JPS6021759Y2 - Continuous powder reduction furnace - Google Patents

Continuous powder reduction furnace

Info

Publication number
JPS6021759Y2
JPS6021759Y2 JP1343779U JP1343779U JPS6021759Y2 JP S6021759 Y2 JPS6021759 Y2 JP S6021759Y2 JP 1343779 U JP1343779 U JP 1343779U JP 1343779 U JP1343779 U JP 1343779U JP S6021759 Y2 JPS6021759 Y2 JP S6021759Y2
Authority
JP
Japan
Prior art keywords
gas
furnace
powder
section
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1343779U
Other languages
Japanese (ja)
Other versions
JPS55114492U (en
Inventor
良雄 山崎
Original Assignee
山崎電機工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山崎電機工業株式会社 filed Critical 山崎電機工業株式会社
Priority to JP1343779U priority Critical patent/JPS6021759Y2/en
Publication of JPS55114492U publication Critical patent/JPS55114492U/ja
Application granted granted Critical
Publication of JPS6021759Y2 publication Critical patent/JPS6021759Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案は還元炉とりわけ金属粉末の連続還元炉に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reduction furnace, particularly a continuous reduction furnace for metal powder.

金属粉末の製造法は種々あるが、いずれの場合にも表面
活性度が高く、多少の酸化皮膜をもっており、これをそ
のまま原料粉として用いた場合には焼結製品の品質に悪
影響があられれる。
There are various methods for producing metal powder, but in all cases, the surface activity is high and there is some oxide film, so if this powder is used as it is as a raw material powder, the quality of the sintered product will be adversely affected.

このようなことから金属粉末の還元炉が用いられ、その
うち連続還元炉として第1図のようなタイプのものが知
られている。
For this reason, metal powder reduction furnaces are used, and among these, the type shown in FIG. 1 is known as a continuous reduction furnace.

すなわち、この粉末還元炉は、発熱体3を設けた加熱炉
1の前後に前筒30と後筒31を連設し、それら前筒3
0と後筒31および加熱炉炉芯管4と外部の間にフープ
ベルト11を懸回し、前筒30と入口フレームカーテン
部32の間に粉末供給器6を設け、該粉末供給器6から
粉末をフープベルト11に載せ、これを加熱炉内に移送
する一方、後筒31と加熱炉1の間に設けたガス供給管
33から水素ガスやアンモニア分解ガスなどの還元性ガ
スを導入し、これをフープベルト11上の粉末と接触さ
れることで還元反応を得しめ、還元後の粉末を、後筒3
1に設けたバイパス型多管冷却部34とファン35によ
る空冷手段で冷却し、出口フレームカーテン36から出
たところでクラッシャー37により破砕する構造となっ
ていたものである。
That is, this powder reduction furnace has a front cylinder 30 and a rear cylinder 31 installed in series before and after a heating furnace 1 provided with a heating element 3.
A hoop belt 11 is suspended between 0 and the rear cylinder 31 and the heating furnace core tube 4 and the outside, and a powder feeder 6 is provided between the front cylinder 30 and the inlet frame curtain part 32, and powder is supplied from the powder feeder 6. is placed on the hoop belt 11 and transferred into the heating furnace, while a reducing gas such as hydrogen gas or ammonia decomposition gas is introduced from the gas supply pipe 33 provided between the rear cylinder 31 and the heating furnace 1. is brought into contact with the powder on the hoop belt 11 to cause a reduction reaction, and the reduced powder is transferred to the rear cylinder 3.
The structure was such that it was cooled by an air cooling means using a bypass type multi-tube cooling section 34 and a fan 35 provided in 1, and was crushed by a crusher 37 when it came out of an exit frame curtain 36.

