JPS60221306A - Sulfuric acid manufacturing apparatus provided with gas turbine - Google Patents

Sulfuric acid manufacturing apparatus provided with gas turbine

Info

Publication number
JPS60221306A
JPS60221306A JP59077218A JP7721884A JPS60221306A JP S60221306 A JPS60221306 A JP S60221306A JP 59077218 A JP59077218 A JP 59077218A JP 7721884 A JP7721884 A JP 7721884A JP S60221306 A JPS60221306 A JP S60221306A
Authority
JP
Japan
Prior art keywords
gas
sulfuric acid
heat
sulfur
combustion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59077218A
Other languages
Japanese (ja)
Inventor
Moichi Uji
茂一 宇治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59077218A priority Critical patent/JPS60221306A/en
Publication of JPS60221306A publication Critical patent/JPS60221306A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To increase recovered amt. of steam, to by-produce electric power, and to obtain sulfuric acid with high efficiency by letting a gas turbine to work with hot air which has exchanged heat with combustion gas of an auxiliary sulfur combustion furnace, conducting converted gaseous SO3 to a sulfuric acid condensing boiler, and allowing sulfuric acid to react and to condense. CONSTITUTION:Dry air compressed by a compressor 15 and heated in a heat exchanger 14 is used for work in a gas turbine 16, and then introduced into an auxiliary sulfur combustion furnace 17 to burn melted sulfur. The heat of the generated hot SO2 gas is exchanged with the compressed air in said heat exchanger 14, then the SO2 gas is conducted to a sulfur combustion furnace under normal pressure 1, where melted sulfur is burnt and a gas having high SO2 concn. is obtd. Then, the gas is introduced into a waste heat boiler 2 to recover steam and the gas is fed to a converter 4 after it is cooled to convert SO2 to SO3. Then, it is fed to a sulfuric acid condensing boiler 18 where a reaction SO3+H2O H2SO4, and condensation of H2SO4+H2O are caused. High pressure and low pressure superheated steam are generated by the heat of reaction and condensation, and condensed sulfuric acid is obtd. simultaneously.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は硫黄燃焼硫酸製造プラントで使用する硫酸製造
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a sulfuric acid production apparatus used in a sulfur-burning sulfuric acid production plant.

〔従来の技術〕[Conventional technology]

従来の硫黄燃焼硫酸製造プラントにおいては、第1図に
示す如く、硫黄燃焼炉(1)で融解硫黄を燃焼してS0
2ガスを生成し、このSO2ガスを、後段の転化器(4
)での転化率が最高(約98%)となるだめの最適温度
(約420°G)まで廃熱ボイラ(2)で冷却した後、
ガスフィルタ(3)を通して転化器(4)へ送り、該転
化器(4)でバナジウム触媒の作用で803ガスに段階
的に転化させる。このとき、転化器(4)ではSO2→
SO3の反応により反応熱が生じSO3ガスの温度が上
昇する。この温度を低くしないと次の段階でSO2→S
 Os反応の効率が悪くなるため、転化器(4)で生じ
た反応熱を過熱器(5)で蒸気ドラム(SD)からの蒸
気に与えることにより、Sosガスの温度を低下させ、
次の陽階での反応を効率的f行ノっせAようにil、過
熱器(5)から過熱蒸気を取り出すようにする。
In a conventional sulfur-burning sulfuric acid production plant, as shown in Figure 1, molten sulfur is burned in a sulfur-burning furnace (1) to produce SO.
2 gas is generated, and this SO2 gas is sent to the subsequent converter (4
) After cooling in the waste heat boiler (2) to the optimal temperature (about 420°G) at which the conversion rate is the highest (about 98%),
The gas is sent through a gas filter (3) to a converter (4), where it is converted into 803 gas in stages by the action of a vanadium catalyst. At this time, in the converter (4), SO2 →
The reaction of SO3 generates reaction heat and the temperature of SO3 gas increases. If this temperature is not lowered, in the next step SO2→S
Since the efficiency of the Os reaction deteriorates, the temperature of the Sos gas is lowered by giving the reaction heat generated in the converter (4) to the steam from the steam drum (SD) in the superheater (5).
The next reaction on the positive floor is carried out efficiently so that the superheated steam is taken out from the superheater (5).

転化器(4)での反応により得られたSO3ガスは、エ
バポレータ(6)、エコノマイザ−(7)からなる熱交
換器(8)を経て吸収塔(9)へ送られ、該吸収塔(9
)でSO3ガスを濃硫酸に吸収させて製品としての硫酸
を得るようにしてあり、又、硫黄燃焼炉(1)への硫黄
燃焼用空気及び転化器(4)の入口側への5O2ii1
1度調整用空気を、空気乾燥塔00にて大気を乾燥する
ことにより生成し、硫黄燃焼用空気、SO2濃度調整用
として供給させるようにしである。αDはブロワ、(2
)は硫酸冷却器、α■は硫酸ポンプ、(SD)は蒸気ド
ラムで、蒸気の流れはSD、→SD2→S D s→S
D4→過熱蒸気となるようにしである。
The SO3 gas obtained by the reaction in the converter (4) is sent to the absorption tower (9) through a heat exchanger (8) consisting of an evaporator (6) and an economizer (7).
), SO3 gas is absorbed into concentrated sulfuric acid to obtain sulfuric acid as a product, and sulfur combustion air is supplied to the sulfur combustion furnace (1) and 5O2ii1 is supplied to the inlet side of the converter (4).
Air for once adjustment is generated by drying the atmosphere in the air drying tower 00, and is supplied as air for sulfur combustion and for adjusting SO2 concentration. αD is the blower, (2
) is the sulfuric acid cooler, α■ is the sulfuric acid pump, (SD) is the steam drum, and the flow of steam is SD, → SD2 → S D s → S
D4 → superheated steam.

