JPS60220150A - Apparatus for regenerating ion exchange resin mixture - Google Patents

Apparatus for regenerating ion exchange resin mixture

Info

Publication number
JPS60220150A
JPS60220150A JP59076677A JP7667784A JPS60220150A JP S60220150 A JPS60220150 A JP S60220150A JP 59076677 A JP59076677 A JP 59076677A JP 7667784 A JP7667784 A JP 7667784A JP S60220150 A JPS60220150 A JP S60220150A
Authority
JP
Japan
Prior art keywords
resin
exchange resin
tower
regeneration tower
anion exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59076677A
Other languages
Japanese (ja)
Other versions
JPH0437738B2 (en
Inventor
Shinichi Usui
伸一 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP59076677A priority Critical patent/JPS60220150A/en
Publication of JPS60220150A publication Critical patent/JPS60220150A/en
Publication of JPH0437738B2 publication Critical patent/JPH0437738B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Abstract

PURPOSE:To lower the concns. of Na<+>, Cl<-> and SO3<--> leaked in treated water, by connecting the resin withdrawing port provided to the intermediate part of a cation exchange regeneration tower to the upper part of an anion exchange resin regeneration tower by resin transfer piping. CONSTITUTION:An ion exchange resin mixture is backwashed along with a resin after a desalting process and allowed to stand to be separated into two layers. The resin above the resin withdrawing port 11 provided to the intermediate part of a cation exchange resin regeneration tower 1 is transferred to an anion exchange resin regeneration tower 2 by a resin transfer pipe 101. After transfer, the resins in both regeneration towers are backwashed and allowed to stand. Succeedingly, hydrochloric acid is flowed into the cation exchange resin regeneration tower 1 through piping 103 and sulfuric acid is simultaneously flowed into the anion exchange resin regeneration tower 2 through piping 103. Then, a caustic soda solution is flowed into the anion exchange resin regeneration tower 2 through piping 203 before washing. Subsequently, the resin is transferred to a storage tank 3 from resin transfer piping 102.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、復水脱塩装置に代表される塔外再生式の混床
式イオン交換脱塩装置における。混合イオン交換樹脂の
再生装置に関するものである。詳しくは、再生後の混合
イオン交換樹脂を再び脱塩処理に使用したときに、処理
水中にリークするナトリウムイオン、塩化物イオンおよ
び硫酸イオンの濃度を極めて低く抑えるために、再生後
のカチオン交換樹脂におけるナトリウムイオン形の交換
基、ならびに再生後のアニオン交換樹脂における塩化物
イオン形および硫酸水素イオン形の交換基の存在率を低
く抑えるだめの装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an external regeneration type mixed bed type ion exchange desalination apparatus, typified by a condensate desalination apparatus. This invention relates to a mixed ion exchange resin regeneration device. Specifically, in order to keep the concentration of sodium ions, chloride ions, and sulfate ions that leak into the treated water to an extremely low level when the recycled mixed ion exchange resin is used again for desalination treatment, the recycled cation exchange resin The present invention relates to a device for suppressing the abundance of sodium ion type exchange groups in a regenerated anion exchange resin, as well as chloride ion type and hydrogen sulfate ion type exchange groups in an anion exchange resin after regeneration.

〔従来技術〕[Prior art]

近年、火力発電所や原子力発電所で使用される復水脱塩
装置の処理水水質に対する要求はますます厳しくなって
きており、ナトリウムイオン、塩化物イオン、硫酸イオ
ンなどの不純物イオンの処理水中へのリーク濃度を0.
1μm7.以下に抑えることかしばしば要求され、場合
によってはナトリウムイオンの濃度をo、oosμ24
程度、塩化物イオンまたは硫酸イオンの濃度を0.01
“2/を程度にすることを要求されることもある。これ
はボイラや蒸気発生器における不純物イオンの濃縮のメ
カニズムや腐蝕のメカニズムが次第に明らかになったこ
とや、不純物イオンの分析精度が向上し極めて低い濃度
における分析が可能になったことによると思われる。
In recent years, requirements for the quality of treated water from condensate desalination equipment used in thermal power plants and nuclear power plants have become increasingly strict, and impurity ions such as sodium ions, chloride ions, and sulfate ions are being added to the treated water. The leak concentration of 0.
1μm7. It is often required to keep the concentration of sodium ions below o, oosμ24 in some cases.
degree, the concentration of chloride ions or sulfate ions to 0.01
This is because the concentration mechanism and corrosion mechanism of impurity ions in boilers and steam generators have gradually become clearer, and the accuracy of impurity ion analysis has improved. This is probably due to the fact that analysis at extremely low concentrations has become possible.

従来より、復水脱塩装置としてはおもに混床式イオン交
換脱塩装置が用いられており、その大部分が洛外再生方
式(脱塩塔内では再生を行なわず別に設けた再生塔にイ
オン交換樹脂を移送して再生を行なう方式)を採用して
いる。塔外再生の場合、混合イオン交換樹脂の再生に際
しては、まず脱塩イ内の樹脂を再生塔に移送し、再生塔
において逆洗を行なってカチオン交換樹脂とアニオン交
換樹脂を二層に分離し、上層のアニオン交換樹脂を別の
再生塔に移送し、続いてカチオン交換樹脂に塩酸または
硫酸を通液し、アニオン交換樹脂に苛性ソーダを通液し
、両樹脂の洗浄を行ない、洗浄の終わった両樹脂を樹脂
貯槽に移送して空気で混合し、混合した樹脂を脱塩塔に
戻すという手順を基本としている。
Conventionally, mixed-bed ion exchange desalination equipment has been mainly used as condensate desalination equipment, and most of them are of the outside regeneration method (no regeneration is performed within the desalination tower, but ion exchange is carried out in a separate regeneration tower). A method in which the resin is transported and regenerated) is adopted. In the case of out-of-column regeneration, when regenerating a mixed ion exchange resin, the resin in the desalination chamber is first transferred to the regeneration tower, and backwashed in the regeneration tower to separate the cation exchange resin and anion exchange resin into two layers. , the upper layer of anion exchange resin is transferred to another regeneration tower, then hydrochloric acid or sulfuric acid is passed through the cation exchange resin, caustic soda is passed through the anion exchange resin, and both resins are washed. The basic procedure is to transfer both resins to a resin storage tank, mix them with air, and return the mixed resin to the desalination tower.