しかし、このような構造では、第2図のフローから明ら
かなように、還元用の水素ガスを単純に加熱炉1と後筒
31の間から導入し、炉体入口に近い炉芯管と通じた排
気管38から排出して燃焼させるだけであったので、反
応後の水分を多く含む汚損ガスが炉芯管4の中に長く滞
留し、粉末還元上枢要な雰囲気純度を高く保てない(高
露点となる)という欠点があり、また、供給ガスをすべ
て燃焼させることと、前筒2カ所筒1カ所に補助ガス導
入部39a、39b、39cの夫々外気侵入防止用の還
元性ガスの供給する必要があることなどから、高純度の
還元性ガスをきわめて多量に供給しなければならず、処
理コストが高くなるという欠点があった。
However, in such a structure, as is clear from the flow shown in Fig. 2, the hydrogen gas for reduction is simply introduced from between the heating furnace 1 and the rear cylinder 31, and is communicated with the furnace core tube near the furnace entrance. Since the gas was only discharged from the exhaust pipe 38 and combusted, the contaminated gas containing a large amount of water after the reaction remained in the furnace core tube 4 for a long time, making it impossible to maintain high atmospheric purity, which is important for powder reduction. In addition, all of the supplied gas must be combusted, and reducing gas is supplied to each of the auxiliary gas introduction sections 39a, 39b, and 39c to prevent outside air from entering into two front cylinders and one cylinder. Because of the need to process gases, an extremely large amount of high-purity reducing gas must be supplied, which has the disadvantage of increasing processing costs.

さらに、上記のように多量の還元性ガスを供給しても容
易に露点の低下を回り得ないため、還元速度が遅いもの
となって優れた品質の還元粉を生産できないという問題
があり、これら各点から、鉄粉などはとも角としても、
クローム、マンガン、モリブデン、タングステン、バナ
ジウムなどの特殊粉末やこれらと鋼の合金粉など還元性
の悪い金属粉を工業的に低コストで処理できないという
不具合が生じていたものである。
Furthermore, even if a large amount of reducing gas is supplied as described above, the dew point cannot be easily lowered, so the reduction rate is slow and it is not possible to produce reduced powder of excellent quality. From each point, whether iron powder or the like is square,
There was a problem in that metal powders with poor reducibility, such as special powders such as chromium, manganese, molybdenum, tungsten, and vanadium, and alloy powders of these and steel, could not be processed industrially at low cost.

本考案は、前記のような従来の粉末還元炉の不具合を解
消し、少ない還元性ガス使用量でしかも炉内雰囲気を高
純度に保たせ、クロームやマンガンなどの金属粉を低コ
ストで能率よく、還元処理し、良好な品質のそれら還元
粉を得ることができる連続粉末還元炉を提供せんとする
ものである。
This invention solves the problems of conventional powder reduction furnaces as described above, uses less reducing gas, maintains a high purity atmosphere in the furnace, and efficiently processes metal powders such as chromium and manganese at low cost. The object of the present invention is to provide a continuous powder reduction furnace capable of performing reduction treatment and obtaining reduced powder of good quality.

この目的のため、本考案は、直列に連なる加燃炉と冷却
筒にコンベアベルトを通し、加燃炉の前で粉末を供給し
、これを移送させつつ加燃炉内に水素ガスなどの還元性
ガスを供給し、粉末に還元反応を与えるようにした連続
加燃炉において、とくに、粉末供給器と加燃炉のあいだ
に炉内ガスの取出し部を設けると共に冷却筒に再生ガス
挿入部を設け、それらガス取出し部と再生ガス挿入部を
外部配管で結ぶことにより、前記ガス取出し部から再生
ガス挿入部までの移動路と外部配管とでエンドレスの循
環系を構成させ、かつこの循環系にポンプを介在させ、
これで前記移送路に粉末移送方向と向流する還元性雰囲
気流を生起させて炉内反応ガスを強制排出し、さらに循
環系にガス冷却器と乾燥器を介在させることにより炉内
反応ガスの純度を再生させ、これを再び移動路に送給さ
せる過程を繰返すようにしたものである。
For this purpose, the present invention passes a conveyor belt through the combustion furnace and cooling cylinder connected in series, supplies powder in front of the combustion furnace, and while transferring it, reduces hydrogen gas etc. into the combustion furnace. In a continuous combustion furnace in which a reactive gas is supplied to cause a reduction reaction to the powder, in particular, a furnace gas take-out part is provided between the powder feeder and the combustion furnace, and a regeneration gas insertion part is provided in the cooling cylinder. By connecting the gas extraction section and the regeneration gas insertion section with external piping, an endless circulation system is constructed by the passage from the gas extraction section to the regeneration gas insertion section and the external piping. Interpose a pump,
This creates a reducing atmosphere flow countercurrent to the powder transfer direction in the transfer path to forcibly discharge the reactant gas in the furnace, and furthermore, by interposing a gas cooler and a dryer in the circulation system, the reactant gas in the furnace is The process of regenerating the purity and sending it to the travel path again is repeated.