しかし、上記従来の硫酸製造装置では、転化器(4)を
出たSOSガスからの熱回収量は、SO3ガスの顕熱分
のみであり、吸収塔(9)で得られる吸収熱は硫酸冷却
器02で冷却されてすべて外気へ捨てられていた。その
ため、転化器(4)を出たSO3”スを熱交換器(8)
を介して吸収塔(9)へ導く際にS O3ガスの顕熱を
回収するだけで、吸収塔(9)では蒸気生成を行わない
ことから回収熱量が少ない。又、SO3をH2SO4に
吸収させる操作においては、SO3+H20→H2SO
,における反応熱及びH2SO4+H20の凝縮熱の回
収操作が不可能であり、かかる熱による蒸気生成ができ
なかった。又、現状の硫黄燃焼炉(1)は、耐熱の問題
からガス温度は約1200°Cに制限され、したがって
、燃焼ガスのSO2濃度は同温度に対応する濃度以上に
上げることができなかった。
However, in the conventional sulfuric acid production equipment described above, the amount of heat recovered from the SOS gas that exits the converter (4) is only the sensible heat of the SO3 gas, and the absorbed heat obtained in the absorption tower (9) is used for cooling the sulfuric acid. It was all cooled down in container 02 and dumped into the outside air. Therefore, the SO3" gas leaving the converter (4) is transferred to the heat exchanger (8).
Since the sensible heat of the SO3 gas is only recovered when it is guided to the absorption tower (9) through the gas, and no steam is generated in the absorption tower (9), the amount of recovered heat is small. Also, in the operation of absorbing SO3 into H2SO4, SO3 + H20 → H2SO
It was impossible to recover the heat of reaction in , and the heat of condensation of H2SO4+H20, making it impossible to generate steam using such heat. Furthermore, in the current sulfur combustion furnace (1), the gas temperature is limited to about 1200°C due to heat resistance problems, and therefore, the SO2 concentration of the combustion gas cannot be increased above the concentration corresponding to the same temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記従来の欠点を解消するため、SO3ガス
からの顕熱以外に、SO3+ H20→H2sQ。
In order to eliminate the above-mentioned conventional drawbacks, the present invention provides a method for generating SO3+ H20→H2sQ in addition to sensible heat from SO3 gas.

による反応熱及びH2SO4+ H2Oの凝縮熱の回収
操作を可能にして多くの蒸気が回収できるようにすると
共に、SO2ガスの濃度を増加させて単位燃焼空気量に
対する製品硫酸製造量を増加させ、更に、硫酸製造にお
いて完全な利得として動力又は電力を剛製することがで
き、且つガスタービンのブレード等の腐食のおそれをな
くそうとするものである。゛ 〔問題点を解決するための手段〕 本発明の硫酸製造装置は、上記問題点を解決するために
、第1図における従来の装置において熱交換器と吸収塔
に代えて硫酸凝縮ボイラを設置し、転化器を出たSO3
ガスを硫酸凝縮ボイラに約450°C位の温度で導入し
、該硫酸凝縮ボイラで、SO3+H20→H2SO4の
反応による分子反応熱の放出、H2SO4+ H2Oの
凝縮による潜熱の放出を行わせることによって生成蒸気
量を増大させるようにし、更に、常圧硫黄燃焼炉の前段
に、タービンと、補助硫黄燃焼炉と熱交換器を配置し、
熱交換器で加熱された加圧空気をタービンで仕事をさせ
た後、補助硫黄燃焼炉に導き、更に該補助硫黄燃焼炉で
得られたS02ガスを上記熱交換器で加圧空気と熱交換
させた後、常圧硫黄燃焼炉に導入させるようにし、加圧
空気をガスタービンに流してタービンブレード等の腐食
を防止しながら動力、電力が得られると〔実 施 例〕 以下、本発明の硫酸製造装置の実施例を図面を参照して
説明する。
It enables the recovery operation of the reaction heat due to H2SO4+ and the condensation heat of H2O, thereby making it possible to recover a large amount of steam, and increasing the concentration of SO2 gas to increase the amount of product sulfuric acid produced per unit amount of combustion air, and further, The purpose of this invention is to make it possible to produce power or electric power rigidly as a complete gain in the production of sulfuric acid, and to eliminate the risk of corrosion of gas turbine blades and the like. [Means for Solving the Problems] In order to solve the above-mentioned problems, the sulfuric acid production apparatus of the present invention installs a sulfuric acid condensing boiler in place of the heat exchanger and absorption tower in the conventional apparatus shown in FIG. SO3 that left the converter
The gas is introduced into a sulfuric acid condensing boiler at a temperature of about 450°C, and the sulfuric acid condensing boiler releases the heat of molecular reaction through the reaction of SO3 + H20 → H2SO4 and releases the latent heat through the condensation of H2SO4 + H2O. In addition, a turbine, an auxiliary sulfur combustion furnace, and a heat exchanger are arranged in the front stage of the atmospheric sulfur combustion furnace,
After the pressurized air heated by the heat exchanger is subjected to work in the turbine, it is led to the auxiliary sulfur combustion furnace, and the S02 gas obtained in the auxiliary sulfur combustion furnace is heat exchanged with the pressurized air in the heat exchanger. After that, the pressurized air is introduced into a normal pressure sulfur combustion furnace, and the pressurized air is flowed through the gas turbine to obtain motive power and electric power while preventing corrosion of the turbine blades, etc. [Example] Hereinafter, the present invention will be described. An example of a sulfuric acid production apparatus will be described with reference to the drawings.