しかるに、処理水中にリークする不純物イオン、特にナ
トリウムイオンのリークが問題になるにしたがい、再生
時に両樹脂を分離する際の分離の不完全さに関心が寄せ
られるようになった。すなわち、アニオン交換樹脂層に
混入したカチオン交換樹脂はアニオン交換樹脂の再生剤
である苛性ソーダと接触してナトリウムイオン形となり
、このナトリウムイオン形のカチオン交換樹脂が脱塩塔
に戻されて通水工程に用いられたときに、水素イオン、
アンモニウムイオンなどのカチオ/とイオン交換反応を
おこし、次の式に示すようにナトリウムイオンのリーク
を生ずるということがわかったからである。
However, as the leakage of impurity ions, particularly sodium ions, leaking into the treated water has become a problem, attention has been paid to the incompleteness of separation when separating both resins during regeneration. That is, the cation exchange resin mixed in the anion exchange resin layer comes into contact with caustic soda, which is a regenerating agent for the anion exchange resin, and becomes a sodium ion form, and this sodium ion form of the cation exchange resin is returned to the demineralization tower and passed through the water flow process. When used for hydrogen ions,
This is because it was found that an ion exchange reaction occurs with cations such as ammonium ions, resulting in leakage of sodium ions as shown in the following equation.

R−Na+H” −R−)(+ Na+−・−・・・・
= 117R−Na+NH4”−R−NH4+Na+−
・・・・・・(21(田濤脂母体を意味する) この現象は、特にアンモニウムイオンの破過後も通水を
続ける運転方式(いわゆるアンモニア、サイクル運転)
のときに著しいが、アンモニウムイオンの破過の前に通
水を停止する運転方式(いわゆるH−OHサイクル運転
)においても生ずる。しかしながら、H−OHサイクル
運転においては、生ずるナトリウムイオンのリークがア
ノモニアサイクル運転の場合に比べて非常に小さいため
、従来はほとんど問題にならなかった。ところが、近年
の厳しい水質要求のもとではこの微小リークさえも問題
とするようになったのである。
R−Na+H”−R−)(+Na+−・−・・・
= 117R-Na+NH4"-R-NH4+Na+-
・・・・・・(21 (Means Tato fat matrix)) This phenomenon is especially caused by an operation method in which water continues to flow even after the ammonium ion has broken through (so-called ammonia cycle operation).
Although this problem is noticeable when ammonium ions break through, it also occurs in an operating system in which water flow is stopped before the ammonium ions break through (so-called H-OH cycle operation). However, in the H-OH cycle operation, the leakage of sodium ions that occurs is much smaller than that in the ammonia cycle operation, so this has not been a problem in the past. However, in recent years, with strict water quality requirements, even this minute leak has become a problem.

一方、塩化物イオンや硫酸イオンなどのアニオンのリー
クは、それらの検出手段が十分発達していなかったこと
もあって、従来は見過ごされてきたわけであるが、近年
、イオンクロマトグラフィーなどの微量分析手段の発達
によってアニオンの検出が可能になるにしたがい、予想
以上の塩化物イオンや硫酸イオンのリークがあることが
わかってきた。これらのリークは、再生のときにカチオ
ン交換樹脂層に混入したアニオン交換樹脂がカチオン交
換樹脂の再生剤である塩酸または硫酸と接触して塩化物
イオン形または硫酸水素イオン形となり、この樹脂が脱
塩塔に戻されて通水工程に用いられたときに1次式にし
たがって塩化物イオンや硫酸イオンのリークを生ずるこ
とによると考えられている。
On the other hand, the leakage of anions such as chloride ions and sulfate ions has traditionally been overlooked, partly because detection means for these have not been sufficiently developed. However, in recent years, trace analysis techniques such as ion chromatography have As the detection of anions became possible due to the development of techniques, it was discovered that chloride and sulfate ions were leaking more than expected. These leaks occur when the anion exchange resin mixed into the cation exchange resin layer during regeneration comes into contact with hydrochloric acid or sulfuric acid, which is a regenerant for the cation exchange resin, and becomes chloride ion form or hydrogen sulfate ion form, and this resin is desorbed. This is thought to be due to the leakage of chloride ions and sulfate ions according to the linear equation when the salt is returned to the salt tower and used in the water passage process.

R−0/、+OH−→R−OH+a1.−・・・・・・
・・・・・・・・・(3)R=(H8O4)、−+R=
80.+2H+804・−・−・・(4)本発明者が実
験的検討を行なったところ、 H−OHサイクル運転に
おいてナトリウムイオンリークを0.005“夕程度に
するためKは、全カチオン交換基に対するナトリウムイ
オン形交換基の存在率を02〜0.3チにする必要があ
ることがわかった。また、塩化物イオンリークを0.0
1μケ程度にするためには、全アニオン交換基に対する
塩化物イオン形交換基の存在率を6〜5チにする必要が
あることがわかった。
R-0/, +OH-→R-OH+a1. −・・・・・・
・・・・・・・・・(3) R=(H8O4), −+R=
80. +2H+804・-・-・(4) The inventor conducted an experimental study and found that in order to reduce the sodium ion leakage to about 0.005" in H-OH cycle operation, K is the sodium relative to all the cation exchange groups. It was found that the abundance ratio of ionic exchange groups should be 0.02 to 0.3%.Also, the chloride ion leakage should be set to 0.0%.
It has been found that in order to make it about 1μ, the abundance ratio of chloride ion exchange groups to all anion exchange groups needs to be 6 to 5μ.

本発明者らは以前に、特公昭58−41913号公報に
示されるようなカチオン交換樹脂とアニオン交換樹脂の
分離を改善する方法を発明した。この方法によれば、ア
ニオン交換樹脂層に混入するカチオン交換樹脂の量は全
カチオン交換樹脂の0.1チ以下になる。また、カチオ
ン交換樹脂層に混入するアニオン交換樹脂の量は全アニ
オン交換樹脂の05〜2チになる。アニオン交換樹脂の
混入率が比較的高いのは、カチオン交換樹脂再生塔内で
両樹脂な逆洗分離したのちに上層のアニオン交換樹脂を
アニオン交換樹脂再生塔に移送する際に1分離界面付近
のカチオン交換樹脂をアニオン交換樹脂と共に移送した
としても、若干量のアニオン交換樹脂が残留するのが避
けられないからである。
The present inventors have previously invented a method for improving the separation of cation exchange resins and anion exchange resins as shown in Japanese Patent Publication No. 58-41913. According to this method, the amount of cation exchange resin mixed into the anion exchange resin layer is 0.1 inch or less of the total cation exchange resin. Further, the amount of anion exchange resin mixed into the cation exchange resin layer is 0.5 to 2.0% of the total anion exchange resin. The reason why the contamination rate of anion exchange resin is relatively high is that after backwashing and separation of both resins in the cation exchange resin regeneration tower, when the upper layer of anion exchange resin is transferred to the anion exchange resin regeneration tower, there is a This is because even if the cation exchange resin is transferred together with the anion exchange resin, it is inevitable that some amount of the anion exchange resin remains.