以下本考案の実施例を添付図面に基いて説明する。Embodiments of the present invention will be described below with reference to the accompanying drawings.

第3図ないし第6図は本考案による粉末連続還元炉を示
すもので、1は加熱炉で、耐火物2の内側に発燃体3を
装備させ、発燃体3の内側長手方向に炉芯管4を貫設さ
せている。
Figures 3 to 6 show a continuous powder reduction furnace according to the present invention, in which 1 is a heating furnace, a combustion body 3 is installed inside a refractory 2, and the inside longitudinal direction of the combustion body 3 is connected to the furnace. A core pipe 4 is provided through it.

5は前記加熱炉1の前側において炉芯管4と直例に接続
された水平状の前筒部であり、この前筒部5には処理す
べき金属粉末の供給器6が設けられている。
Reference numeral 5 denotes a horizontal front cylinder part directly connected to the furnace core tube 4 on the front side of the heating furnace 1, and this front cylinder part 5 is provided with a feeder 6 for the metal powder to be treated. .

前記供給器6はホッパーとフィーダの如きから構成され
ている。
The feeder 6 is composed of a hopper and a feeder.

7は前記前筒部5に連設した下傾状の入口部で、その断
面は後述するコンベアベルトが通過し得る限度で小断面
となっている。
Reference numeral 7 denotes a downwardly inclined inlet portion connected to the front cylinder portion 5, and its cross section is as small as a conveyor belt, which will be described later, can pass through.

8は加熱炉1の後側において炉芯管4と直列に接続され
た筒状の冷却部であり、外周に水冷箱10が囲繞形成さ
れている。
Reference numeral 8 denotes a cylindrical cooling section connected in series with the furnace core tube 4 on the rear side of the heating furnace 1, and a water cooling box 10 is formed around the outer periphery.

9は前記冷却部8の後側に連設した下傾斜の出口部であ
る。
Reference numeral 9 denotes a downwardly inclined outlet section connected to the rear side of the cooling section 8.

11は耐熱コンベアベルト(フープベルト)で、前記し
た入口部7、前筒部5、炉芯管4、冷却部8および出口
部9を順に通り、それらの外側のプーリ12,12’に
懸回され駆動モータ13で連続駆動されるようになって
いる。
Reference numeral 11 denotes a heat-resistant conveyor belt (hoop belt), which passes in order through the inlet section 7, front tube section 5, furnace core tube 4, cooling section 8, and outlet section 9, and is suspended around pulleys 12, 12' on the outside thereof. and is continuously driven by a drive motor 13.

