法は、比較的低温
(約700℃)でもガラス微粒子を成長できる火炎加水
分解反応を利用して、一旦多孔質ガラス母材を作ってか
ら透明ガラス化するため、CVD法のようなガラス成分
の蒸発問題はあ捷すないが、熱源である酸水素バーナ火
炎中で直接反応させるため、階段状屈折率分布の制御が
難しく、変動が起こりやすい。そのだめ、CV I)法
より生産性が多少よくなるが、屈折率分布制御を初め、
他の様々な複雑な製作条件の制約があり、生産性の向上
には限界があり、安価な光ファイバ母料の製造方法とし
ては適していない。
The above CVD method uses an oxidation reaction that does not generate water.
It has the advantage of omitting the process of removing C and 0I-1 groups, but on the other hand, it has problems such as slow production speed and evaporation of glass components due to oxidation reactions and high temperatures of vitrification (approximately 1500°C or higher). . In addition, the VAD method uses a flame hydrolysis reaction that can grow glass particles even at a relatively low temperature (approximately 700°C) to create a porous glass base material and then convert it into transparent glass. Although the problem of component evaporation is not a problem, since the reaction is carried out directly in the oxyhydrogen burner flame, which is the heat source, it is difficult to control the step-like refractive index distribution, and fluctuations are likely to occur. However, although the productivity is somewhat better than the CV I) method, it is difficult to control the refractive index distribution, etc.
There are restrictions on various other complicated manufacturing conditions, and there are limits to productivity improvement, so this method is not suitable as a method for manufacturing inexpensive optical fiber preforms.

本発明は上記に鑑みてなされたもので、その目的とする
ところは、半径方向に階段状屈折率分布を有し、長さ方
向に均一な組成を有する各種の光フアイバ母相を安fi
lIiに製造することができる光ファイバ母料の製造方
法を提供することにある。
The present invention has been made in view of the above, and its object is to stabilize various optical fiber matrixes having a stepped refractive index distribution in the radial direction and a uniform composition in the length direction.
It is an object of the present invention to provide a method for manufacturing an optical fiber preform that can be manufactured in accordance with IIi.

〔発明の概要〕[Summary of the invention]

本発明の特徴は、出発原料となる高純度ガラス微粉末を
製造するガラス微粉末製造工程と、上記高純度ガラス微
粉末を回転駆動されている石英ガラス基板上に順次供給
し、熱源としてレーザ光線を用いて上記高純度ガラス微
粉末を溶融透明ガラス化して透明ガラス微粒子を成長さ
せる光ファイバR1材製造工程とを経て光ファイバ母料
を製造するようにした点にある。
The features of the present invention include a glass powder manufacturing process for producing high-purity glass powder as a starting material, and a step in which the high-purity glass powder is sequentially supplied onto a rotationally driven quartz glass substrate, and a laser beam is used as a heat source. The optical fiber preform is manufactured through an optical fiber R1 material manufacturing process in which the high-purity glass fine powder is melted and made into transparent glass using the above-mentioned method to grow transparent glass fine particles.

〔実施例〕〔Example〕

以下本発明の製造方法の一実施例を第1図、第2図を用
いて詳細に説明する。
An embodiment of the manufacturing method of the present invention will be described in detail below with reference to FIGS. 1 and 2.

実施例1 −まず高純度ガラス微粉末を製造するガラス微粉末製造
工程の一実施例について説明する。下記に示す火炎加水
分解反応を用いてGeO□10重量φ濃度の石英多孔質
体を作る。
Example 1 - First, an example of a glass fine powder manufacturing process for manufacturing high purity glass fine powder will be described. A quartz porous body having a concentration of GeO□10 weight φ is prepared using the flame hydrolysis reaction shown below.

