JPS6022030A - Variable compression ratio engine - Google Patents

Variable compression ratio engine

Info

Publication number
JPS6022030A
JPS6022030A JP13048183A JP13048183A JPS6022030A JP S6022030 A JPS6022030 A JP S6022030A JP 13048183 A JP13048183 A JP 13048183A JP 13048183 A JP13048183 A JP 13048183A JP S6022030 A JPS6022030 A JP S6022030A
Authority
JP
Japan
Prior art keywords
compression ratio
shape memory
memory alloy
temperature
engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13048183A
Other languages
Japanese (ja)
Inventor
Kenji Hori
堀 健次
Tadahiko Ito
忠彦 伊東
Sho Nakamura
升 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP13048183A priority Critical patent/JPS6022030A/en
Publication of JPS6022030A publication Critical patent/JPS6022030A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/047Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of variable crankshaft position

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PURPOSE:To obtain a variable compression ratio engine which is simple in structure and excellent in durability and reliability, by connecting a cylinder block and a crankcase or the like by the intermediary of a shape memory alloy that is expansible in the axial direction of a cylinder. CONSTITUTION:A shape memory alloy 1 is fixed between the lower portion of flange 3 formed to extend outward from the lower outer wall of a cylinder block 2 of an engine and the top 4a of a crankcase 4 respectively by means of bolts 5, 6. The shape memory alloy 1 is so designed that it is expanded when the temperature is higher than the critical temperature and contracted when the temperature is lower than the critical temperature. With such an arrangement, it is enabled to increase the compression ratio at the time of starting the engine by making the shape memory alloy 1 take its low-temperature shape. On the other hand, when warmingup of the engine is completed, the compression ratio is lowered to such an extent as not to cause knocking by making the shape memory alloy 1 take its high-temperature shape.

Description

【発明の詳細な説明】 この発明は、エンジンまたはディーゼルエンジンの圧縮
比を変更しうる可変圧縮比エンジンに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a variable compression ratio engine capable of changing the compression ratio of an engine or diesel engine.

エンジンの圧縮比は、一般に高い方が始動性および燃費
等の点で良いとされるが、これによりノッキングが生じ
やすくなる。しノζがって、始動時には圧縮比を高くし
、エンジンが1段まつだ後には、ノッキングが生じない
程度に圧縮比を高くすることが好ましい。
It is generally said that the higher the engine compression ratio, the better in terms of startability and fuel efficiency, but this increases the likelihood of knocking. Therefore, it is preferable to set the compression ratio high at startup, and after the engine has moved to the first stage, set the compression ratio high enough to prevent knocking.

従来の可変圧縮比エンジンは、例えば5AEPaper
 770430 に示されているような、油圧によシピ
ストンピンキャリア上部のピストンリングキャリアを上
下動させるもの、およびS ’A E Paper77
0114 に示されているような、リンク機構によりス
トロークを変えるものなどが知られている。
Conventional variable compression ratio engines are, for example, 5AEPaper
770430, which hydraulically moves the piston ring carrier above the piston pin carrier up and down, and S'A E Paper 77
0114, in which the stroke is changed by a link mechanism, is known.

しかしながら、これら従来装置は構造が複雑な上、圧縮
比切り換えのための作動部が、ピストンやクランクなど
の運動部に設けられているため、itl久信軸性に問題
があり、また慣性質量が大きくなってエンジンの高速回
転化を阻害する。
However, these conventional devices have a complicated structure, and the actuating part for switching the compression ratio is provided on a moving part such as a piston or crank, so there is a problem with itl stability, and the inertial mass is large. This prevents the engine from rotating at high speeds.

この発明の目的は、したがって構造がf¥ij il′
lで、圧縮比切り換えのための作動部がピストン等の運
動部にはない新規な可変圧縮比エンジンを提供すること
にある。
The object of the invention is therefore that the structure f\ij il'
Another object of the present invention is to provide a novel variable compression ratio engine in which the actuating part for switching the compression ratio is not located in a moving part such as a piston.