実施例1 第2図は本発明の一実施例を示すもので、従来の硫黄燃
焼硫酸製造プラントにおける常圧硫黄燃焼炉(1)の前
段に、熱交換器a→と、圧縮機α均と、タービン(イ)
とからなるガスタービンを設けると共に、補助の硫黄燃
焼炉α力を設け、圧縮機6句を出た加圧空気が熱交換器
Q4)で加熱された後、タービン(至)に入って仕事を
するように配管すると共に、タービン(至)で仕事を終
えた空気を補助硫黄燃焼炉(17)へ導入するよう配管
し、該補助硫黄燃焼炉0ηへは、融解硫黄を導入するラ
インを接続して、補助硫黄燃焼炉α乃で硫黄を燃焼する
ことによシ得られたSO2ガスを上記熱交換器04)で
加圧空気と熱交換させた後、常圧硫黄燃焼炉(1)に導
入するよう配管し、常圧硫黄燃焼炉(1)には、補助硫
黄燃焼炉0乃からのSO2ガスと融解硫昔充道λ式り入
rらl/rす入−η 紅ル罪(A)の落段には、硫酸凝
縮ボイラ(至)を設置し、転化器(4)でSO2からS
O3に転化されて出て来たSO3ガスを直接硫酸凝縮ボ
イラ(至)に導入してso3+H2O−+ H2S04
t7)反応と、H2SO4+ H2Cの凝縮の両件用を
行わせるようにし、そのために、該硫酸凝縮ボイラα8
)には、給水できるよう給水管a9を接続すると共に、
該硫酸凝縮ボイラ0秒内での反応による分子反応熱の放
出と凝縮による潜熱の放出により生成された高圧過熱蒸
気と低圧過熱蒸気の各取出管(2)(至)を接続し、更
に、硫酸凝縮ボイラa8)からの排ガスは排ガス処理設
備へ導くようにし、又、得られた凝縮硫酸は外部へ取シ
出せるようそれぞれ配管を接続し、加熱給水の一部を廃
熱ボイラ(2)に導入するよう配管する。(イ)は発電
機等の負荷、翰は融解硫黄を常圧硫黄燃焼炉(1)及び
補助硫黄燃焼炉aηへ送るラインの途中に設けた硫黄流
量制御弁である。
Embodiment 1 FIG. 2 shows an embodiment of the present invention, in which a heat exchanger a→ and a compressor , turbine (a)
In addition to installing a gas turbine consisting of At the same time, piping is installed to introduce the air that has finished work in the turbine (to) to the auxiliary sulfur combustion furnace (17), and a line for introducing molten sulfur is connected to the auxiliary sulfur combustion furnace (17). Then, the SO2 gas obtained by burning sulfur in the auxiliary sulfur combustion furnace α is heat exchanged with pressurized air in the heat exchanger 04), and then introduced into the normal pressure sulfur combustion furnace (1). The atmospheric pressure sulfur combustion furnace (1) is filled with SO2 gas from the auxiliary sulfur combustion furnace 0 and the molten sulfur. ), a sulfuric acid condensing boiler (to) is installed, and a converter (4) converts SO2 to S.
The SO3 gas that is converted to O3 and comes out is directly introduced into the sulfuric acid condensation boiler (toward) to produce so3 + H2O- + H2S04.
t7) Both reaction and condensation of H2SO4+ H2C are carried out, and for this purpose, the sulfuric acid condensation boiler α8
), connect the water supply pipe a9 so that water can be supplied, and
The high-pressure superheated steam and low-pressure superheated steam produced by the release of molecular reaction heat by reaction within 0 seconds and the release of latent heat by condensation from the sulfuric acid condensing boiler are connected to the respective take-out pipes (2) (to), and the sulfuric acid The exhaust gas from the condensing boiler a8) is led to the exhaust gas treatment equipment, and piping is connected so that the condensed sulfuric acid obtained can be taken out to the outside, and a part of the heated feed water is introduced into the waste heat boiler (2). Piping so that (a) is a load such as a generator, and a sulfur flow control valve is installed in the middle of a line that sends molten sulfur to the normal pressure sulfur combustion furnace (1) and the auxiliary sulfur combustion furnace aη.

