JPS60215732A - Al alloy for structure suitable for nuclear fusion device - Google Patents

Al alloy for structure suitable for nuclear fusion device

Info

Publication number
JPS60215732A
JPS60215732A JP7240384A JP7240384A JPS60215732A JP S60215732 A JPS60215732 A JP S60215732A JP 7240384 A JP7240384 A JP 7240384A JP 7240384 A JP7240384 A JP 7240384A JP S60215732 A JPS60215732 A JP S60215732A
Authority
JP
Japan
Prior art keywords
alloy
nuclear fusion
strength
weldability
electrical resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7240384A
Other languages
Japanese (ja)
Inventor
Shigenori Asami
浅見 重則
Kunihiko Kishino
邦彦 岸野
Kiyoshi Matsumoto
清 松本
Tomikane Saida
斎田 富兼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Aluminum Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
Furukawa Aluminum Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Aluminum Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical Furukawa Aluminum Co Ltd
Priority to JP7240384A priority Critical patent/JPS60215732A/en
Publication of JPS60215732A publication Critical patent/JPS60215732A/en
Pending legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a titled Al alloy for structure having excellent mechanical strength, weldability and electric resistance characteristic in combination by contg. Si, Mg, Cu and V or/and Cr respectively at prescribed ratios. CONSTITUTION:An Al alloy for structure suitable for a nuclear fusion device contains, by weight %, 4.0-10% Si, 0.1-1.6% Mg, 1.7-3.5% Cu and further 1 or >=2 kinds of 0.05-0.35% V and 0.05-0.3% Cr and consists of the balance Al and unavoidable impurities. Fe and Mn in the ordinary unavoidable inpurities which Al contains are made preferably as low as possible in terms of radioactivation. Mainly the plate material of the alloy of this invention can be manufactured by making a casting ingot by an ordinary method and subjecting the ingot to hot rolling, cold rolling and, if necessary, to annealing. The plate material has excellent mechanical performance (tensile strength, yield strength and elongation) and weldability and >=5muOMEGA.cm electric resistance. The Al alloy of this invention has various excellent characteristics suitable for a nuclear fusion testing device and more particularly the vaccum vessel thereof.

Description

【発明の詳細な説明】 本発明は、核融合試験装置、特にその真空容器に適した
構造用AJ2合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a structural AJ2 alloy suitable for fusion test equipment, particularly its vacuum vessel.

核融合反応炉は、軽水炉等の原子hエネルギーに次ぎ次
世代のエネルギー創出の手段として鋭意研究が行なわれ
ている。
Nuclear fusion reactors are being intensively researched as a means of creating next-generation energy following atomic energy such as light water reactors.

この′核融合反応(2H+” H=4 )1e +n等
の核融合反応で地上に太陽の状態を創造)を実現するに
は、まず臨界条件(温度約1億度C、プラズマ密度約3
0億個/α3、エネルギー閉じ込め時間約1秒)を作り
出さなければならない。世界は今、この条件の実現に向
って衆知を傾注している。
In order to realize this 'nuclear fusion reaction (2H+'' H=4)1e +n, etc., which creates the state of the sun on the ground), the critical conditions (temperature of about 100 million degrees Celsius, plasma density of about 3
0 billion pieces/α3, energy confinement time approximately 1 second). The world is currently concentrating its collective wisdom on realizing this condition.

このような核融合炉の一つに、トカマク方式の炉がある
が、これは巨大なドーナツ状をしており真空容器の内部
に発生させる超高温プラズマを、周囲に設けられた巨大
な磁石(ホロイダルマグネット、トロイダルマグネット
)により、その磁力の力で閉じ込め宙に浮かして保持す
るようにしたものである。
One such nuclear fusion reactor is the tokamak type reactor, which is shaped like a giant donut and uses a huge magnet ( Holoidal magnet, toroidal magnet) is used to trap and hold it in the air by its magnetic force.

ここに使用される真空容器には、従来インコネル(Ni
 −Cr−Fe系合金:lNC0社の商標以下同様)、
ステンレス(S U S 304,316)等が使用さ
れている。
The vacuum container used here is conventionally made of Inconel (Ni).
-Cr-Fe alloy: trademark of lNC0 company (same as below),
Stainless steel (SUS 304, 316) etc. are used.