さて1本発明者がモデルカラムを用い、塔外再生の復水
脱塩装置を想定して通水および再生をくり返す実験(実
験1)を行なったところ、表1に示す結果を得た。
Using a model column, the present inventor conducted an experiment (Experiment 1) in which water flow and regeneration were repeated assuming a condensate desalination apparatus with external regeneration, and the results shown in Table 1 were obtained.

表1 実験1の結果 I CR・・・・・・カチオン交換樹脂壷崇 人計・・
・・・アニオン交Mt脂表1で目につくのは、塩化物イ
オン形のアニオン交換樹脂の存在率が異常に高く、それ
に伴ってやや高目の塩化物イオンリークが生じているこ
とである。通水中の塩化物イオンの負荷はなく、再生時
にカチオン交換樹脂層に混入するアニオン交換樹脂の割
合が0.5〜2%であることを考慮すると。
Table 1 Results of Experiment 1 I CR...Cation exchange resin pot Takashi Human total...
...Anion-exchanged Mt resin What is noticeable in Table 1 is that the presence rate of chloride ion-type anion exchange resin is abnormally high, and as a result, a rather high chloride ion leak occurs. . Considering that there is no load of chloride ions in the flowing water and the proportion of anion exchange resin mixed into the cation exchange resin layer during regeneration is 0.5 to 2%.

この塩化物イオン形のアニオン交換樹脂は再生のときに
生成した05〜2チが再生をくり返すごとに蓄積してい
ったとしか考えられない。実際、塩化物イオン形のアニ
オン交換樹脂の再生効率の悪さはよく知られているとこ
ろで1%に塩化物イオン形の割合を低くするためには大
過剰の苛性ソーダを流す必要がある。
It is only conceivable that the chloride ion type anion exchange resin was generated during regeneration and accumulated as the regeneration was repeated. In fact, it is well known that the regeneration efficiency of chloride ion type anion exchange resins is poor, and in order to lower the proportion of chloride ion type to 1%, it is necessary to flow a large excess of caustic soda.

また、実験lと同じモデルカラムを用い、カチオン交換
樹脂の再生剤として硫酸を用いて通水および再生実験(
実験2)を行なったところ、表2に示す結果を得た。
In addition, using the same model column as in Experiment 1, water flow and regeneration experiments (
Experiment 2) was conducted, and the results shown in Table 2 were obtained.

表2 実験2の結果 m 17μケは通水初期の値 表2で目につくのは、通水初期における硫酸イオンリー
クが異常に高いことである。表1の結果と比較すれば、
硫酸水素イオン形交換基による硫酸イオンリークは塩化
物イオン形交換基による塩化物イオンリークに比べて桁
はずれに大きいことがわかる。なお、硫酸水素イオン形
交換基を硫酸イオン形交換基と別々に分析することはで
きないため表2の結果には現れていないが、硫酸水素イ
オン形交換基は(4)式にしたがって通水中にほとんど
硫酸イオン形交換基に変わってしまっていると考えられ
る。
Table 2 Results of Experiment 2 m 17μke is the value at the beginning of water flow What is noticeable in Table 2 is that the leakage of sulfate ions at the beginning of water flow is abnormally high. Comparing with the results in Table 1,
It can be seen that the sulfate ion leak due to the hydrogen sulfate ion type exchange group is orders of magnitude larger than the chloride ion leak due to the chloride ion type exchange group. Note that the hydrogen sulfate ion exchange group cannot be analyzed separately from the sulfate ion exchange group, so it does not appear in the results of Table 2, but the hydrogen sulfate ion exchange group can be analyzed during water flow according to equation (4). It is thought that most of them have changed to sulfate ion type exchange groups.

ところで、実験lに用いたアニオン交換樹脂に硫酸を通
液し、続いて苛性ソーダを通液して再生したものを、実
験lに用いたカチオン交換樹脂を塩酸で再生したものと
混合して、これに模擬復水を通水したところ(実験3)
、表3に示す結果を得た。
By the way, the anion exchange resin used in Experiment 1 was regenerated by passing sulfuric acid through it, followed by passing caustic soda through it, and mixed with the cation exchange resin used in Experiment 1 regenerated with hydrochloric acid. When simulated condensate was passed through (Experiment 3)
, the results shown in Table 3 were obtained.

表3 実験3の結果 表3で気がつくのは1表1にくらべて塩化物イオン形交
換基の割合が著しく低(それに伴って塩化物イオンリー
クが小さいことと1表2にくらべて硫酸イオン形交換基
の割合が大きく増えているにもかかわらず硫酸イオンの
リークがほとんど生じていないことである。すなわち、
カチオン交換樹脂を塩酸で再生し、アニオン交換樹脂を
硫酸と苛性ソーダによる二段再生とすれば、塩化物イオ
ンリークと硫酸イオンリークの両方を小さくすることが
できるということがわかったのである。
Table 3 Results of Experiment 3 What we notice in Table 3 is that the ratio of chloride ion type exchange groups is significantly lower than in Table 1 (correspondingly, the chloride ion leakage is small; Despite the large increase in the proportion of exchange groups, there is almost no leakage of sulfate ions.
It has been found that both chloride ion leak and sulfate ion leak can be reduced by regenerating the cation exchange resin with hydrochloric acid and performing two-stage regeneration of the anion exchange resin with sulfuric acid and caustic soda.

混合イオン交換樹脂を再生する場合は、前述したように
カチオン交換樹脂層にアニオン交換樹脂が混入すること
が避けられないため、カチオン交換樹脂を硫酸で再生す
ると、混入しているアニオン交換樹脂が硫酸水素イオン
形となり、(4)式にしたがって通水時に硫酸イオンの
リークを生ずる原因となる。
When regenerating a mixed ion exchange resin, it is inevitable that the anion exchange resin will be mixed into the cation exchange resin layer as described above, so if the cation exchange resin is regenerated with sulfuric acid, the mixed anion exchange resin will become sulfuric acid. It becomes a hydrogen ion form, which causes leakage of sulfate ions when water is passed according to equation (4).