上記構成であるから、乾燥塔からの乾燥空気は、圧縮機
aθで加圧された後、熱交換器Q4で加ta、4れてタ
ービンαGへ送られ仕°事をする。この際、タービン(
至)を流れるガスが加圧空気のみであるため、タービン
(イ)内のブレード等がSO2等で腐食されるというこ
とがなく、腐食対策を講じることを不要にできる。
With the above configuration, the dry air from the drying tower is pressurized by the compressor aθ, then heated by the heat exchanger Q4, and sent to the turbine αG for work. At this time, the turbine (
Since the gas flowing through (to) is only pressurized air, the blades in the turbine (a) will not be corroded by SO2 or the like, making it unnecessary to take anti-corrosion measures.

タービ/(至)で仕事を終えた空気は、補助硫黄燃焼炉
α力へ入り、ここで融解硫黄を燃焼させる。
After completing its work in the turbine, the air enters the auxiliary sulfur combustion furnace, where it burns the molten sulfur.

補助硫黄燃焼炉α力で得られた高温のSO2ガスは、熱
交換器α→で圧縮機◇0からの加圧空気と熱交換を行っ
た後に常圧硫黄燃焼炉(1)へ導入され、該常圧硫黄燃
焼炉(1)に供給される硫黄の燃焼を行わせる。この際
、熱交換器<14)を経て常圧硫黄燃焼炉(1)に入る
SO2を含むガスは、依然としてがなりの量の酸素を含
んでいるため、常圧硫黄燃焼炉(1)内で硫黄を燃焼さ
せガス中のSO2濃度を上昇させることができ、又、上
記タービン(至)の運転によって発生した動力の一部は
、圧縮機O0を駆動するために用いられ、残りが出力と
して取り出され、負荷(イ)を駆動して完全な利得とし
て電力又は動力が得られる。
The high temperature SO2 gas obtained from the auxiliary sulfur combustion furnace α undergoes heat exchange with the pressurized air from the compressor ◇0 in the heat exchanger α→, and then is introduced into the normal pressure sulfur combustion furnace (1). The sulfur supplied to the atmospheric pressure sulfur combustion furnace (1) is combusted. At this time, the gas containing SO2 entering the atmospheric sulfur combustion furnace (1) via the heat exchanger <14) still contains a certain amount of oxygen, so the gas containing SO2 enters the atmospheric sulfur combustion furnace (1) through the heat exchanger The SO2 concentration in the gas can be increased by burning sulfur, and part of the power generated by the operation of the turbine is used to drive the compressor O0, and the rest is taken out as output. Then, power or motive power can be obtained as a complete gain by driving the load (a).

上記常圧硫黄燃焼炉(1)を出だSO2を含むガスは、
廃熱ボイラ(2)で温度を下げられた後、転化器(4)
にてガス中のSO2がSO3に転化される。転化器(4
)を出たSO3ガスは、硫酸凝縮ボイラ(2)へ入り、
ことでSO3+ H20→H2SO4の反応と、H2S
O4+H20の凝縮の2つの作用が行われて凝縮硫酸が
製品として取り出されると共に、高圧過熱蒸気と低圧過
熱蒸気が生成される。この場合、生成された低圧過熱蒸
気を圧縮機αυから出た加圧空気に混入させるよう第2
図の如く取出管121)を、圧縮機α[有]と熱交換器
α→の間の配管に接続させると、低圧過熱蒸気が加圧空
気に混入するので、タービン00の出力を増加させるこ
とができると共に、S Osガスとともに硫酸凝縮ボイ
ラα8)に入った後はH2S O,を製造するだめのH
2Cとしての役割を果たすことができるという利点があ
る。硫酸凝縮ボイラ(18)からの排ガスは配管よシ取
り出され、排ガス処理設備へ送られる。
The gas containing SO2 leaving the normal pressure sulfur combustion furnace (1) is
After the temperature is lowered in the waste heat boiler (2), the converter (4)
SO2 in the gas is converted to SO3. Converter (4
) exits the SO3 gas enters the sulfuric acid condensation boiler (2),
This results in the reaction of SO3+ H20→H2SO4 and H2S
The two operations of condensing O4+H20 are performed to extract condensed sulfuric acid as a product, and to generate high-pressure superheated steam and low-pressure superheated steam. In this case, the second
When the take-out pipe 121) is connected to the piping between the compressor α [with] and the heat exchanger α→ as shown in the figure, low-pressure superheated steam is mixed into the pressurized air, so the output of the turbine 00 can be increased. At the same time, after entering the sulfuric acid condensing boiler α8) with SO gas, H2SO is produced.
It has the advantage of being able to play the role of 2C. The exhaust gas from the sulfuric acid condensing boiler (18) is taken out through piping and sent to the exhaust gas treatment facility.

以後、順次常圧硫黄燃焼炉(1)の前段でガスタービン
の運転が行われて電力又は動力が得られると同時に硫酸
凝縮ボイラ(至)で凝縮硫酸の製造が行われる。
Thereafter, the gas turbine is sequentially operated in the upstream stage of the atmospheric pressure sulfur combustion furnace (1) to obtain electric power or motive power, and at the same time, condensed sulfuric acid is produced in the sulfuric acid condensation boiler (toward).