しかして、本考案は前記加熱炉1と冷却部8のあいだに
還元性ガスの主導入部14を設けると共に、加熱炉1と
粉末供給器6のあいだの前筒部5にガス取出し部15を
設け、また前記冷却部8の適所好ましくはべきるだけ後
位置には再生ガス挿入部16を設け、前記ガス取出し部
15と再生ガス挿入部16とを外部配管17により接続
し、これによりガス取出し部15から再生ガス挿入部1
6にいたる閉鎖断面の移動路(前筒部−炉芯管一冷却部
)と外部配管17とでエンドレスの循環系を構成させ、
そして前記外部配管17には、移動路中の雰囲気ガスを
ガス取出し部15を介して吸引し再生ガス挿入部16か
ら押込むための循環用ポンプ1Bと、吸引された雰囲気
ガスを強制冷却するガス冷却器19、およびこのガス冷
却器19から排出されたガス中の水分(不純物を含む)
を除去し露点を回復させるための乾燥器20とを介在接
続している。
Therefore, the present invention provides a main introduction part 14 for the reducing gas between the heating furnace 1 and the cooling part 8, and a gas extraction part 15 in the front cylinder part 5 between the heating furnace 1 and the powder feeder 6. Furthermore, a regeneration gas insertion section 16 is provided at an appropriate position, preferably as far back as possible, of the cooling section 8, and the gas extraction section 15 and the regeneration gas insertion section 16 are connected by an external piping 17, thereby allowing the gas to be taken out. From section 15 to regeneration gas insertion section 1
An endless circulation system is configured by the closed cross-section moving path (front cylinder part - furnace core tube - cooling part) reaching 6 and the external piping 17,
The external piping 17 includes a circulation pump 1B for sucking the atmospheric gas in the movement path through the gas extraction section 15 and pushing it in from the regeneration gas insertion section 16, and a gas cooler for forcibly cooling the sucked atmospheric gas. 19, and moisture in the gas discharged from this gas cooler 19 (including impurities)
It is connected to a dryer 20 for removing the dew point and restoring the dew point.

乾燥器20内の充填物としては、モリキラシーブ、ゼオ
ラム、活性アルミナ等を用いることができ、図示のよう
に乾燥器20を複系列とすれば劣化再生中も連続運転が
可能である。
As the filling material in the dryer 20, molycira sieve, zeolum, activated alumina, etc. can be used, and if the dryer 20 is configured as a double series as shown in the figure, continuous operation is possible even during deterioration regeneration.

なお、必要に応じガス冷却器19と乾燥器20のあいだ
に冷凍器21を介在してもよい。
Note that a refrigerator 21 may be interposed between the gas cooler 19 and the dryer 20 if necessary.

また、場合によっては、主導入部14をガス導入部16
の系に接続し、主導入部14を廃してもよい。
In some cases, the main introduction section 14 may be replaced by the gas introduction section 16.
system, and the main introduction section 14 may be eliminated.

また本考案は、前記冷却部8と出口部9の境界付近には
、第6図に示すように、軸端部をオイルレスメタルなど
の潤滑材23を介して軸受24で支承させた還元粉破砕
用のコロ22を配設している。
Further, in the present invention, near the boundary between the cooling part 8 and the outlet part 9, as shown in FIG. A crushing roller 22 is provided.

この構造に加えあるいはこれに代え出口部9の外にクラ
ッシャー(図示せず)を設けてもよい。
In addition to or in place of this structure, a crusher (not shown) may be provided outside the outlet section 9.

その他図面において、25は入口部側に設けた外気侵入
防止用の補助ガス導入部、26は防曝箱、27はシール
材、28は冷却箱10の冷却水導入管、29は同じく冷
却水排出管である。
In other drawings, 25 is an auxiliary gas introduction part provided on the inlet side to prevent outside air from entering, 26 is an explosion-proof box, 27 is a sealing material, 28 is a cooling water inlet pipe of the cooling box 10, and 29 is a cooling water discharge It's a tube.

次に、第7図は本考案の他の実施例を示すもので、加熱
炉1の長さ方向中間部の炉芯管4に炉外へ到る第2のガ
ス取出し部15′を設け、この第2のガス取出し部15
′をガス冷却器19より手前の外部配管17に接続し、
これにより加熱炉中間位置と前筒部において夫々劣化還
元性雰囲気を排出させるようにし、また、ポンプ18の
吐出側の外部配管を分岐して補助ガス導入部25に接続
し、再生ガスで外部侵入防止を図るようにしたものであ
る。
Next, FIG. 7 shows another embodiment of the present invention, in which a second gas extraction part 15' extending to the outside of the furnace is provided in the furnace core tube 4 at the middle part in the longitudinal direction of the heating furnace 1. This second gas extraction section 15
' to the external piping 17 before the gas cooler 19,
As a result, the deteriorating and reducing atmosphere is discharged from the intermediate position of the heating furnace and the front cylinder part, and the external piping on the discharge side of the pump 18 is branched and connected to the auxiliary gas introduction part 25, so that the regenerating gas enters the outside. This was designed to prevent this.