Si Ct4+ 21420→Si 02+4HCL 
・・(1)Ge CL4 + 2 R20→ Ge 0
2+ 4 HCL ・−−(2)この石英多孔質体は、
直径約0.1μmのガラス微粒子の弱い焼結体であるた
め、かさ密度が約0.1〜0.39/caと小さく、簡
単に割れる。そこで、この石英多孔質体を10径約数μ
mN数+ttmのこまかい粉末状にしたあと、塩素とヘ
リウム雰囲気中で処理して無水化ガラス微粉末とする。
Si Ct4+ 21420→Si 02+4HCL
...(1) Ge CL4 + 2 R20→ Ge 0
2+ 4 HCL ・--(2) This porous quartz body is
Since it is a weak sintered body of fine glass particles with a diameter of about 0.1 μm, the bulk density is small at about 0.1 to 0.39/ca, and it can be easily broken. Therefore, this quartz porous body has a diameter of about 10 μm.
After it is made into a fine powder of mN + ttm, it is treated in a chlorine and helium atmosphere to obtain an anhydrous glass fine powder.

上記のガラス微粉末製造工程においては、不純物が入ら
ないように、Si C14,Ge CL4の原料や他の
処理ガスなどはすべて高純度のものを使用し、丑だ、反
応などは密閉系中で行う。このようにして作製した大量
の高純度ガラス微粉末は、以下に説明する光ファイバ母
料製造工程の出発原料とする。
In the above glass powder manufacturing process, to prevent impurities from entering, the Si C14, Ge CL4 raw materials and other processing gases are all of high purity, and reactions are conducted in a closed system. conduct. A large amount of high-purity fine glass powder thus produced is used as a starting material for the optical fiber preform manufacturing process described below.

次に、光ファイバ母料製造工程について説明する。第1
図は本発明の製造方法の光ファイバ母料製造工程の一実
施例を説明するだめの装置の一例を示す構成図である。
Next, the optical fiber preform manufacturing process will be explained. 1st
The figure is a configuration diagram showing an example of a preliminary apparatus for explaining an embodiment of the optical fiber preform manufacturing process of the manufacturing method of the present invention.

第1図に示すように、石英容器1に上記ガラス微粉末製
造工程で作成した高純度ガラス微粉末2を入れ、高純度
ガラス微粉末20石英容器1からの落下量は調整部3で
調整して回転駆動装置4Vこよって駆動されて回転して
いる石英ガラス基板5上に落とし、その上面に薄いガラ
ス粉末層を形成する。一方、熱源としての炭酸ガスレー
ザからのレーザ光線6をレンズ7と可動反応鏡8を用い
て石英ガラス基板5上のガラス粉末層の中心から周辺ま
でに均一に照射し、強熱によってガラス粉末層を溶融透
明ガラス化する。
As shown in FIG. 1, high-purity glass fine powder 2 produced in the above-mentioned glass fine powder manufacturing process is placed in a quartz container 1, and the amount of high-purity glass fine powder 20 falling from the quartz container 1 is adjusted by an adjustment unit 3. The glass powder is dropped onto the quartz glass substrate 5 which is being rotated by the rotation drive device 4V, and a thin glass powder layer is formed on the upper surface thereof. On the other hand, a laser beam 6 from a carbon dioxide laser serving as a heat source is uniformly irradiated from the center to the periphery of the glass powder layer on the quartz glass substrate 5 using a lens 7 and a movable reaction mirror 8, and the glass powder layer is heated by intense heat. Melts into transparent glass.

ガラス微粉末2は、石英ガラス基板5上に連続的に供給
することによって石英ガラス基板5上に透明ガラメロン
ド9ヲ1戊長させる。そして透明ガラスロッド9が所望
長さに成長したら、透明ガラスロッド9を石英ガラス基
板5から切り取り、公知のロッドインチューブ法により
ブラッド用石英管内に入れ、光フアイバ母相とする。こ
れを線引装置によって線引きすれば光ファイバが得られ
、この光ファイバの屈折率分布は第2図に示すように階
段状になっている。
The fine glass powder 2 is continuously supplied onto the quartz glass substrate 5 to form a transparent glass iron 9 on the quartz glass substrate 5. When the transparent glass rod 9 has grown to a desired length, the transparent glass rod 9 is cut from the quartz glass substrate 5 and placed in a quartz tube for a blood using a known rod-in-tube method to form an optical fiber matrix. By drawing this with a drawing device, an optical fiber is obtained, and the refractive index distribution of this optical fiber is step-like as shown in FIG.