一方、カチオン交換樹脂を塩酸で再生する場合には、混
入しているアニオン交換樹脂は塩化物イオン形となる。
On the other hand, when the cation exchange resin is regenerated with hydrochloric acid, the mixed anion exchange resin becomes a chloride ion.

塩化物イオン形交換基は(3)式による塩化物イオンの
リークを生ずるが、この塩化物イオンのリークは(4)
式による硫酸イオンのリークに比べてはるかに小さいと
考えられる。したがって、混床式イオン交換脱塩装置に
おいてはカチオン交換樹脂の再生剤として塩酸を用いる
ことが好ましい。ところが、カチオン交換樹脂の塩酸再
生によって生じた少量の塩化物イオン形アニオン交換樹
脂は、次回以降の再生のときに苛性ソーダと接触しても
、苛性ソーダ単独では再生効率が悪いため、再生のたび
に生成される塩化物イオン形のアニオン交換樹脂が次第
に蓄積されるかつこうとなり、塩化物イオン形の交換基
の存在率を低く維持し、それによって塩化物イオンのリ
ークを常圧低くすることが困難であったと考えられる。
The chloride ion type exchange group causes chloride ion leakage according to equation (3), but this chloride ion leakage is expressed as (4).
This is considered to be much smaller than the leakage of sulfate ions caused by the formula. Therefore, in the mixed bed type ion exchange desalination apparatus, it is preferable to use hydrochloric acid as a regenerating agent for the cation exchange resin. However, even if a small amount of chloride ion-form anion exchange resin produced by hydrochloric acid regeneration of cation exchange resin comes into contact with caustic soda during subsequent regenerations, the regeneration efficiency is poor with caustic soda alone, so the amount of chloride ion-form anion exchange resin produced each time is regenerated. The anion exchange resin in the chloride ion form gradually accumulates and becomes difficult to maintain the abundance of chloride ion exchange groups at a low level, thereby reducing the leakage of chloride ions at normal pressure. It is thought that there was.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記問題点を解決するためになされたものであ
って、再生後のカチオン交換樹脂におけるナトリウムイ
オン形の交換基、ならびに再生後のアニオン交換樹脂に
おける塩化物イオン形および硫酸水素イオン形の交換基
の存在率を低く抑え。
The present invention has been made in order to solve the above-mentioned problems. Keep the existence rate of exchange groups low.

脱塩処理に使用したときに処理水中にリークするナトリ
ウムイオン、塩化物イオンおよび硫酸イオンの濃度を極
めて低くすることにある。
The purpose is to extremely reduce the concentration of sodium ions, chloride ions, and sulfate ions that leak into treated water when used for desalination treatment.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、塔外再生式の混床式イオン交換脱塩装置に付
属する混合イオン交換樹脂の再生装置であって、カチオ
ン交換樹脂再生塔1、アニオン交換樹脂再生塔2、樹脂
貯槽3、塩配供給装置4、硫酸供給装置5.苛性ソーダ
供給装置6および付属する配管、弁類によって構成され
;カチオン交換樹脂再生塔1は、脱塩塔から脱塩工程終
了後の樹脂を移送する配管901を接続し、塔中間部お
よび塔底部にそれぞれ樹脂引抜き口11.12を備え、
塔頂部および塔底部にそれぞれ集配水機構16゜14を
備え、さらに塔中間部の樹脂引抜き口11より上方で頂
部の集配水機構16より下方に塩酸流入口15を備える
とともに該流入口15と塩酸供給装置4とを配管106
にて接続し;アニオン交換樹脂再生塔2は、塔中間部お
よび塔底部にそれぞれ樹脂引抜き口21.22を備え、
塔頂部および塔底部にそれぞれ集配水機構23.24を
備え、さらに塔中間部の樹脂引抜き口21より上方で頂
部の集配水機構23より下方に硫酸および苛性ソーダ流
入口25を備えるとともに該流入口25と硫酸供給装置
5および苛性ソーダ供給装置6とを配管203にて接続
し;樹脂貯槽3は、底部に樹脂引抜き口62を備え、該
樹脂引抜き口62に槽内樹脂を脱塩塔に移送する配管6
01を接続し、さらに槽頂部および槽底部にそれぞれ集
配水機構53.34を備え;カチオン交換樹脂再生塔1
の中間樹脂引抜き口11とアニオン交換樹脂再生塔2の
上部を樹脂移送配管101で接続し、カチオン交換樹脂
再生塔1の底部樹脂引抜き口12と樹脂貯槽6の上部を
樹脂移送配管102で接続し、アニオン交換樹脂再生塔
2の中間樹脂引抜き口21と樹脂貯槽6の上部を樹脂移
送配管201で接続し。
The present invention is a mixed ion exchange resin regeneration device attached to an external regeneration type mixed bed ion exchange desalination device, which includes a cation exchange resin regeneration tower 1, an anion exchange resin regeneration tower 2, a resin storage tank 3, a salt Distribution supply device 4, sulfuric acid supply device 5. The cation exchange resin regeneration tower 1 is composed of a caustic soda supply device 6 and attached piping and valves; the cation exchange resin regeneration tower 1 is connected to a piping 901 for transferring the resin after the desalination process from the demineralization tower, and is connected to the middle part of the tower and the bottom part of the tower. Each is equipped with resin extraction ports 11 and 12,
A water collection and distribution mechanism 16° 14 is provided at the top and bottom of the tower, and a hydrochloric acid inlet 15 is provided above the resin extraction port 11 in the middle of the tower and below the water collection and distribution mechanism 16 at the top. Supply device 4 and piping 106
The anion exchange resin regeneration tower 2 is equipped with resin withdrawal ports 21 and 22 at the middle part and the bottom part of the tower, respectively;
Water collection and distribution mechanisms 23 and 24 are provided at the top and bottom of the tower, respectively, and a sulfuric acid and caustic soda inlet 25 is provided above the resin extraction port 21 in the middle of the tower and below the water collection and distribution mechanism 23 at the top. and the sulfuric acid supply device 5 and the caustic soda supply device 6 are connected by a pipe 203; the resin storage tank 3 is equipped with a resin withdrawal port 62 at the bottom, and a pipe is connected to the resin withdrawal port 62 to transfer the resin in the tank to the demineralization tower. 6
01 and further provided with water collection and distribution mechanisms 53 and 34 at the tank top and tank bottom, respectively; cation exchange resin regeneration tower 1
The intermediate resin withdrawal port 11 and the upper part of the anion exchange resin regeneration tower 2 are connected by a resin transfer pipe 101, and the bottom resin withdrawal port 12 of the cation exchange resin regeneration tower 1 and the upper part of the resin storage tank 6 are connected by a resin transfer pipe 102. , the intermediate resin extraction port 21 of the anion exchange resin regeneration tower 2 and the upper part of the resin storage tank 6 are connected by a resin transfer pipe 201.