上記硫酸凝縮ボイラ(至)内での熱交換過程は、前記の
ようにSO3+H20→H2SO4の反応と、H2SO
4+ H2Cの凝縮の2つの領域があり、前者を「領域
A」、後者を「領域B」とすると、第6図に示す如く、
本発明では実線の曲線で示す如き熱交換過程が得られ、
領域Aで高圧の過熱蒸気が、又、領域Bで低圧の過熱蒸
気がともに回収できる。図中、破線による曲線は、従来
方式の顕熱のみによる熱交換過程で、領域Aの一部でし
か蒸気を回収することができない。
The heat exchange process in the sulfuric acid condensing boiler (to) involves the reaction of SO3+H20→H2SO4 and the reaction of H2SO4 as described above.
There are two regions of condensation of 4+ H2C, and if we call the former "region A" and the latter "region B," as shown in Figure 6,
In the present invention, a heat exchange process as shown by the solid curve can be obtained,
High-pressure superheated steam can be recovered in region A, and low-pressure superheated steam can be recovered in region B. In the figure, the dashed curve indicates a heat exchange process using only sensible heat in the conventional method, and steam can be recovered only in a part of region A.

詳述すると、先ず、「領域A」の冷却過程をみると、こ
の領域においては、SOs H2O系はSO3,1H2
0、H2SO4が共存しておシ、これらの各蒸気圧は、
平衡定数値によって決定され、平衡定数値と温度との関
係は、次の式で示される。
To explain in detail, first, if we look at the cooling process in "region A", in this region, the SOs H2O system is SO3, 1H2
0, H2SO4 coexist, and their respective vapor pressures are:
It is determined by the equilibrium constant value, and the relationship between the equilibrium constant value and temperature is shown by the following equation.

にの各種の温度における値は、次の如くである。The values at various temperatures are as follows.

以上よp 5O3−H2O系においては、温度が低くな
るほど、H2S 04の分率が高くなる。つまシ、温度
の低下に従って次の反応が進行することになる。
As described above, in the p5O3-H2O system, the lower the temperature, the higher the fraction of H2S04. As the temperature decreases, the next reaction will proceed.

SO3+ H2O→H2SO4+21000K cal
 (分子反応熱)したがって、SO3−H2O系におい
ては、温度の低下に従って分子反応熱を放出することに
なる。
SO3+ H2O→H2SO4+21000K cal
(Heat of Molecular Reaction) Therefore, in the SO3-H2O system, heat of molecular reaction is released as the temperature decreases.

次に、「領域B」の冷却過程では、この領域がH2S 
04 H2O系の凝縮過程であシ、H2SO4、H2O
はこの領域において潜熱を放出しながら温度が降下する
。この凝縮過程は、不凝縮性ガス+ H2SO4+ H
2Oの三成分系であるため、−成分系の凝縮過程と異な
り、凝縮と共にH2SO4、H2Oの分圧が低下して行
くことから、図に示す如き温度−エンタルピ曲線を描く
。この領域では、低圧の過熱蒸気が生成され、顕熱のみ
による加熱では得られない蒸気生成量が得られて領域A
と合わせて生成蒸気量が増大する。
Next, in the cooling process of "area B", this area is H2S
04 In the condensation process of H2O system, H2SO4, H2O
The temperature decreases in this region while releasing latent heat. This condensation process consists of non-condensable gas + H2SO4 + H
Since it is a three-component system of 2O, unlike the condensation process of a -component system, the partial pressures of H2SO4 and H2O decrease with condensation, so a temperature-enthalpy curve as shown in the figure is drawn. In this region, low-pressure superheated steam is generated, and an amount of steam generated that cannot be obtained by heating only by sensible heat is obtained, and the region A
In addition, the amount of generated steam increases.

硫酸凝縮ボイラα8)における熱交換過程は以上のとお
りであるが、この熱交換過程を実現させるための同ボイ
ラにおける現象を次に説明する。
The heat exchange process in the sulfuric acid condensing boiler α8) is as described above, and the phenomena in the boiler for realizing this heat exchange process will be explained next.

「領域A」の熱交換過程は一般的なボイラと同様の構成
により実現される。つまシ転化器(4)を出たS03ガ
スが流れる通路内に給水加熱管、蒸発管、過熱蒸気管等
の伝熱管を適当に配置する構成とすることにより、それ
らの伝熱管内で蒸気が生成される。伝熱管外のガスは伝
熱管の管壁を介して伝熱管内の水又は蒸気に熱を与えな
がら自身の温度を下げて行くと同時にガス中においてS
O3+H20→H2SO4の反応が進行し、この反応に
よって一発生する反応熱も伝熱管壁を介して伝熱管内の
水又は蒸気に与えられる。このようにしてガスの温度が
下がって行き、温度がH2SO4H2O系の露点に達し
た時点からH2SO4+ H2Oの凝縮が開始する。こ
れ以後の「領域B」の熱交換過程においては、加熱媒体
であるH2SO4、H2Oを含むガスの顕熱及びH2S
O4+ H2Oの凝縮熱が伝熱壁を介して水の加熱、蒸
発、蒸気の過熱に用いられる。つまり伝熱壁の加熱媒体
側においては伝熱壁全域にわたってH2SO4+ H2
Oの凝縮が起きることになり、したがって、被加熱媒体
側で水の蒸発が起きている部分においては、伝熱壁を介
して凝縮現象と蒸発現象が同時進行することになる。
The heat exchange process in "area A" is realized by a configuration similar to that of a general boiler. By appropriately arranging heat transfer tubes such as a feed water heating tube, an evaporation tube, and a superheated steam tube in the passage through which the S03 gas exiting the Tsumashi converter (4) flows, steam is generated within these heat transfer tubes. generated. The gas outside the heat exchanger tube lowers its own temperature while giving heat to the water or steam inside the heat exchanger tube through the tube wall of the heat exchanger tube, and at the same time S
The reaction O3+H20→H2SO4 progresses, and the reaction heat generated by this reaction is also given to the water or steam inside the heat exchanger tube via the heat exchanger tube wall. In this way, the temperature of the gas decreases, and when the temperature reaches the dew point of the H2SO4H2O system, condensation of H2SO4+H2O begins. In the subsequent heat exchange process in "area B", the sensible heat of the gas containing H2SO4 and H2O, which is the heating medium, and the H2S
The heat of condensation of O4+ H2O is used to heat water, evaporate water, and superheat steam through the heat transfer wall. In other words, on the heating medium side of the heat transfer wall, H2SO4+ H2
Condensation of O will occur, and therefore, in a portion where water is evaporating on the heated medium side, condensation and evaporation phenomena will proceed simultaneously via the heat transfer wall.