41は第2のガス取出し部15′の近傍に設けた加速用
の垂れである。
Reference numeral 41 denotes an accelerating sag provided near the second gas extraction portion 15'.

本考案による還元炉は上記のような構成からなるので、
操業にあたっては、駆動モータ13と循環用ポンプ18
を稼動させ、主導入部14と補助ガス導入部25からそ
れぞれ水素ガスを、また粉末供給器6からは所定の金属
粉末A供給する。
Since the reduction furnace according to the present invention has the above-mentioned configuration,
During operation, the drive motor 13 and circulation pump 18 are
is operated, and hydrogen gas is supplied from the main introduction section 14 and the auxiliary gas introduction section 25, respectively, and a predetermined metal powder A is supplied from the powder supply device 6.

こうすれば、金属粉末Aは前筒部5を通過するコンベア
ベルト11に散布され、次いでコンベアベルト11の進
行と共に炉芯管内を移送されつつ発熱体4により加熱さ
れその間主導入部14からは還元性ガスが供給され、こ
の還元性ガスと金属粉末Aとが接触して還元反応を起す
が、本考案においては、炉芯管4から冷却部8の間の移
動路と外部配管17との間で循環系が構成され、この系
に循環用ポンプ18が介在されている。
In this way, the metal powder A is scattered on the conveyor belt 11 passing through the front cylinder part 5, and then heated by the heating element 4 while being transferred in the furnace core tube as the conveyor belt 11 advances, while being reduced from the main introduction part 14. A reducing gas is supplied, and this reducing gas contacts the metal powder A to cause a reduction reaction. A circulation system is constructed, and a circulation pump 18 is interposed in this system.

そのため、移動路には第6図で示す如く金属粉末Aの移
動方向と向流する気流が形成され、炉芯管4に入り金属
粉末Aと接触反応した還元性ガスは炉芯管中でよどむこ
となく直ちにガス取出し部15から吸引排出される。
Therefore, as shown in FIG. 6, an air current is formed in the movement path that flows countercurrently to the moving direction of the metal powder A, and the reducing gas that enters the furnace core tube 4 and reacts with the metal powder A stagnates in the furnace core tube. The gas is immediately suctioned and discharged from the gas extraction section 15 without any damage.

このようにして吸引排出された雰囲気ガスは外部配管1
7に入り、まずガス冷却器19において水との熱交換で
急冷されることにより水分が抽出され、続いて乾燥器2
0に押込まれることにより水分が吸着され、これにより
純度の回復が与えられ、露点の低下した状態となって再
生ガス挿入部16から再び移動路へと送り込まれ、こう
した強制循環とと純度回復が運転中繰返される。
The atmospheric gas sucked and discharged in this way is transferred to the external piping 1.
7, the water is first extracted by rapid cooling through heat exchange with water in the gas cooler 19, and then in the dryer 2.
0, moisture is adsorbed, thereby restoring the purity, and the dew point is lowered, and the regeneration gas is sent from the regeneration gas insertion part 16 to the transfer path again, and this forced circulation and purity recovery are achieved. is repeated while driving.

従って、炉芯管4にはたえず水分が拡散されるよりも早
い速度で過剰水素ガスが流れることになり、それだけ還
元速度を早めることができ、また炉内雰囲気ガスの純度
が高く、露点をたとえば一506C以上にもすることが
できるので、低い加熱温度で還元反応を起させるこ゛と
ができるものである。
Therefore, excess hydrogen gas flows through the furnace core tube 4 at a faster rate than the constant diffusion of moisture, making it possible to increase the reduction rate accordingly.Furthermore, the purity of the furnace atmosphere gas is high, and the dew point can be lowered, for example. Since the temperature can be raised to 1506C or higher, the reduction reaction can be caused at a low heating temperature.