なお、透明ガラスロッド9の成長中に空気雰囲気からの
不純物の混入を極力防止するため、光ファイバ母材製造
工程は、高純度の不活性ガス()(eArなど)雰囲気
中で行うようにする。
In addition, in order to prevent as much as possible the incorporation of impurities from the air atmosphere during the growth of the transparent glass rod 9, the optical fiber base material manufacturing process is performed in a high-purity inert gas (eAr, etc.) atmosphere. .

上記した本発明の光フアイバ母材の製造方法の実施例に
よれば、下記の利点がある。
According to the embodiment of the method for manufacturing an optical fiber preform of the present invention described above, there are the following advantages.

(1) ガラス微粉末製造工程と光フアイバ母材製造工
程とに分離しであるので、各工程の製造工程の製造条件
の幅を広くすることができ、かつ、量産性の向上が容易
になる。
(1) Since the glass fine powder manufacturing process and the optical fiber base material manufacturing process are separated, the range of manufacturing conditions for each manufacturing process can be widened, and mass productivity can be easily improved. .

(2) ガラス微粉末製造工程において、火炎加水分解
反応法のほか後述するゾル、ゲル法など様々な方法の利
用が可能であり、広範囲な組成(例えば添加濃度の高い
高NAファイバ)、広範囲のガラス成分(例えば、多成
分系ガラス)の選択ができ、多種多様のものの製造が可
能になる。
(2) In the glass fine powder manufacturing process, various methods such as the flame hydrolysis reaction method and the sol and gel methods described below can be used, and a wide range of compositions (for example, high NA fibers with high additive concentration) and a wide range of Glass components (for example, multi-component glass) can be selected, making it possible to manufacture a wide variety of products.

(3)光ファイバ母料製造工程では、熱源として高出力
で、かつ、制御しゃすいレーザ光線6を用いてあり、こ
れを直接ガラス粉末層に照射して溶融透明ガラス化して
透明ガラスロッド9を成長させているので、透明ガラス
ロッド9の成長速度は、レーザ光線6による溶融速度の
みに依存し、生産速度を速くすることが容易である。
(3) In the optical fiber preform manufacturing process, a high-output, easy-to-control laser beam 6 is used as a heat source, and the glass powder layer is irradiated directly with this laser beam to melt it into transparent glass and form a transparent glass rod 9. Since the growth rate of the transparent glass rod 9 depends only on the melting rate by the laser beam 6, it is easy to increase the production rate.

(4)多孔質母相の最初の形を維持した才ま種々の処理
工程を経て透明ガラス体を作る他の方法では、かさ密度
が低く、割れやすい多孔質母相が透明ガラス体になる前
に割れてしまうということがよく起こり、歩留りが悪い
が、とれに対してガラス微粉末を出発原料とする本発明
に係る製造方法によれば、上記のような割れ現象の発生
がなく、歩留りを向」二できる。
(4) Maintaining the initial shape of the porous matrix In other methods of producing transparent glass bodies through various processing steps, the porous matrix, which has a low bulk density and is easily broken, is kept in its original shape before it becomes a transparent glass body. However, according to the manufacturing method of the present invention, which uses fine glass powder as a starting material, the above-mentioned cracking phenomenon does not occur and the yield is low. I can do two things.

(5) 多孔質母相の成長でなく、透明ガラスロッド9
を長さ方向に成長させるので、長い透明ガラス微粉末の
製造に有利であり、捷だ、連続成長による製造が可能で
ある。
(5) Transparent glass rod 9 instead of growth of porous matrix
Since it grows in the length direction, it is advantageous for producing long transparent glass fine powders, and it is possible to produce them by continuous growth.

(6)使用反別に対する収率が高い。(6) High yield based on the type of cloth used.

次に、ノjラス微粉末製造工程の他の実施例について説
明する。
Next, another example of the process for producing Noras fine powder will be described.

実施例2 S i (OC1]3)4 、PO(OCH3)3とC
)−bOI−1の混合液にアンモニア水を添化して、下
記に示す加水分解反応によってP2O,10重(tl−
%濃度のP2O5−81(Llz系ゾルを作製する。
Example 2 S i (OC1]3)4, PO(OCH3)3 and C
)-bOI-1 is added with aqueous ammonia, and P2O, 10-fold (tl-
% concentration of P2O5-81 (Llz-based sol is prepared.