実施例2 第4図は本発明の他の実施例を示すもので、硫酸凝縮ボ
イラ08)で生成された高圧過熱蒸気を有効に使用する
ようにしたものである。すなわち、硫酸凝縮ボイラ(至
)で生成された高圧の過熱蒸気をタービン(ハ)に流し
て仕事をさせるようにし、タービン(財)の出力で負荷
(ハ)を駆動し、得られる電力又は動力が完全な利得と
なるようにしたものである。(イ)は復水器、(イ)は
給水ポンプで、復7し桑鉛7ン答(+d内へ謹層λれr
らI/i7”lイ太lその他の構成は第2図のものと同
じである。
Embodiment 2 FIG. 4 shows another embodiment of the present invention, in which the high-pressure superheated steam produced in the sulfuric acid condensing boiler 08) is effectively used. In other words, the high-pressure superheated steam generated in the sulfuric acid condensing boiler (to) flows through the turbine (c) to do work, and the output of the turbine (facility) drives the load (c), resulting in the electric power or motive power obtained. is the perfect gain. (a) is a condenser, (a) is a water supply pump,
Other configurations are the same as those in FIG. 2.

この実施例によれば、硫酸製造の運転経費をほとんど増
加させるとと々く完全な利得として動力又は電力を剛製
することができる利点がある。
According to this embodiment, there is the advantage that the operating costs of sulfuric acid production are almost increased while the power or electrical power can be increased as a complete gain.

本発明においては、硫黄燃焼炉を、常圧系と補助系の二
系統としているため、補助系にガスタービンシステムを
組むことが可能となり、従来不可能であった硫黄の燃焼
エネルギーからの動力の取シ出しが可能となシ、これが
完全な利得となる。尚、常圧系、補助系の両硫黄燃焼炉
の硫黄供給系統には、それぞれ硫黄流量制御弁(イ)が
設けであるので、これらによシ補助炉系においては負荷
(イ)の変動に対応するため、又、常圧針糸においては
負荷(イ)の変動によるタービン排気温度の変化が廃熱
ボイラ(2)以降の操作に影響しないよう各々の炉への
硫黄流量を調整することができる。
In the present invention, since the sulfur combustion furnace has two systems, a normal pressure system and an auxiliary system, it is possible to incorporate a gas turbine system into the auxiliary system, which allows the generation of power from the combustion energy of sulfur, which was previously impossible. If extraction is possible, this is a complete gain. Note that the sulfur supply systems of both the normal pressure and auxiliary sulfur combustion furnaces are each equipped with a sulfur flow rate control valve (a), so the sulfur flow control valve (a) in the auxiliary furnace system is In order to cope with this problem, the sulfur flow rate to each furnace can be adjusted so that changes in the turbine exhaust temperature due to changes in load (a) do not affect the operation of the waste heat boiler (2) and subsequent parts. .

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明の硝酸製浩奨晋rよれば次の如
き優れた効果を奏し得る。
As described above, the nitric acid-made chloride of the present invention can bring about the following excellent effects.

(i) 従来方式における転化器以降の熱交換器、吸収
塔に代えて硫酸凝縮ボイラを設置し、該ボイラでSOs
 +H20→H2SO4の反応、H2SO4+H20の
凝縮を行わせ、上記反応時の反応熱を利用して蒸気を発
生させるようにすると共に、上記凝縮による潜熱で蒸気
を発生させるようにしているので、従来の顕熱のみによ
る蒸気生成量以上に大幅な回収蒸気量の増大を図ること
ができる。
(i) A sulfuric acid condensing boiler is installed in place of the heat exchanger and absorption tower after the converter in the conventional system, and the boiler
The reaction of +H20→H2SO4 and the condensation of H2SO4+H20 are performed, and the heat of reaction during the above reaction is used to generate steam, and the latent heat of the condensation is used to generate steam. It is possible to significantly increase the amount of recovered steam compared to the amount of steam generated by heat alone.