この発明の上記目的は、シリンダブロックとクランクケ
ースまたはシリンダヘッドとの間を、/リンダ軸方向に
特定温度の低温側で縮み高温(IIIで伸びるように形
状記憶・させた形状記憶合金によって接合することによ
り達成される。
The above-mentioned object of the present invention is to join a cylinder block and a crankcase or a cylinder head with a shape memory alloy which is made to have shape memory so that it contracts at a low temperature side of a specific temperature and expands at a high temperature (III) in the axial direction of the cylinder. This is achieved by

以下、この発明を添付図面を参照して説明する。Hereinafter, the present invention will be explained with reference to the accompanying drawings.

第1図は、この発明の一実施例を示し、第1図(4)は
高圧縮比時の状態、第1図(B)は低圧縮比時の状態を
それぞれ示している。形状記憶合金1は、エンジンのシ
リンダブロック2下部外壁に張り出して形成された庇3
の下部とクランクケース4の頂部4αとの間に、それぞ
れポルト5,6により固着されている。形状記憶合金1
は、シリンダブロック2とクランクケース4との接合部
の全周に設けてもよいが、その両側に設けるだけでもよ
い。
FIG. 1 shows an embodiment of the present invention, in which FIG. 1 (4) shows a state at a high compression ratio, and FIG. 1 (B) shows a state at a low compression ratio. The shape memory alloy 1 is applied to an eave 3 that is formed to protrude from the outer wall of the lower part of the cylinder block 2 of the engine.
and the top 4α of the crankcase 4 by ports 5 and 6, respectively. shape memory alloy 1
may be provided around the entire circumference of the joint between the cylinder block 2 and the crankcase 4, but may also be provided only on both sides thereof.

後者の場合、形状記憶合金を設けていない接合部は、摺
動部材等を設けて伸縮可能にしておく必要がある。同様
に、形状記憶合金をシリンダブロック2とクランクケー
ス4との間に設けるのではなく、シリンダブロック2と
シリンダヘッド7との接合部外壁に設ける場合も、シリ
ンダブロック2に対しシリンダ軸方向に摺動可能なよう
に、例えば円筒をシリンダヘッド7に固着し、その外側
に形状記憶合金を設けるようにするとよい。これはピス
トン8上面と/リンダヘッド7との間の燃焼室9の形状
および密閉性を確保するためである。
In the latter case, it is necessary to provide a sliding member or the like to make the joint part not provided with the shape memory alloy expandable and retractable. Similarly, if the shape memory alloy is not provided between the cylinder block 2 and the crankcase 4 but is provided on the outer wall of the joint between the cylinder block 2 and the cylinder head 7, it will slide against the cylinder block 2 in the cylinder axial direction. For example, the cylinder may be fixed to the cylinder head 7 so that it can be moved, and a shape memory alloy may be provided on the outside of the cylinder. This is to ensure the shape and sealing of the combustion chamber 9 between the upper surface of the piston 8 and the cylinder head 7.

形状記憶合金1の形状は、図示のような蛇腹の他に、コ
イルその他の形状が使用できる。
As for the shape of the shape memory alloy 1, in addition to the bellows shown in the figure, other shapes such as a coil can be used.

蛇腹状の形状記憶合金lid、その合金の特定温度(マ
ルテンサイト変態開始温度)よりも高温イ1すで第1図
(B)のような伸張した形状に記憶させ、低温側で第1
図(4)のような縮小した形状に記憶させておく。シリ
ンダブロック2とクランクケース4との接合部外壁にお
ける暖機終了時の温度は、大体100℃前後なので、エ
ンジン始動時の常温程度で(A)に示す低温側の形状に
、そしてエンジン暖機終了時には(B)に示す高温側形
状になるようなマルテンサイト変態温度特性を有する形
状記憶合金を使用する。圧縮比−は、第1図(4)の低
温側形状で高くなり、第1図(B)の高温側形状で低く
なる。したがって、エンジン始動時には、長さLの(A
)の低温111す形状になって圧縮比が高くなり、暖機
終了時には、長さL+4Lの(B)の高温側形状になっ
てノノキ/グを起こさせない程度に圧縮比が低く抑えら
れる。
The bellows-shaped shape memory alloy lid is heated to a temperature higher than the specific temperature (martensite transformation start temperature) of the alloy.
It is stored in a reduced shape as shown in Figure (4). The temperature at the outer wall of the joint between the cylinder block 2 and the crankcase 4 at the end of warm-up is approximately 100°C, so at around room temperature when the engine is started, it assumes the shape on the low temperature side shown in (A), and the engine warm-up ends. In some cases, a shape memory alloy having martensitic transformation temperature characteristics such as the shape shown in (B) on the high temperature side is used. The compression ratio - becomes high in the low-temperature side shape shown in FIG. 1(4), and becomes low in the high-temperature side shape shown in FIG. 1(B). Therefore, when starting the engine, the length L (A
), the compression ratio becomes high, and at the end of warm-up, the high temperature side shape of (B) with length L+4L is obtained, and the compression ratio is suppressed to a low level to prevent the occurrence of wood cracking.