S ’ (OCH3)4+20zO→S 10z+ 4
 Cl−130H−−(3)2 PO(OCl03)3
+ 3 H2O−+ P20.+ 6 CH30H−(
4)このゾルを約60℃で乾燥し、かさ密度0.4〜1
.4f/c!1tの多孔質体(ゲルという)を得る。こ
のゲルは約100〜1000A0 のガラス微粉からな
る多孔質体であるが、その中には水や有機物などの不純
物が多量に残留しているので、これらの不純物を除去す
るために、ゲルを細かい粉末にした後、600℃の酸素
雰囲気で有機物除去処理を行いさらに約1000℃の塩
素雰囲気中で残留OH基除去処理等を行い、有機物や水
などを含捷ない高純度ガラス微粉末とし、光ファイバ母
料製造工程の出発原料とする。そして実施例1と同様の
手順でP2O58102光フアイバ母利を製造する。そ
してとれを線引きすることによって階段状屈折率分布の
P205S I 02 光ファイバが得られる。
S' (OCH3)4+20zO→S 10z+ 4
Cl-130H--(3)2 PO(OCl03)3
+ 3 H2O−+ P20. + 6 CH30H-(
4) Dry this sol at about 60°C to give a bulk density of 0.4 to 1.
.. 4f/c! A 1 ton porous body (referred to as gel) is obtained. This gel is a porous body made of glass fine powder of about 100 to 1000 A0, but since a large amount of impurities such as water and organic substances remain in it, in order to remove these impurities, the gel is made into a fine powder. After powdering, it is treated to remove organic matter in an oxygen atmosphere at 600°C, and then treated to remove residual OH groups in a chlorine atmosphere at about 1000°C, resulting in a high-purity glass fine powder that does not contain organic matter or water. It is used as a starting material for the fiber matrix manufacturing process. Then, a P2O58102 optical fiber motherboard is manufactured in the same manner as in Example 1. By drawing the bends, a P205S I 02 optical fiber with a stepped refractive index distribution is obtained.

なお、実施例1と実施例2において、OH基、有機物な
どの不純物除去工程と粉末化工程の順序を逆にしてもよ
い。
In addition, in Example 1 and Example 2, the order of the step of removing impurities such as OH groups and organic substances and the step of powdering may be reversed.

実施例3 SICt4、Ge C141,I、)OC13の高純度
原料を用い、実施例1と同様の方法で、GeO2P2O
5S!02の高純度ガラス微〜粉末を作り、これを出発
原料として、最終的にはQe 02 P205S 10
2の多成分光ファイバを作る。
Example 3 Using high purity raw materials of SICt4, Ge C141, I, ) OC13, GeO2P2O was produced in the same manner as in Example 1.
5S! 02 high-purity glass fine to powder is made, and using this as a starting material, the final product is Qe 02 P205S 10
2. Make a multi-component optical fiber.

実施例4 S I Ct4. kl Ct3の高純度原料を用い、
実施例1と同様の方法で、A、12Ch 1〜20重量
係のAt203−8I02系の高純度ガラス微粉末を作
り、これケ出発原刺とする。
Example 4 SI Ct4. Using high purity raw materials of kl Ct3,
In the same manner as in Example 1, a high purity glass fine powder of At203-8I02 type A, 12Ch 1 to 20 weight ratio is prepared and used as a starting material.