(11) 加圧空気をタービンに流して仕事をさせた後
、硫黄を燃焼させる補助硫黄燃焼炉と該補助硫黄燃焼炉
で得られたS02を含む高温のガスでタービンへの加熱
空気を加熱させる熱交換器を、常圧硫黄燃焼炉の前段に
設け、熱交換器を通ったSO2ガスを常圧硫黄燃焼炉へ
導入するようにしであるので、ガスタービンの出力で得
られる電力又は動力は完全な利得となる。
(11) After the pressurized air is flowed through the turbine to do work, an auxiliary sulfur combustion furnace that burns sulfur and a high temperature gas containing S02 obtained in the auxiliary sulfur combustion furnace are used to heat the air to be heated to the turbine. A heat exchanger is installed in the front stage of the normal pressure sulfur combustion furnace, and the SO2 gas that has passed through the heat exchanger is introduced into the normal pressure sulfur combustion furnace, so the electric power or motive power obtained from the output of the gas turbine is completely reduced. This is a huge profit.

(iii) 硫黄燃焼炉を熱交換器を介して常圧系、補
助系の再熱式としているので、従来の硫酸製造プラント
に比べ、SO2濃度を増加させることができ、単位燃焼
空気量に対する製品硫酸製造量を増大させることができ
る。
(iii) Since the sulfur combustion furnace is a normal pressure system and an auxiliary system reheating type via a heat exchanger, the SO2 concentration can be increased compared to conventional sulfuric acid production plants, and the product per unit combustion air amount can be increased. The amount of sulfuric acid produced can be increased.

hl 従来方式における熱交換器、吸収塔に代えて硫酸
凝縮ボイラを用いているので、設備を簡単化することが
できる。
hl Since a sulfuric acid condensing boiler is used in place of the heat exchanger and absorption tower in the conventional system, the equipment can be simplified.

(■)硫黄燃焼炉を熱交換′器を介して常圧系、補助系
としたことから、タービンを流れるガスにS02が含ま
れないためタービンブレード等の腐食に対する考慮を不
要とすることができる。
(■) Since the sulfur combustion furnace is made into a normal pressure system and an auxiliary system via a heat exchanger, S02 is not included in the gas flowing through the turbine, so there is no need to consider corrosion of turbine blades, etc. .

(■1)硫酸凝縮ボイラで得られた低圧の過熱蒸気をガ
スタービンの加圧空気に混合することにヨシ、ガスター
ビンの出力を増加させることができると共に、SO3ガ
スとともに硫酸凝縮ボイラに入った後はH2SO4を製
造するためのH2Oとしての役割を果たすことができる
(■1) By mixing the low-pressure superheated steam obtained in the sulfuric acid condensing boiler with the pressurized air of the gas turbine, it is possible to increase the output of the gas turbine, and it also enters the sulfuric acid condensing boiler together with SO3 gas. After that, it can serve as H2O for producing H2SO4.

(viD 硫酸凝縮ボイラで生成された高圧の過熱蒸気
でタービンを駆動させることにより、タービンの出力で
得られる゛電力又は動力が完全な利得となる。
(viD) By driving the turbine with the high pressure superheated steam produced in the sulfuric acid condensing boiler, there is a complete gain in the power or power available from the output of the turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の硫酸製造装置の概略を示すブロック図、
第2図は本発明の硫酸製造装置の一実施例を示すブロッ
ク図、第3図は本発明における硫酸凝縮ボイラの熱交換
過程を示す図、第4図は本発明の他の例の要部を示すブ
ロック図である。 (1)は常圧硫黄燃焼炉、(2)は廃熱ボイラ、(4)
は転化器、(9)は吸収塔、α→は熱交換器、α0は圧
縮機、(至)はタービン、α乃は補助硫黄燃焼炉、08
11′i硫酸凝縮ボイラ、(イ)は負荷、(ハ)はター
ビン、輸は負荷を示す。 ゛ 特許出願人 石川島播磨重工業株式会社 倚 太 卑 託fi野I用 第2図 乾簾空気
Fig. 1 is a block diagram showing the outline of a conventional sulfuric acid production equipment;
FIG. 2 is a block diagram showing an embodiment of the sulfuric acid production apparatus of the present invention, FIG. 3 is a diagram showing the heat exchange process of the sulfuric acid condensing boiler of the present invention, and FIG. 4 is a main part of another example of the present invention. FIG. (1) is normal pressure sulfur combustion furnace, (2) is waste heat boiler, (4)
is a converter, (9) is an absorption tower, α→ is a heat exchanger, α0 is a compressor, (to) is a turbine, α or is an auxiliary sulfur combustion furnace, 08
11'i Sulfuric acid condensing boiler, (a) shows the load, (c) shows the turbine, and y shows the load.゛ Patent Applicant: Ishikawajima Harima Heavy Industries Co., Ltd. Figure 2: Drenden Air for Fiscal Field I

Claims (1)