アニオン交換樹脂再生塔2の底部樹脂引抜き口22とカ
チオン交換樹脂再生塔1の上部を樹脂移送配管202で
接続したことを特徴とするものである。
It is characterized in that the bottom resin drawing port 22 of the anion exchange resin regeneration tower 2 and the upper part of the cation exchange resin regeneration tower 1 are connected by a resin transfer pipe 202.

〔実施例〕〔Example〕

本発明の一実施例を図面を参照しながら説明すれば、1
はカチオン交換樹脂再生塔、2はアニオン交換樹脂再生
塔、3は樹脂貯槽で、4は塩酸供給装置、5は硫酸供給
装置、6は苛性ソーダ供給装置である。
One embodiment of the present invention will be described with reference to the drawings.
2 is a cation exchange resin regeneration tower, 2 is an anion exchange resin regeneration tower, 3 is a resin storage tank, 4 is a hydrochloric acid supply device, 5 is a sulfuric acid supply device, and 6 is a caustic soda supply device.

カチオン交換樹脂再生塔1は、その上部に図示しない脱
塩塔の脱塩工程終了後の樹脂を移送する樹脂移送配管9
01を接続し、塔1の中間部および底部にはそれぞれ樹
脂引抜き口11と12を備え、また頂部と底部にはそれ
ぞれ集配水機構16と14を備えている。さらに、カチ
オン交換樹脂再生塔1の中間部樹脂引抜き口11より上
方で頂部集配水機構13より下方には塩酸流入口15を
備え、この塩酸流入口15は塩酸供給装置4から塩酸を
吸引するエゼクタ41に弁を有する配管106にて接続
されている。
The cation exchange resin regeneration tower 1 has a resin transfer pipe 9 at its upper portion that transfers the resin after the desalination process of the desalination tower (not shown) is completed.
01 is connected to the tower 1, and the middle and bottom portions of the tower 1 are provided with resin extraction ports 11 and 12, respectively, and the top and bottom portions are provided with water collection and distribution mechanisms 16 and 14, respectively. Furthermore, a hydrochloric acid inlet 15 is provided above the intermediate resin extraction port 11 of the cation exchange resin regeneration tower 1 and below the top water collection and distribution mechanism 13, and this hydrochloric acid inlet 15 is connected to an ejector that sucks hydrochloric acid from the hydrochloric acid supply device 4. 41 is connected by a pipe 106 having a valve.

アニオン交換樹脂再生塔2は、その中間部および底部に
それぞれ樹脂引抜き口21と22を備え。
The anion exchange resin regeneration tower 2 is provided with resin extraction ports 21 and 22 at its middle and bottom parts, respectively.

また頂部と底部にはそれぞれ集配水機構26と24を備
えている。さらK、アニオン交換樹脂再生塔2の中間部
樹脂引抜き口21より上方で頂部集配水機構26より下
方には、硫酸および苛性ソーダ流入口25を備え、この
流入口25は硫酸供給装置5から硫酸を吸引するエゼク
タ51および苛性ソーダ供給装置6から苛性ソーダを吸
引するエゼクタ61に弁を有する配管206にて接続さ
れている。
Also, water collection and distribution mechanisms 26 and 24 are provided at the top and bottom, respectively. Further, above the intermediate resin withdrawal port 21 of the anion exchange resin regeneration tower 2 and below the top water collection and distribution mechanism 26, a sulfuric acid and caustic soda inlet 25 is provided, and this inlet 25 receives sulfuric acid from the sulfuric acid supply device 5. It is connected to an ejector 51 for sucking and an ejector 61 for sucking caustic soda from the caustic soda supply device 6 through a pipe 206 having a valve.

前記樹脂貯槽6は、底部に樹脂引抜き口62を備え、こ
の底部樹脂引抜口62に槽内樹脂を図示しない脱塩塔に
移送するための弁を有する樹脂移送配管601を接続し
、さらに槽頂部と底部にそれぞれ集配水機構66と64
を備えている。
The resin storage tank 6 is equipped with a resin drawing port 62 at the bottom, a resin transfer pipe 601 having a valve for transferring the resin in the tank to a desalination tower (not shown) is connected to the bottom resin drawing port 62, and a resin transfer pipe 601 is connected to the resin drawing port 62 at the top of the tank. and water collection and distribution mechanisms 66 and 64 at the bottom, respectively.
It is equipped with

さらに、カチオン交換樹脂再生塔1の中間部樹脂引抜き
口11とアニオン交換樹脂再生塔2の上部を弁を有する
樹脂移送配管101で接続し、底部樹脂引抜き口12と
樹脂貯槽3の上部を弁を有する樹脂移送配管102で接
続する。また、アニオン交換樹脂再生塔2の中間部樹脂
引抜き口21と樹脂貯槽6の上部を弁を有する樹脂移送
配管201で接続し、底部樹脂引抜き口22とカチオン
交換樹脂再生塔1の上部を弁を有する樹脂移送配管20
2で接続する。
Further, the intermediate resin withdrawal port 11 of the cation exchange resin regeneration tower 1 and the upper part of the anion exchange resin regeneration tower 2 are connected by a resin transfer pipe 101 having a valve, and the bottom resin withdrawal port 12 and the upper part of the resin storage tank 3 are connected with a valve. The resin transfer pipe 102 is used for connection. Further, the intermediate resin withdrawal port 21 of the anion exchange resin regeneration tower 2 and the upper part of the resin storage tank 6 are connected by a resin transfer pipe 201 having a valve, and the bottom resin withdrawal port 22 and the upper part of the cation exchange resin regeneration tower 1 are connected with a valve. Resin transfer piping 20 with
Connect with 2.