圧縮比は、ピストン8が下死点にあるときの燃焼室9の
容積と、ピストン8が上死点にあるときの燃焼室9の容
積との比をいう。これは、ガソリンエンジンでは10程
度、ディーゼルエンジンでは20程度である。容積は、
面積を一定とすると高さによって決まるので、例えばピ
ストンのストロークを63nirn、残りのシリンダヘ
ッドまでの高さを7 mrnとすると、圧縮比は(63
+7 )/7 = 10となり、第1図(B)に示す形
状記憶合金1の形状変化による延ひ量aL == l 
mmとすると、(63+8 )/8#9となる。同様に
してディーゼルエンジンの場合ハ、例えば(95+5 
)15 = 20が、l mrrbの延ひによって(9
5+6)/6 = 17になる。このように、形状記憶
合金1の形状変化によって7リンダブロノク2の位置が
l nun高くなると、ガソリンエンジンでは11デイ
ーゼルエンジンでは3程度の圧縮比が変更できることに
なる。
The compression ratio is the ratio between the volume of the combustion chamber 9 when the piston 8 is at the bottom dead center and the volume of the combustion chamber 9 when the piston 8 is at the top dead center. This is about 10 for gasoline engines and about 20 for diesel engines. The volume is
If the area is constant, it is determined by the height, so for example, if the piston stroke is 63 nirn and the height to the remaining cylinder head is 7 mrn, the compression ratio is (63 nirn).
+7 )/7 = 10, and the elongation amount aL == l due to the shape change of the shape memory alloy 1 shown in FIG. 1(B)
In mm, it becomes (63+8)/8#9. Similarly, in the case of a diesel engine, for example, (95+5
)15 = 20 becomes (9
5+6)/6=17. In this way, if the position of the 7 cylinder block 2 becomes l nun higher due to the shape change of the shape memory alloy 1, the compression ratio can be changed by about 3 for a gasoline engine or an 11 diesel engine.

形状記憶合金には、加熱すると高温側形状に戻るが、冷
却しても低温側形状に戻らない、いわゆる一方向性のも
のと、低温側と高温側の形状に冷却および加熱を繰り返
すことにより可逆的に戻る二方向性と、温度変化に対応
して順次その形状を変えてゆく全方位のものとがある。
Shape memory alloys include so-called unidirectional ones, which return to the high-temperature shape when heated, but do not return to the low-temperature shape when cooled, and those that are reversible to the low-temperature and high-temperature shapes by repeated cooling and heating. There are two types: bidirectional, which returns to the target, and omnidirectional, which sequentially changes its shape in response to temperature changes.

この発明において、一方向性形状記憶合金を使用する場
合は、低温側形状に戻すためのスプリングバイアスが必
要である。二方向性形状記憶合金を使用した場合は、圧
縮比の二段切換となる。これに対し全方位形状記憶合金
を使用すれば、圧縮比の無段階的調整が可能である。
In this invention, when using a unidirectional shape memory alloy, a spring bias is required to return it to the shape on the low temperature side. If a bidirectional shape memory alloy is used, the compression ratio will be switched in two stages. On the other hand, if an omnidirectional shape memory alloy is used, the compression ratio can be adjusted steplessly.