このようにして、還元された金属粉末Aは炉芯管4から
冷却部8へ移送され、水冷箱10を通る冷却水により冷
却を受けるが、このとき本考案では、冷却部8内に金属
粉末Aの移送方向と向流する再生還元性ガス流が生じて
いる。
In this way, the reduced metal powder A is transferred from the furnace core tube 4 to the cooling section 8 and is cooled by the cooling water passing through the water cooling box 10. At this time, in the present invention, the metal powder is A regenerative reducible gas flow countercurrent to the direction of transport of A is created.

そのため金属粉末Aは効果的に強制冷却され、一方、再
生還元性ガスは受熱により昇温し炉芯管4内に温度差が
少ない条件下で送り込まれることになる。
Therefore, the metal powder A is effectively forcedly cooled, while the regenerated reducing gas is heated by receiving heat and is fed into the furnace core tube 4 under conditions where there is little temperature difference.

そして、金属粉末Aは還元・冷却の間に層状のまま固形
化するが、冷却部8の終端に連設した出口部9が下方へ
傾斜しており、それに伴ってコンベアベルト11も水平
状から下方へ傾斜状に走行する。
The metal powder A is solidified in a layered state during reduction and cooling, but the outlet section 9 connected to the end of the cooling section 8 is inclined downward, and the conveyor belt 11 also changes from horizontal to parallel. Travels downward in an inclined manner.

そしてこの傾斜始端ゾーンに破砕用コロ22が配設され
ているので、ベルトコンベア上の固形化した金属粉末層
の厚さ方向に破砕用コロ22が作用し、これにより再び
粉状に戻され出口部9から送り出されるものである。
Since the crushing rollers 22 are disposed in this inclined starting end zone, the crushing rollers 22 act in the thickness direction of the solidified metal powder layer on the belt conveyor, and the solidified metal powder layer on the belt conveyor is returned to powder form and exits. It is sent out from section 9.

以上が本考案の基本的な作用であるが、第7図の実施例
の場合には、加熱炉中間の炉芯管4に第2のガス取出し
部15′を設けたため、この第2のガス取出し部15′
と第1のガス取出し部15の間に露点の高い(水分の多
い)雰囲気ゾーンが形成され、従ってこのゾーンで効果
的な脱炭が行われることになる。
The above is the basic operation of the present invention. In the case of the embodiment shown in FIG. Take-out part 15'
A high dew point (high moisture) atmospheric zone is formed between the first gas outlet 15 and the first gas outlet 15, and therefore effective decarburization takes place in this zone.

すなわち、加熱炉中で粉末に対する脱炭と還元が連続し
て行われるものであり、そのため、この実施例によれば
、カーボンが多く含まれる粉末から高純度の粉末を作る
ことができる。
That is, decarburization and reduction of the powder are performed continuously in the heating furnace, and therefore, according to this embodiment, high purity powder can be made from powder containing a large amount of carbon.

なお、本考案においては、出口部9についてはガス導入
部16からの水素ガスの一部が下降し、また入口部7に
ついては補助ガス導入部25からの水素ガスが下降し、
しかも入口部7の始端開口はコンベアベルト11の厚さ
分はどの小断面であればよいので、外気遮断用のガス使
用量も少なくて済み、従って、循環系における純度再生
作用とあいまち還元性ガスの使用量を、第1図の如き従
来炉にくらべ1110以下というように著しく節減する
ことが可能である。
In the present invention, a portion of the hydrogen gas from the gas introduction section 16 descends to the outlet section 9, and a portion of the hydrogen gas from the auxiliary gas introduction section 25 descends to the inlet section 7.
Moreover, since the starting end opening of the inlet section 7 can have a small cross-section corresponding to the thickness of the conveyor belt 11, the amount of gas used to shut off the outside air can be reduced, and therefore, the purity regeneration effect in the circulation system and the reducing gas It is possible to significantly reduce the consumption amount to 1110 or less compared to the conventional furnace as shown in FIG.