また、カチオン交換樹脂再生塔1、アニオン交換樹脂再
生塔2、樹脂貯槽6の上部をそれぞれ空気配管902に
弁を介して接続するとともに排気弁16,26.36に
連絡させ、各頂部集配水機構15、26.33を給水配
管906およびそれぞれの排水管104,204,50
4に弁を介して接続し。
In addition, the upper parts of the cation exchange resin regeneration tower 1, anion exchange resin regeneration tower 2, and resin storage tank 6 are connected to the air piping 902 through valves, and are also connected to the exhaust valves 16, 26, and 36, and the top water collection and distribution mechanisms 15, 26.33 to the water supply pipe 906 and the respective drain pipes 104, 204, 50
4 through a valve.

各底部集配水機構14.24.34を空気配管904、
給水配管905.およびそれぞれのドレン管105゜2
05.305に弁を介して接続する。
Each bottom water collection and distribution mechanism 14.24.34 is connected to air piping 904,
Water supply piping 905. and each drain pipe 105゜2
Connect to 05.305 via a valve.

図中、CiRはカチオン交換樹脂、 ARはアニオン交
換樹脂を示す。
In the figure, CiR represents a cation exchange resin, and AR represents an anion exchange resin.

次にその作用を説明すれば、脱塩塔(図示せず)Kて通
水終了後の混合イオン交換樹脂は、脱塩塔から樹脂移送
配管901を経てカチオン交換樹脂再生塔1内に受入れ
られる。カチオン交換樹脂再生塔1内には予め分離補助
用混合イオン交換樹脂(脱塩用樹脂と同じ銘柄の樹脂を
用いる)が入っており、脱塩工程終了後の樹脂と共に逆
洗される。
Next, to explain its operation, the mixed ion exchange resin after passing through the demineralization tower (not shown) K is received into the cation exchange resin regeneration tower 1 from the demineralization tower via the resin transfer pipe 901. . The cation exchange resin regeneration tower 1 contains in advance a mixed ion exchange resin for assisting separation (using the same brand of resin as the desalting resin), and is backwashed together with the resin after the desalting process is completed.

逆洗後、静置すれば二層に分離成層し、上層にアニオン
交換樹脂、下層にカチオン交換樹脂がくる。
After backwashing, if left to stand still, it will separate into two layers, with the anion exchange resin in the upper layer and the cation exchange resin in the lower layer.

このとき、二層の分離界面が中間部樹脂引抜き口11よ
り上方になるようにする。次に、樹脂移送配管101に
より中間部樹脂引抜き口11より上方の樹脂をアニオン
交換樹脂再生塔2に移送する。
At this time, the separation interface between the two layers is made to be above the intermediate resin extraction port 11. Next, the resin above the intermediate resin drawing port 11 is transferred to the anion exchange resin regeneration tower 2 using the resin transfer pipe 101 .

この操作により、アニオン交換樹脂のほぼ全景と分離界
面付近のカチオン交換樹脂がアニオン交換樹脂再生塔に
移送される。移送終了後、両再生塔内の樹脂を逆洗し、
静置する。このとき、アニオン交換樹脂再生塔の奥部に
はカチオン交換樹脂OR層ができるが、二層の分離界面
が中間部樹脂引抜き口より十分下方になるようにする。
By this operation, almost the entire anion exchange resin and the cation exchange resin near the separation interface are transferred to the anion exchange resin regeneration tower. After the transfer is complete, the resin in both regeneration towers is backwashed,
Leave it still. At this time, a cation exchange resin OR layer is formed in the inner part of the anion exchange resin regeneration tower, but the separation interface between the two layers is made to be sufficiently below the intermediate resin extraction port.

図面は工程がそこまで進んだ状態を表わしている。The drawing shows the progress of the process.

続いて、配管106を通して塩酸がカチオン交換樹脂再
生塔1内に流入する。同時に、配管203を通して硫酸
がアニオン交換樹脂再生塔2内に流入する。硫酸の通液
が終了した後、配管205を通して苛性ソーダ溶液がア
ニオン交換樹脂再生塔2に流入する。塩酸、苛性ソーダ
の通液が終了した後、両再生塔内は純水で洗浄される。
Subsequently, hydrochloric acid flows into the cation exchange resin regeneration tower 1 through the pipe 106. At the same time, sulfuric acid flows into the anion exchange resin regeneration tower 2 through the pipe 203. After the passage of sulfuric acid is completed, the caustic soda solution flows into the anion exchange resin regeneration tower 2 through the pipe 205. After hydrochloric acid and caustic soda have been passed through, the insides of both regeneration towers are washed with pure water.

次に、樹脂移送配管102によりカチオン交換樹脂再生
塔1内の樹脂を樹脂貯槽6に移送する。
Next, the resin in the cation exchange resin regeneration tower 1 is transferred to the resin storage tank 6 using the resin transfer pipe 102.

また、樹脂移送配管201によりアニオン交換樹脂再生
塔2内の中間部樹脂引抜き口21より上方の樹脂を樹脂
貯槽3に移送する。続いて、樹脂貯槽6内の底部集配水
機構64より空気を導入して樹脂貯槽6内の再生済カチ
オン交換樹脂と再生済アニオン交換樹脂を混合する。さ
らに、アニオン交換樹脂再生塔2内の中間部樹脂引抜き
口21より下方の樹脂は樹脂移送配管202によりカチ
オン交換樹脂再生塔1に移送し、次の再生のときに分離
補助用混合イオン交換樹脂として用いる。
Further, the resin above the intermediate resin extraction port 21 in the anion exchange resin regeneration tower 2 is transferred to the resin storage tank 3 by the resin transfer piping 201 . Subsequently, air is introduced from the bottom water collection and distribution mechanism 64 in the resin storage tank 6 to mix the recycled cation exchange resin and the recycled anion exchange resin in the resin storage tank 6. Furthermore, the resin below the intermediate resin withdrawal port 21 in the anion exchange resin regeneration tower 2 is transferred to the cation exchange resin regeneration tower 1 through the resin transfer pipe 202, and used as a mixed ion exchange resin for separation aid during the next regeneration. use

以上で再生工程を終了し1次の再生まで待機状態となる
。次の再生のときには樹脂移送配管901より脱塩工程
終了後の混合イオン交換樹脂をカチオン交換樹脂再生塔
1内に受け入れ、樹脂移送配管601により樹脂貯槽6
内の再生済混合イオン交換樹脂を図示しない脱塩塔に移
送し、以下は上記手順と同様に再生工程を実行する。
With this, the regeneration process is completed and the device enters a standby state until the first regeneration. During the next regeneration, the mixed ion exchange resin after the desalination process is received into the cation exchange resin regeneration tower 1 through the resin transfer pipe 901, and the resin storage tank 6 is transferred through the resin transfer pipe 601.
The regenerated mixed ion exchange resin inside is transferred to a demineralization tower (not shown), and the regeneration process is carried out in the same manner as the above procedure.