二方向性の形状記憶合金を使用して、圧縮比の二段以上
の大きな切り換えまたは細かな切り換えを行なうために
は、第2図(A)に示すように、マルテンサイト変態温
度特性が順次具なる複数の形状記憶合金La、 1b、
 1cを連続して、例えば蛇腹状に形成すればよい。こ
のようにすれば、エンジン始動時においては、第2図(
4)に示すような高圧縮比で運転され、エンジンが次第
に暖すると、第2図(B)のように第1の形状記憶合金
1αが伸ひ、続いて第2図(c) 、(D)のように第
2.第3の形状記1.8合金1b、 1cが順次伸びて
、全体としてJLI +aL2+4L3の伸び量が得ら
れる。これにより圧縮比の大きなまたは細かな変更が可
能となる。
In order to make large or small changes in the compression ratio of two or more steps using a bidirectional shape memory alloy, the martensitic transformation temperature characteristics must be adjusted sequentially as shown in Figure 2 (A). A plurality of shape memory alloys La, 1b,
1c may be formed continuously into a bellows shape, for example. In this way, when starting the engine, the
When the engine is operated at a high compression ratio as shown in 4) and gradually warms up, the first shape memory alloy 1α expands as shown in FIG. ) as in the second. The third profile 1.8 alloys 1b and 1c are sequentially elongated to obtain an elongation amount of JLI +aL2+4L3 as a whole. This allows large or small changes in the compression ratio.

上記実施例は、シリンダブロック2の外壁の温度変化に
応じて、形状記憶合金1がその形状を自然に変える例で
あるが、この温度変化を人為的に制御して、形状記憶合
金の形状変化を強制的に行なう例が、第3図以下に示さ
れている。第3図に示す例は、円形折り返し部を有する
板状の形状記憶合金1′の両端部をシリンダブロック2
の庇3およびクランクケース4の頂部との間に固着し、
この円形折り返し部に高温空気または排ガスを吹き付け
て強制加熱する。第4図に示す例では、菱形のパイプ状
形状記憶合金1″を使用して、その内部に冷却水10を
導いて強制冷却する。このような強制加熱または強制冷
却手段を備えれば、圧縮比の変更を人為的に制御できる
ばかりでなく、使用する形状記憶合金の選択自由度が広
くなる利点がある。第5図に示す例は、この制御をさら
に細かくできるように、全方位型の形状記憶合金lに近
接させまたは絶縁材料を介して接触させたヒータ11の
通電を、水温、エンジン回転数、スロットル開度、吸入
空気量等の信号を入力されたエンジンコントロールユニ
ットEcUの出力信号によって制御しようとするもので
ある。ヒータ11としては、ニクロム線やセラミックヒ
ータ等が使用されるか、ペルチー効果素子を用いれば、
流す電流の向きを変えることによって加熱および冷却を
選択的に行なえるので、より効果的である。このような
温度制御を行なう場合は、低温側形状時のべ〜ス圧縮比
を通常の場合よりも高目に設定しておき、ノッキングや
騒音の発生、排ガス特性等が悪化したときにこれを検知
して形状記憶合金を加熱し、圧縮比を下げるようにする
とよい。
The above embodiment is an example in which the shape memory alloy 1 naturally changes its shape in accordance with the temperature change of the outer wall of the cylinder block 2, but this temperature change is artificially controlled to change the shape of the shape memory alloy. An example in which this is forcibly performed is shown in Figures 3 and below. In the example shown in FIG.
is fixed between the eaves 3 and the top of the crankcase 4,
Hot air or exhaust gas is blown onto this circular folded part to forcibly heat it. In the example shown in FIG. 4, a rhombic pipe-shaped shape memory alloy 1'' is used, and cooling water 10 is introduced into the inside for forced cooling.If such forced heating or forced cooling means is provided, compression This has the advantage of not only being able to artificially control changes in the ratio, but also widening the degree of freedom in selecting the shape memory alloy to be used. The heater 11, which is placed close to the shape memory alloy l or in contact with it through an insulating material, is energized by the output signal of the engine control unit EcU, which receives signals such as water temperature, engine speed, throttle opening, and intake air amount. As the heater 11, a nichrome wire, a ceramic heater, etc. may be used, or if a Peltier effect element is used,
It is more effective because heating and cooling can be selectively performed by changing the direction of the current flowing. When performing such temperature control, the base compression ratio for the low-temperature side shape should be set higher than for normal conditions, and this can be used when knocking, noise, or exhaust gas characteristics deteriorate. It is preferable to detect this and heat the shape memory alloy to lower the compression ratio.