実施例5 従来、火炎加水分解反応では作製困難なT102S!O
z、’I’a205 SiC2、Zr02SiOz、5
iOz−Ta205P2(]、、5b02SiOz系ガ
ラスは、ゾル・ゲル法によってそのガラス微粉末を容易
に作製できる。すなわち、原料として高純度の5i(O
RL 、 i”i ((H(、)、+ 、’l”a (
OR)5、PO(ORh、5t)(OR,) 3を用い
、1(、OH溶媒と混合したあと、アンモニア水と反応
させ、高純度ガラス微粉末を得て、これを出発原料とし
て実施例1の同様の光ファイバ母料製造工程を経て、開
口数N A、 = 0.1〜06の各種の光ファイバを
作る。なお、上記のRば、CH3、C21−(、などの
アルキル基である。
Example 5 T102S, which is conventionally difficult to produce by flame hydrolysis reaction! O
z, 'I'a205 SiC2, Zr02SiOz, 5
iOz-Ta205P2(], , 5b02SiOz-based glass can be easily made into glass fine powder by the sol-gel method. That is, high-purity 5i(O
RL, i”i ((H(,), +, 'l”a (
OR) 5, PO(ORh, 5t) (OR,) 3 was mixed with 1(, OH solvent, and then reacted with aqueous ammonia to obtain a high purity glass fine powder, which was used as a starting material in Examples. Various optical fibers with a numerical aperture NA of 0.1 to 0.06 are manufactured through the same optical fiber preform manufacturing process as described in 1 above. be.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、半径方向に階段
状屈折分布を有し、長さ方向に均一な組成を有する各種
の光フアイバ母材を安価に製造することができるという
効果がある。
As explained above, according to the present invention, various optical fiber base materials having a stepped refraction distribution in the radial direction and a uniform composition in the length direction can be manufactured at low cost. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光フアイバ母材の製造方法の光ファイ
バ母料製造工程の一実施例を説明するだめの装置の一例
を示す構成図、第2図は作成した光ファイバの屈折率分
布を示す図である。 1 石英容器、2 高純度ガラス微粉末、3 調整部、
4 回転駆動装置、5 石英ガラス基板、6 レーザ光
線、9 ・透明ガラス微粉末。
Fig. 1 is a configuration diagram showing an example of a device for explaining an embodiment of the optical fiber preform manufacturing process of the optical fiber preform manufacturing method of the present invention, and Fig. 2 is a refractive index distribution of the produced optical fiber. FIG. 1 quartz container, 2 high purity glass fine powder, 3 adjustment section,
4 rotary drive device, 5 quartz glass substrate, 6 laser beam, 9 ・Transparent glass fine powder.

Claims (1)

【特許請求の範囲】 1 出発原料となる高純度ガラス微粉末を製造するガラ
ス微粉末製造工程と、前記高純度ガラス微粉末を回転駆
動されている石英ガラス基板上に順次供給し、熱源とし
てレーザ光線を用いて前記高純度ガラス微粉末を溶融透
明ガラス化して透明ガラスロッドを成長させる光ファイ
バ母料製造工程とを経て光ファイバ旬月を製造すること
を特徴とする光ファイバ母)1′)Jの製造方法。 2 前記ガラス微粉末製造工程は原料の火炎加水分解反
応により石英多孔質体を作る工程と、前記石英多孔質体
を微粉末にする工程と、前記微粉末中の水分を除去して
高純度ガラス微粉末を得る工程とよりなる特許請求の範
囲第1項記載の光ファイバ旬月の製造方法。 3 前記ガラス微粉末製造工程は、原料とアルコールの
混合液をアンモニヤ水添化による加水分解反応させてゾ
ルを作製する工程と、前記ゾルを乾燥してゲルを得る工
程と、前記ゲルを微粉末にして含有する水分有機物等の
不純物を除去して高純度ガラス微粉末を得る工程とより
なる特許請求の範囲第1項記載の光ファイバ母相の製造
方法。 4 前記レーザ光線は、炭酸ガスレーザからのレーザ光
線である特許請求の範囲第1項まだは第2項寸たは第3
項記載の光ファイバ母相の製造方法。
[Scope of Claims] 1. A glass fine powder manufacturing process of manufacturing high purity glass fine powder as a starting material, and sequentially supplying the high purity glass fine powder onto a rotationally driven quartz glass substrate, and using a laser as a heat source. An optical fiber preform (1') is characterized in that an optical fiber preform is produced through an optical fiber preform manufacturing process in which the high-purity glass fine powder is melted and transparently vitrified using a light beam to grow a transparent glass rod. Method for manufacturing J. 2. The glass fine powder manufacturing process includes a step of producing a porous quartz body by flame hydrolysis reaction of raw materials, a step of turning the porous quartz body into a fine powder, and a step of removing water in the fine powder to produce high-purity glass. 2. A method for manufacturing an optical fiber according to claim 1, which comprises the step of obtaining fine powder. 3. The glass fine powder manufacturing process includes a step of producing a sol by subjecting a mixed solution of raw materials and alcohol to a hydrolysis reaction through ammonia hydrogenation, a step of drying the sol to obtain a gel, and a step of converting the gel into a fine powder. 2. A method for producing an optical fiber matrix according to claim 1, which comprises the step of removing impurities such as moisture and organic matter contained in the glass to obtain a high-purity glass fine powder. 4. The laser beam is a laser beam from a carbon dioxide laser.
The method for manufacturing the optical fiber matrix described in 2.
JP7537884A 1984-04-13 1984-04-13 Manufacture of optical fiber base material Pending JPS60221332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7537884A JPS60221332A (en) 1984-04-13 1984-04-13 Manufacture of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7537884A JPS60221332A (en) 1984-04-13 1984-04-13 Manufacture of optical fiber base material