このよ5に本発明の装置を用いれば1分離界面付近の樹
脂は分離補助用樹脂として扱い、次の脱塩工程に用いな
いため、脱塩工程に使う樹脂だけを考えると、アニオン
交換樹脂層に混入するカチオン交換樹脂の量を極めて少
なくすることが可能であり、またカチオン交換樹脂層に
混入するアニオン交換樹脂の量もかなり少なくすること
ができる。そして、カチオン交換樹脂の再生には塩酸を
用いるため、硫酸水素イオン形交換基の生成を防ぐこと
ができ、またアニオン交換樹脂を硫酸と苛性ソーダによ
る二段再生とするために、再生のたびに生成する塩化物
イオン形交換基が蓄積していくこともない。なお、アニ
オン交換樹脂層に硫酸を通液することによって生成する
硫酸水素イオン形交換基は、ひき続いて行なう苛性ソー
ダ通液によってすべて水酸化物イオン形または硫酸イオ
ン形に変わり、硫酸イオンのリークを生ずることはない
If the apparatus of the present invention is used in this way, the resin near the separation interface will be treated as a separation-aiding resin and will not be used in the next desalination process. The amount of cation exchange resin mixed into the cation exchange resin layer can be extremely reduced, and the amount of anion exchange resin mixed into the cation exchange resin layer can also be significantly reduced. Since hydrochloric acid is used to regenerate the cation exchange resin, it is possible to prevent the generation of hydrogen sulfate ion type exchange groups, and because the anion exchange resin is regenerated in two stages using sulfuric acid and caustic soda, it is possible to prevent generation of hydrogen sulfate ion exchange groups. There is no accumulation of chloride ion type exchange groups. Note that the hydrogen sulfate ion type exchange groups generated by passing sulfuric acid through the anion exchange resin layer are all converted into hydroxide ion form or sulfate ion form by the subsequent passage of caustic soda, thereby preventing leakage of sulfate ions. It will never occur.

なお1図示例は本発明の一実施態様を示したもので1本
発明がこの図示例によって限定されるわけではない。た
とえば、再生用薬品供給装置として、図示例では計量槽
とエゼクタを用いているが。
Note that the illustrated example shows one embodiment of the present invention, and the present invention is not limited to this illustrated example. For example, the illustrated example uses a measuring tank and an ejector as a regeneration chemical supply device.

計量槽を用いず直接再生用薬品貯槽から定量ポンプを用
いて薬品を供給してもよい。
The chemical may be supplied directly from the regeneration chemical storage tank using a metering pump without using a metering tank.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、再生後のカチオン交
換樹脂におけるナトリウムイオン形の交換基、再生後の
アニオン交換樹脂における塩化物イオン形や硫酸水素イ
オン形の交換基の存在率を低く抑え、処理水中にリーク
するナトリウムイオン、塩化物イオン、硫酸イオンの濃
度を極めて低くし、厳密なる水質要求に十分対応するこ
とができるものである。
As described above, according to the present invention, the abundance of sodium ion-type exchange groups in the regenerated cation exchange resin and of chloride ion-type and hydrogen sulfate ion-type exchange groups in the regenerated anion exchange resin can be kept low. The concentration of sodium ions, chloride ions, and sulfate ions leaking into the treated water is extremely low, and it can fully meet strict water quality requirements.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示す系統説明図である。 1・・・カチオン交換樹脂再生塔、2・・・アニオン交
換樹脂再生塔、6・・・樹脂貯槽、4・・・塩酸供給装
置。 5・・・硫酸供給装置、6・・・苛性ソーダ供給装置、
11゜21・・・中間部樹脂引抜き0.12,22.5
2・・・底部樹脂引抜き口、 15.25.31・・・
頂部集配水機構、14.24.34・・・底部集配水機
構、15・・・塩酸流入口、25・・・硫酸および苛性
ソーダ流入口、16゜26.36・・・排気弁、41.
51.61・・・エゼクタ。 101.102,201,202.601,901・・
・樹脂移送配管、103,203・・・配管、104,
204.604・・・排水管、105,205,305
・・・ドレン管、902゜904・−・空気配管、90
3,905・・・給水配管、OR・・・カチオン交換樹
脂、Mし・・アニオン交換樹脂。
The drawing is a system explanatory diagram showing an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Cation exchange resin regeneration tower, 2... Anion exchange resin regeneration tower, 6... Resin storage tank, 4... Hydrochloric acid supply device. 5... Sulfuric acid supply device, 6... Caustic soda supply device,
11゜21...Middle part resin drawing 0.12, 22.5
2...Bottom resin extraction port, 15.25.31...
Top water collection and distribution mechanism, 14.24.34... Bottom water collection and distribution mechanism, 15... Hydrochloric acid inlet, 25... Sulfuric acid and caustic soda inlet, 16° 26.36... Exhaust valve, 41.
51.61... Ejector. 101.102,201,202.601,901...
・Resin transfer piping, 103, 203... Piping, 104,
204.604...Drain pipe, 105,205,305
...Drain pipe, 902゜904...Air piping, 90
3,905...Water supply piping, OR...Cation exchange resin, M...Anion exchange resin.