以上のように、この発明の可変圧縮比エンジンによれば
、簡単な構造によりしかも非運動部に圧縮比変更機構を
設けたので、始動性、燃費、1制久信頼性等が大幅に向
上する。また、温度変化に応じて複数段または無段階的
に圧縮比を変更できるので、エンジンに対する追随性が
良くなる。さらにコンビーータによる制御も可能なので
、圧縮比の最適制御が可能になる。
As described above, the variable compression ratio engine of the present invention has a simple structure and the compression ratio changing mechanism is provided in a non-moving part, so startability, fuel efficiency, one-stop reliability, etc. are significantly improved. . Furthermore, since the compression ratio can be changed in multiple stages or in a stepless manner according to temperature changes, the ability to follow the engine is improved. Furthermore, control by a combeater is also possible, making it possible to optimally control the compression ratio.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明による可変圧縮比エンジン・の−例
を示す概略図、第2図から第5図は、この発明のそれぞ
れ異なる実施例の要部のみを示す図である。 l 形状記憶合金、2・・シリンダブロック、3−・・
庇、4 クランクケース、5,6 ホ゛ル1−.7 ノ
’Jンダヘノド、8・ピストン、9 燃焼室、1″0 
冷却水、11 ヒータ。゛形1 (ハ) l′F)。 (A) rf3> (菌 (B) 2ば (C,> (D)
FIG. 1 is a schematic diagram showing an example of a variable compression ratio engine according to the invention, and FIGS. 2 to 5 are diagrams showing only essential parts of different embodiments of the invention. l Shape memory alloy, 2... cylinder block, 3-...
Eaves, 4 Crankcase, 5, 6 Wheels 1-. 7 No'J head, 8 Piston, 9 Combustion chamber, 1″0
Cooling water, 11 heater.゛Form 1 (c) l'F). (A) rf3> (Bacteria (B) 2ba (C,> (D)

Claims (1)

【特許請求の範囲】[Claims] シリンダブロックとクランクケースまたはシリンダヘッ
ドとの間を、シリンダ軸方向に特定温度の低温側で縮み
、高温側で伸びるように形状記憶させた形状記憶合金に
よって接合したことを特徴とする可変圧縮比エンジン。
A variable compression ratio engine characterized in that the cylinder block and the crankcase or cylinder head are joined in the axial direction of the cylinder by a shape memory alloy that contracts at a specific temperature on the low temperature side and expands on the high temperature side. .
JP13048183A 1983-07-18 1983-07-18 Variable compression ratio engine Pending JPS6022030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13048183A JPS6022030A (en) 1983-07-18 1983-07-18 Variable compression ratio engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13048183A JPS6022030A (en) 1983-07-18 1983-07-18 Variable compression ratio engine

Publications (1)

Publication Number Publication Date
JPS6022030A true JPS6022030A (en) 1985-02-04

Family

ID=15035282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13048183A Pending JPS6022030A (en) 1983-07-18 1983-07-18 Variable compression ratio engine

Country Status (1)