Publications (1)

Publication Number Publication Date
JPS60221332A true JPS60221332A (en) 1985-11-06

Family

ID=13574473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7537884A Pending JPS60221332A (en) 1984-04-13 1984-04-13 Manufacture of optical fiber base material

Country Status (1)

Country Link
JP (1) JPS60221332A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2649392A1 (en) * 1989-07-06 1991-01-11 France Etat Ponts Chaussees PROCESS FOR THE CONTINUOUS PRODUCTION OF A GLASS BAR, IN PARTICULAR FOR THE PRODUCTION OF LASER MATRICES OR PREFORMS FOR OPTICAL FIBER DRAWING
WO2010094885A1 (en) * 2009-02-18 2010-08-26 Cerlase Method for melting at least one powdered mineral material
CN104591535A (en) * 2014-11-04 2015-05-06 华南师范大学 Method for preparing rare earth-doped quartz glass microstructure optical fibers by laser melting technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2649392A1 (en) * 1989-07-06 1991-01-11 France Etat Ponts Chaussees PROCESS FOR THE CONTINUOUS PRODUCTION OF A GLASS BAR, IN PARTICULAR FOR THE PRODUCTION OF LASER MATRICES OR PREFORMS FOR OPTICAL FIBER DRAWING
WO2010094885A1 (en) * 2009-02-18 2010-08-26 Cerlase Method for melting at least one powdered mineral material
US8627685B2 (en) 2009-02-18 2014-01-14 Cerlase Method for melting at least one powdered mineral material
CN104591535A (en) * 2014-11-04 2015-05-06 华南师范大学 Method for preparing rare earth-doped quartz glass microstructure optical fibers by laser melting technology

Similar Documents

Publication Publication Date Title
US4414012A (en) Fabrication methods of doped silica glass and optical fiber preform by using the doped silica glass
US4265649A (en) Method for preparing a preform for optical waveguides
JPH0733258B2 (en) Method for producing article containing high silica glass body
JPS632901B2 (en)
JPH0662306B2 (en) Method for manufacturing glass body
JPS60221332A (en) Manufacture of optical fiber base material
JPS6143290B2 (en)
JPS60122741A (en) Manufacture of parent material for optical fiber
JPS60239333A (en) Method and apparatus for manufacturing base material for optical fiber
JPS6054937A (en) Manufacture of preform rod
JPH07330366A (en) Manufacturing of preform for optical fiber
JPS61106433A (en) Production of optical fiber base material
JPS6028604A (en) Manufacture of light transmitting material
JPS649831A (en) Production of preform for optical fiber
JPS6251216B2 (en)
JPH01294548A (en) Production of optical fiber preform
JPS5855341A (en) Manufacture of optical fiber
JPS6227341A (en) Production of fused glass
JPS57135735A (en) Preparation of germanium dioxide-antimony trioxide glass
JPS60226421A (en) Preparation of parent material for optical fiber having high numerical aperture
JPS6047215B2 (en) Method for manufacturing base material for optical fiber
JP3992970B2 (en) Manufacturing method and apparatus for manufacturing glass preform for optical fiber
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPS5826050A (en) Manufacture of mass of germanium dioxide-diantimony trioxide glass
JPS63236727A (en) Production of parent material for optical fibers