以上説明した本考案によるときには、コンベア式の粉末
連続還元炉において、加熱炉1に連設した冷却部8に再
生ガス挿入部16を設けると共に、加熱炉1とこれによ
り手前の粉末供給器6との間に炉内ガスの取出し部15
を設け、前記ガス取出し部15と再生ガス挿入部16を
外部配管17で結んで循環系を構成させ、該循環系にガ
ス冷却器19と乾燥器20および循環用ポンプ18とを
介在接続させたので、水素ガスなどの還元性ガスの使用
量を大きく節減することができ、しかも同還元性ガスの
純度を高く(露点を低く)保たせることができるもので
あり、またこのことから還元速度を早め加熱温度を低下
させることが可能になるので、良好な品質の還元粉を得
ることができる。
According to the present invention described above, in a conveyor-type powder continuous reduction furnace, a regeneration gas insertion part 16 is provided in the cooling part 8 connected to the heating furnace 1, and the heating furnace 1 and the powder feeder 6 at the front thereof are connected to each other. Between the furnace gas take-off part 15
The gas extraction section 15 and the regeneration gas insertion section 16 are connected by an external pipe 17 to form a circulation system, and a gas cooler 19, a dryer 20, and a circulation pump 18 are interposed and connected to the circulation system. Therefore, the amount of reducing gas used such as hydrogen gas can be greatly reduced, and the purity of the reducing gas can be kept high (low dew point). Since it becomes possible to lower the heating temperature early, reduced powder of good quality can be obtained.

従って、本考案によれば、クロームやマンガンの単体粉
あるいはこれを含む特殊鋼粉など還元性の悪い粉末を、
工業的に低コストで能率よく還元処理することができる
というすぐれた効果が得られる。
Therefore, according to the present invention, powders with poor reducibility, such as elemental powders of chromium or manganese or special steel powders containing them, can be used.
An excellent effect can be obtained in that reduction treatment can be carried out industrially at low cost and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の粉末還元炉を示す縦断側面図、第2図は
従来炉における雰囲気のフローを示す説明図、第3図は
本考案粉末連続還元炉の一実施例を示す縦断側面図、第
4図は第3図IV−IV線にそう断面図、第5図は第3
図■−■線にそう断面図、第6図は本考案還元炉におけ
る雰囲気のフローを示す説明図、7図は本考案粉未還元
炉の他の実施例を示す縦断側面図である。 図面において、1は加熱炉、3は発熱体、4は炉芯管、
6は粉末供給器、8は冷却部、15はガス取出し部、1
6は再生ガス挿入部、17は循環用配管、18はポンプ
、19はガス冷却器、20は乾燥器を各示す。
FIG. 1 is a vertical side view showing a conventional powder reduction furnace, FIG. 2 is an explanatory diagram showing the flow of atmosphere in the conventional furnace, and FIG. 3 is a vertical side view showing an embodiment of the continuous powder reduction furnace of the present invention. Figure 4 is a sectional view taken along the line IV-IV in Figure 3, and Figure 5 is a cross-sectional view taken along line IV-IV in Figure 3.
6 is an explanatory diagram showing the flow of atmosphere in the reducing furnace of the present invention, and FIG. 7 is a longitudinal sectional view showing another embodiment of the unreduced powder furnace of the present invention. In the drawings, 1 is a heating furnace, 3 is a heating element, 4 is a furnace core tube,
6 is a powder feeder, 8 is a cooling section, 15 is a gas extraction section, 1
Reference numeral 6 indicates a regeneration gas insertion section, 17 indicates a circulation pipe, 18 indicates a pump, 19 indicates a gas cooler, and 20 indicates a dryer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 発熱体3を備えた加熱炉1と冷却部8を直列に連結しそ
れらと外部とにコンベアベルト11を懸回し、加熱炉1
の手前で粉末を供給し、これを移送させつつ加熱炉1内
に還元性雰囲気を供給して粉末の還元を図るようにした
連続炉において、粉末供給器6と加熱炉1の間に炉内ガ
スの取出し部15を設けると共に、冷却部8には再生ガ
ス挿入部16を設け、前記ガス取出し部15と再生ガス
挿入部16を外部配管17で結んで循環系を構成させ、
該循環系にガス冷却器19と乾燥器20および循環用ポ
ンプ18とを介在接続したことを特徴とする粉末連続還
元炉。
A heating furnace 1 equipped with a heating element 3 and a cooling section 8 are connected in series, and a conveyor belt 11 is suspended between them and the outside.
In a continuous furnace in which powder is supplied before the powder is transferred and a reducing atmosphere is supplied into the heating furnace 1 to reduce the powder, there is a space inside the furnace between the powder feeder 6 and the heating furnace 1. A gas extraction part 15 is provided, and a regeneration gas insertion part 16 is provided in the cooling part 8, and the gas extraction part 15 and the regeneration gas insertion part 16 are connected with an external pipe 17 to form a circulation system,
A continuous powder reduction furnace characterized in that a gas cooler 19, a dryer 20, and a circulation pump 18 are interposed and connected to the circulation system.
JP1343779U 1979-02-06 1979-02-06 Continuous powder reduction furnace Expired JPS6021759Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1343779U JPS6021759Y2 (en) 1979-02-06 1979-02-06 Continuous powder reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1343779U JPS6021759Y2 (en) 1979-02-06 1979-02-06 Continuous powder reduction furnace