しかしながら、これらは高速中性子の照射により長寿命
の誘導放射能を生ずる様な成分元素(例えばNi、Go
、Mn、Fe)を含んでいる。従って、インコネル、ス
テンレスを真空容器に使用した場合、D−T (’2 
H−38)核融合反送により生ずる中性子によってこれ
らの成分が放射化してγ線が発生する。
However, these elements (e.g., Ni, Go,
, Mn, Fe). Therefore, when Inconel or stainless steel is used for a vacuum container, D-T ('2
H-38) These components are activated by neutrons generated by nuclear fusion repulsion, and gamma rays are generated.

結果として、その装置への研究者や作業者の接近が困難
となる。ロボットにより遠隔操作する方法もあるが、多
額の開発費と長期の研究期間を要する。そこで低放射化
材料であるA(合金材が注目され、一部溶接性のよイJ
 rs5052u (Af−2,2〜2,8vt%MQ
 −0,15〜0.35wt%cr合金)が使用された
実績がある。
As a result, it becomes difficult for researchers and workers to access the device. There is also a method of remote control using a robot, but this requires a large amount of development cost and a long research period. Therefore, A (alloy material), which is a low activation material, has attracted attention, and some J
rs5052u (Af-2,2~2,8vt%MQ
-0.15 to 0.35 wt% Cr alloy) has been used.

しかし従来使用されたA(合金材にしても、多くの改善
を必要とする。即ち微量放射化成分の除去、材料強度の
上昇、溶接性の改善、電気抵抗特性等である。
However, the conventionally used A (alloy material) requires many improvements, such as removal of trace amounts of activated components, increase in material strength, improvement in weldability, and electrical resistance properties.

真空容器の設計上、Aぶ合金材に要求される特性として
は、次のとおりである。
In designing a vacuum vessel, the following properties are required of the aluminum alloy material.

(1)大型構造物であるため、材料の強度が所定以上あ
ること。
(1) Since it is a large structure, the strength of the material must exceed a specified level.

(例、引張強さ288g/1urn2以上、耐力12K
g/′#II+2以上を目標とする。) (2)厚板(板厚30〜5O,)を曲げ加工して、構造
物とするため、材料の伸びが所定以上であること。
(Example, tensile strength 288g/1urn2 or more, yield strength 12K
Aim for g/'#II+2 or higher. ) (2) Since a thick plate (plate thickness 30 to 50) is bent to form a structure, the elongation of the material must be at least a predetermined value.

(例、13%以上を目標とづる。) (3)材料の電気抵抗が大きいこと。(For example, set a goal of 13% or more.) (3) The electrical resistance of the material is high.

(例、5μΩ・cm以上を目標とする。)(4)各板を
溶接により接合しで構造物とするため、溶接性が良好な
こと。
(For example, aim for 5 μΩ・cm or more.) (4) Since each plate is joined by welding to form a structure, weldability must be good.

等である。etc.

尚真空容器用材料の電気抵抗を人さくする主な理由は、
真空容器の内部に、ブラズン電流を外部(ホロイダルマ
グネット)からの誘導で励起するため真空容器の一周抵
抗値を所定値(例えば0.1mΩ)以上とする必要があ
るためである。
The main reason for reducing the electrical resistance of vacuum container materials is
This is because the one-round resistance value of the vacuum container needs to be equal to or higher than a predetermined value (for example, 0.1 mΩ) in order to excite the blast current inside the vacuum container by induction from the outside (holoidal magnet).

従来、前記のニーズのすべてを満足する/’1合金材料
は存在しなかった。
Hitherto, there has been no /'1 alloy material that satisfies all of the above needs.

本発明者等は、これらの要求を満足する12合金材料に
ついて鋭意研究の結果、本発明を完成したものである。
The present inventors completed the present invention as a result of intensive research into 12 alloy materials that satisfy these requirements.