Country Link
JP (1) JPS6022030A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025757A (en) * 1990-09-13 1991-06-25 Larsen Gregory J Reciprocating piston engine with a varying compression ratio
US5443043A (en) * 1990-12-03 1995-08-22 Saab Automobile Aktiebolag Internal combustion engine with variable compression, provided with reinforcements of the crankcase section
JP2007332796A (en) * 2006-06-12 2007-12-27 Toyota Motor Corp Internal combustion engine with variable compression ratio, and method of discharging cooling water of internal combustion engine with variable compression ratio
DE102007040699A1 (en) 2007-08-29 2009-03-05 Robert Bosch Gmbh Reciprocating-piston internal combustion engine e.g. petrol engine, for use in e.g. passenger car, has magnetic field generating device generating variable magnetic field which appears at actuator so that compression ratio is adjusted
DE102007040700A1 (en) 2007-08-29 2009-03-05 Robert Bosch Gmbh Reciprocating piston internal combustion engine for use in vehicles, has reciprocating piston is provided, where actuator is executed by adjusting compression ratio using translatory motion
US20120210984A1 (en) * 2009-10-08 2012-08-23 Thomas Stolk Internal combustion engine
WO2014010018A1 (en) 2012-07-09 2014-01-16 トヨタ自動車株式会社 Internal combustion engine
JP2014152652A (en) * 2013-02-06 2014-08-25 Toyota Motor Corp Internal combustion engine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5025757A (en) * 1990-09-13 1991-06-25 Larsen Gregory J Reciprocating piston engine with a varying compression ratio
US5443043A (en) * 1990-12-03 1995-08-22 Saab Automobile Aktiebolag Internal combustion engine with variable compression, provided with reinforcements of the crankcase section
JP2007332796A (en) * 2006-06-12 2007-12-27 Toyota Motor Corp Internal combustion engine with variable compression ratio, and method of discharging cooling water of internal combustion engine with variable compression ratio
KR101048566B1 (en) 2006-06-12 2011-07-11 도요타지도샤가부시키가이샤 Cooling water discharge method of a variable compression ratio internal combustion engine and a variable compression ratio internal combustion engine
US8820273B2 (en) 2006-06-12 2014-09-02 Toyota Jidosha Kabushiki Kaisha Variable compression ratio internal combustion engine and method for discharging coolant from variable compression ratio internal combustion engine
DE102007040699A1 (en) 2007-08-29 2009-03-05 Robert Bosch Gmbh Reciprocating-piston internal combustion engine e.g. petrol engine, for use in e.g. passenger car, has magnetic field generating device generating variable magnetic field which appears at actuator so that compression ratio is adjusted
DE102007040700A1 (en) 2007-08-29 2009-03-05 Robert Bosch Gmbh Reciprocating piston internal combustion engine for use in vehicles, has reciprocating piston is provided, where actuator is executed by adjusting compression ratio using translatory motion
US20120210984A1 (en) * 2009-10-08 2012-08-23 Thomas Stolk Internal combustion engine
US8474420B2 (en) * 2009-10-08 2013-07-02 Daimler Ag Variable compression ratio internal combustion engine with displaceable cylinder head and cylinder housing
WO2014010018A1 (en) 2012-07-09 2014-01-16 トヨタ自動車株式会社 Internal combustion engine
US9410489B2 (en) 2012-07-09 2016-08-09 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2014152652A (en) * 2013-02-06 2014-08-25 Toyota Motor Corp Internal combustion engine

Similar Documents

Publication Publication Date Title
US4928658A (en) Regenerative internal combustion engine
US4499872A (en) Ultra lean burn carburetted adiabatic engine
JP4581273B2 (en) Start-up control device for internal combustion engine
JPS6022030A (en) Variable compression ratio engine
JPH0338420B2 (en)
JPS6329093B2 (en)
JPH10501316A (en) Regeneration engine with heating process
CN103032149B (en) Wax type thermostat for the cooling system of an internal combustion engine
RU2006106277A (en) AUTOMATIC THROTTLE BODY FOR ENGINE
JPH11511824A (en) Regeneration engine with heating and cooling processes
JP4913135B2 (en) 2-stroke engine especially for land craft, water craft or air craft models
US20190120121A1 (en) Coolant control valve and a cooling system having same
JP2005515340A (en) Rotary positive displacement engine
US4783963A (en) Internal combustion steam engine
US2390558A (en) Engine crankshaft to piston connecting mechanism
SU1193279A1 (en) Internal combustion engine with variable compression ratio
JPH07324626A (en) Uniflow scavenging type two-cycle diesel engine with scavenging port control valve
JPH0514089B2 (en)
JPH01170764A (en) Ignition device for engine
JPS60240850A (en) Cylinder liner having exhaust port bridge relief hole
JPS63289204A (en) Intake and exhaust structure for internal combustion engine
JP3018349B2 (en) 2-cycle insulated engine
US20030196424A1 (en) Warren cycle external combustion engine
EP0174504B1 (en) Stirling engine and stirling engine heater
RU2078960C1 (en) Internal combustion engine and method of its operation