【特許請求の範囲】[Claims] 1)常圧硫黄燃焼炉でSO2ガスを生成して該ガス中の
S O2を転化器で803に転化した後、該SO3から
H2SO4を製造するようにした硫酸製造装置において
、上記常圧硫黄燃焼炉の前段に、熱交換器を介して補助
硫黄燃焼炉を設置し、上記熱交換器で加熱された加圧空
気をタービンで仕事をさせた後補助硫黄燃焼炉に入れる
よう配管すると共に、上記補助硫黄燃焼炉で硫黄を燃焼
させることにより得られたS O2ガスを上記熱交換器
で加圧空気と熱交換させた後上記常圧硫黄燃焼炉に入れ
るよう配管し、且つ上記転化器を出たSO3を、SO3
+H20→H2SO4の反応作用とH2SO4+ H2
Oの凝縮作用を行う硫酸凝縮ボイラへ直接導くようにし
たことを特徴とするガスタービンを備え
1) In a sulfuric acid production apparatus that generates SO2 gas in an atmospheric pressure sulfur combustion furnace, converts the SO2 in the gas into 803 in a converter, and then produces H2SO4 from the SO3, the above atmospheric pressure sulfur combustion An auxiliary sulfur combustion furnace is installed in the front stage of the furnace via a heat exchanger, and piping is provided so that the pressurized air heated by the heat exchanger is put into the auxiliary sulfur combustion furnace after being subjected to work in a turbine. The SO2 gas obtained by burning sulfur in the auxiliary sulfur combustion furnace is piped to exchange heat with pressurized air in the heat exchanger and then enter the atmospheric sulfur combustion furnace, and the converter is output from the converter. SO3, SO3
+H20→H2SO4 reaction and H2SO4+ H2
Equipped with a gas turbine characterized in that the gas turbine is directly led to a sulfuric acid condensing boiler that performs the condensation action of O.
JP59077218A 1984-04-17 1984-04-17 Sulfuric acid manufacturing apparatus provided with gas turbine Pending JPS60221306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59077218A JPS60221306A (en) 1984-04-17 1984-04-17 Sulfuric acid manufacturing apparatus provided with gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59077218A JPS60221306A (en) 1984-04-17 1984-04-17 Sulfuric acid manufacturing apparatus provided with gas turbine

Publications (1)

Publication Number Publication Date
JPS60221306A true JPS60221306A (en) 1985-11-06

Family

ID=13627705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59077218A Pending JPS60221306A (en) 1984-04-17 1984-04-17 Sulfuric acid manufacturing apparatus provided with gas turbine

Country Status (1)

Country Link
JP (1) JPS60221306A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094826A (en) * 1990-01-27 1992-03-10 Gea Luftkuhler Gmbh Method and arrangement for the denitrification and desulfurization of hot waste gases, particularly from furnaces
US7543438B2 (en) 2007-09-25 2009-06-09 Bogdan Wojak Gas turbine topping device in a system for manufacturing sulfuric acid and method of using turbine to recover energy in manufacture of sulfuric acid
JP2014512264A (en) * 2011-04-06 2014-05-22 ハルドール・トプサー・アクチエゼルスカベット Method for producing sulfuric acid

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5094826A (en) * 1990-01-27 1992-03-10 Gea Luftkuhler Gmbh Method and arrangement for the denitrification and desulfurization of hot waste gases, particularly from furnaces
US7543438B2 (en) 2007-09-25 2009-06-09 Bogdan Wojak Gas turbine topping device in a system for manufacturing sulfuric acid and method of using turbine to recover energy in manufacture of sulfuric acid
JP2014512264A (en) * 2011-04-06 2014-05-22 ハルドール・トプサー・アクチエゼルスカベット Method for producing sulfuric acid

Similar Documents

Publication Publication Date Title
TWI359785B (en) Process and plant for producing sulfuric acid
JP4780538B2 (en) Heat recovery method in sulfuric acid production facility
RU2406691C2 (en) Method and apparatus for producing sulphuric acid
JP5275296B2 (en) Integrated heat recovery system and method for increasing the efficiency of oxyfuel combustion furnaces
CN112585088A (en) High energy nitric acid recovery process using liquid oxygen-containing fluid
JPS6235031A (en) Gas-steam turbine composite power plant
EP0521075B1 (en) Methods for recovering high grade process energy from a contact sulfuric acid process
WO2014144699A1 (en) Recovery of sulfur trioxide heat of absorption
JP2012193909A (en) Waste heat recovery power generation plant for sintering facility
JPH0642703A (en) Cement waste heat recovery power generating plant combined with gas turbine
US3490868A (en) Method of recovery of sulphuric acid
US2942953A (en) Acid producing plant
JPS60221306A (en) Sulfuric acid manufacturing apparatus provided with gas turbine
CN101706095B (en) Method for recovering acid making waste heat
JPS60221307A (en) Sulfuric acid manufacturing apparatus incorporated with gas turbine
JPS60191007A (en) Sulfuric acid producing apparatus equipped with gas turbine
KR20180117672A (en) Processes and equipment for the production of sulfuric acid
JPS5943402B2 (en) Method for producing sulfuric acid
JPS61211607A (en) Method and device for recovering heat energy in steam generating system
CN210030051U (en) Air supply device driven by furnace gas waste heat
JPS60186404A (en) Production unit for sulfuric acid
CN201501791U (en) Industrial acid making waste heat recovery system
JPS60191008A (en) Sulfuric acid producing apparatus equipped with gas turbine
RU2201393C1 (en) Sulfur dioxide oxidation unit
US4987742A (en) Process for the generation of mechanical energy in the ammonia oxidation step of a nitric acid production process