Claims (1)

【特許請求の範囲】 塔外再生式の混床式イオン交換脱塩装置に付属する混合
イオン交換樹脂の再生装置であって、カチオン交換樹脂
再生塔1.アニオン交換樹脂再生塔2.樹脂貯槽6、塩
酸供給装置4.硫酸供給装置5.苛性ソーダ供給装置6
および付属する配管。 弁類によって構成され;カチオン交換樹脂再生塔1は、
脱塩塔から脱塩工程終了後の樹脂を移送する配管901
を接続し、塔中間部および塔底部にそれぞれ樹脂引抜き
口11.12を備え、塔頂部および塔底部にそれぞれ集
配水機構13.14を備え。 さらに塔中間部の樹脂引抜き口11より上方で頂部の集
配水機構16より下方に塩酸流入口15を備えるととも
に該流入口15と塩酸供給装置4とを配管106にて接
続し:アニオン交換樹脂再生塔2は、塔中間部および塔
底部にそれぞれ樹脂引抜き口21.22を備え、塔頂部
および塔底部にそれぞれ集配水機構23.24を備え、
さらに塔中間部の樹脂引抜き口21より上方で頂部の集
配水機構26より下方に硫酸および苛性ソーダ流入口2
5を備えるとともに該流入口25と硫酸供給装置5およ
び苛性ソーダ供給装置6とを配管206にて接続し:樹
脂貯槽6は、底部に樹脂引抜き口62を備え、該樹脂引
抜き口6゛2に槽内樹脂を脱塩塔に移送する配管601
を接続し、さらに槽頂部および槽底部にそれぞれ集配水
機構33.34を備え;カチオン交換樹脂再生塔1の中
間樹脂引抜き口11とアニオン交換樹脂再生塔2の上部
を樹脂移送配管101で接続し、カチオン交換樹脂再生
塔1の底部樹脂引抜き口12と樹脂貯槽6の上部を樹脂
移送配管102で接続し、アニオン交換樹脂再生塔2の
中間樹脂引抜き口21と樹脂貯槽3の上部を樹脂移送配
管201で接続し、アニオン交換樹脂再生塔2の底部樹
脂引抜き口22とカチオン交換樹脂再生塔1の上部を樹
脂移送配管202で接続したことを特徴とする混合イオ
ン交換樹脂の再生装置。
[Scope of Claims] A mixed ion exchange resin regeneration device attached to an external regeneration type mixed bed ion exchange desalination device, which comprises a cation exchange resin regeneration tower 1. Anion exchange resin regeneration tower 2. Resin storage tank 6, hydrochloric acid supply device 4. Sulfuric acid supply device5. Caustic soda supply device 6
and attached piping. The cation exchange resin regeneration tower 1 is composed of valves;
Piping 901 that transfers the resin after the desalination process from the desalination tower
are connected to each other, resin extraction ports 11.12 are provided at the middle portion of the column and the bottom portion of the column, and water collection and distribution mechanisms 13.14 are provided at the top and bottom of the column, respectively. Further, a hydrochloric acid inlet 15 is provided above the resin extraction port 11 in the middle of the column and below the water collection and distribution mechanism 16 at the top, and the inlet 15 and the hydrochloric acid supply device 4 are connected by a pipe 106: anion exchange resin regeneration. The tower 2 is equipped with resin withdrawal ports 21, 22 at the middle part of the tower and at the bottom of the tower, and water collection and distribution mechanisms 23, 24 at the top and bottom of the tower, respectively.
Further, a sulfuric acid and caustic soda inlet 2 is provided above the resin withdrawal port 21 in the middle of the tower and below the water collection and distribution mechanism 26 at the top.
5, and the inlet 25 is connected to the sulfuric acid supply device 5 and the caustic soda supply device 6 through piping 206. Piping 601 that transfers the inner resin to the desalination tower
Furthermore, water collection and distribution mechanisms 33 and 34 are provided at the tank top and tank bottom, respectively; the intermediate resin extraction port 11 of the cation exchange resin regeneration tower 1 and the upper part of the anion exchange resin regeneration tower 2 are connected by a resin transfer pipe 101. , the bottom resin withdrawal port 12 of the cation exchange resin regeneration tower 1 and the top of the resin storage tank 6 are connected by a resin transfer pipe 102, and the intermediate resin withdrawal port 21 of the anion exchange resin regeneration tower 2 and the top of the resin storage tank 3 are connected by a resin transfer pipe. 201, and the bottom resin extraction port 22 of the anion exchange resin regeneration tower 2 and the upper part of the cation exchange resin regeneration tower 1 are connected by a resin transfer pipe 202.
JP59076677A 1984-04-18 1984-04-18 Apparatus for regenerating ion exchange resin mixture Granted JPS60220150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59076677A JPS60220150A (en) 1984-04-18 1984-04-18 Apparatus for regenerating ion exchange resin mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59076677A JPS60220150A (en) 1984-04-18 1984-04-18 Apparatus for regenerating ion exchange resin mixture

Publications (2)

Publication Number Publication Date
JPS60220150A true JPS60220150A (en) 1985-11-02
JPH0437738B2 JPH0437738B2 (en) 1992-06-22

Family

ID=13612058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59076677A Granted JPS60220150A (en) 1984-04-18 1984-04-18 Apparatus for regenerating ion exchange resin mixture

Country Status (1)

Country Link
JP (1) JPS60220150A (en)

Also Published As

Publication number Publication date
JPH0437738B2 (en) 1992-06-22

Similar Documents

Publication Publication Date Title
US3531401A (en) Method of regenerating ion exchangers
JP3348109B2 (en) Monitor and control system for selective regeneration of alkanolamines from cation exchange resins with sodium hydroxide
US2470500A (en) Demineralizing
US3414508A (en) Condensate purification process
JPS60220150A (en) Apparatus for regenerating ion exchange resin mixture
CN113044919B (en) Power plant condensate fine treatment process and device
CN104743638A (en) Resuscitation treatment equipment for iron poisoning of cation exchange resin
JP2003315496A (en) Method for regenerating ion-exchange resin and method for refining regenerant used for it
CN105883971A (en) Transformation method of power generating unit condensation water treatment system
JP2004330154A (en) Recovered water demineralizing device and method for charging ion exchange resin into the device
JP4367815B2 (en) Operation method of condensate demineralizer
US3692670A (en) Treatment of cation and anion exchange resins with sodium sulfite
JPS60248239A (en) Method for regenerating mixed ion-exchange resin
CN214780916U (en) Fine treatment device for condensate water in power plant
JPS5841913B2 (en) Condensate treatment method
JPH1085739A (en) Steam condensate desalting device
JP2654053B2 (en) Condensate desalination equipment
JPS5966354A (en) Regeneration of ion-exchange resin
JPS6036833B2 (en) How to treat chrome peck wastewater
CN206705835U (en) A kind of waste electroplating liquor containing chromium processing and equipment for reclaiming
SU1673207A1 (en) Method of recovering h-cationite filter of first water desalting stage
JPS5813229B2 (en) Condensate treatment method
JPS5811272B2 (en) Condensate treatment method
JPS5919551A (en) Retrenchment of regenerating agent during regeneration of ion-exchange resin, reduction of total solid part and apparatus therefor
KR810000051B1 (en) Washing method for ion-exchanged resin in mixed-bed desalting device