Publications (2)

Publication Number Publication Date
JPS55114492U JPS55114492U (en) 1980-08-12
JPS6021759Y2 true JPS6021759Y2 (en) 1985-06-28

Family

ID=28831524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1343779U Expired JPS6021759Y2 (en) 1979-02-06 1979-02-06 Continuous powder reduction furnace

Country Status (1)

Country Link
JP (1) JPS6021759Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110703A (en) * 1984-11-06 1986-05-29 Kawasaki Steel Corp Method and device for finish heat treatment of iron and steel powder

Also Published As

Publication number Publication date
JPS55114492U (en) 1980-08-12

Similar Documents

Publication Publication Date Title
US3630701A (en) Method and apparatus for manufacturing flat glass on a bath of molten metal
JPS6021759Y2 (en) Continuous powder reduction furnace
US3589691A (en) Treatment of material on a moving support
US3973762A (en) Sintering process and apparatus
JPS62177126A (en) Method for continuously annealing strip
US1759173A (en) Method of and apparatus for reducing metallic oxides without melting
US4290801A (en) Method and installation for the cooling of reduced material such as fine grained ore
CN205653474U (en) Reducing furnace
US3910767A (en) Apparatus for preparing metallic compounds by sublimation
JPH0140881B2 (en)
JP3093067B2 (en) Method and apparatus for removing zinc from galvanized steel sheet waste
CN216790828U (en) Reduction furnace
CN216738474U (en) Tailing continuous processing apparatus based on muffle tunnel cave
CN107326203B (en) A kind of energy conservation and environmental protection casting smelting production method
SU1767318A1 (en) Device for sintering concentrate and ore
JP2604928B2 (en) Billet heating furnace charging method
JP2857565B2 (en) Structure of zinc recovery chamber
SU588250A1 (en) Method of cooling sinter
SU1216231A1 (en) Method of cooling sinter
SU998548A1 (en) Method for cooling iron ore lump materials in annular cooler
JPH0514773B2 (en)
JPS6227124B2 (en)
CN114322545A (en) Reduction furnace
JPS55113819A (en) Method and apparatus for direct reduction iron making
SU850712A1 (en) Method of gas and air outlet into atmosphere from conveyer annealing machine for thermal treatment of pellets