即ち、本発明は、s14.0〜iowt%(以下wt%
は単ニ%ト略記tル)、Mg0.1〜1.6%、−Cu
1.1〜3.5%と、更に、V O,05〜0.3%、
Cr0.05〜0.3%の範囲内でいずれが1種又は2
種を含み、残部不可避的不純物及び八(からなる核融合
装置用/l’合金である。
That is, the present invention provides s14.0 to iowt% (hereinafter wt%
(abbreviation t), Mg0.1-1.6%, -Cu
1.1 to 3.5%, and further VO, 05 to 0.3%,
Either one or two within the range of Cr0.05 to 0.3%
It is a /l' alloy for nuclear fusion devices that contains seeds, the remainder is unavoidable impurities, and eight (1).

本発明をこのように構成することにより、すぐれた機械
的性能と溶接性及び電気抵抗特性を兼ね備えたアルミニ
ウム合金材を得ることができる。
By configuring the present invention in this manner, an aluminum alloy material having excellent mechanical performance, weldability, and electrical resistance characteristics can be obtained.

次に本発明合金の合金添加元素の意義と限定理由につい
て述べる。本発明合金における主添加元素Si、fVl
o、Cuは、相互に関連して強度と電気抵抗特性等に影
響する。
Next, the significance of the alloy additive elements of the alloy of the present invention and the reasons for their limitations will be described. Main additive elements Si, fVl in the alloy of the present invention
o and Cu influence strength, electrical resistance properties, etc. in relation to each other.

Siは、材料の強度と電気抵抗を増大させるためのもの
で、4.0〜10%添加する。Mg、Cuが下記所定量
の場合、3iが4.0%未満ではこれらが不足し、又1
0%を越えると伸びが不足し、初晶Siの出現により、
圧延加工性が悪くなる。
Si is added in an amount of 4.0 to 10% to increase the strength and electrical resistance of the material. When Mg and Cu are in the following specified amounts, if 3i is less than 4.0%, these will be insufficient, and 1
If it exceeds 0%, elongation is insufficient and due to the appearance of primary Si,
Rolling workability deteriorates.

Mgは、材料の強度の向上をはかり、電気抵抗を大きく
するためのらので、0.1〜1.6%添加する。3i 
、 Cuが所定量の場合、Mgが0.1%未満では、強
度が不足し、電気抵抗が小さくなる。
Mg is added in an amount of 0.1 to 1.6% to improve the strength of the material and increase the electrical resistance. 3i
, When Cu is in a predetermined amount, if Mg is less than 0.1%, the strength will be insufficient and the electrical resistance will be small.

又1.6%を越えると伸びが不足する。Moreover, if it exceeds 1.6%, elongation will be insufficient.

Cuは、材料の強度と電気抵抗を大ぎくするためのもの
で、1.7・〜3.5%添加リ−る。すi、lvlgが
所定量の場合、Cuが1.7%未満では、これらの特性
が不足し、3,5%を越えると伸びが不足する。
Cu is added in an amount of 1.7 to 3.5% to increase the strength and electrical resistance of the material. When Sui and lvlg are predetermined amounts, if Cu is less than 1.7%, these properties are insufficient, and if it exceeds 3.5%, elongation is insufficient.

■又は/及びCrは、母材及び溶接部の結晶粒を微細に
して、強度の向上をはかるもので、各々0.05〜0.
3%の範囲内で1種又は2種を添加する。0.05%未
満では母材及び溶接部の結晶粒が粗くなり、好ましくな
い。又0.3%を越えると初晶巨大金属間化合物が生じ
やずく、伸びが不足する。
(2) or/and Cr are used to improve the strength by making the crystal grains of the base metal and the welded part finer, and are each 0.05 to 0.
One or two types are added within a range of 3%. If it is less than 0.05%, the crystal grains in the base metal and weld zone will become coarse, which is not preferable. Moreover, if it exceeds 0.3%, primary crystal giant intermetallic compounds will be formed and elongation will be insufficient.

尚、A(中に含まれる普通の不可避的不純物(Fe 、
Mn 、Zn 、Ti 、Zr等)は、特に限定される
ものではないが、Fe 、Mnは放射化の点から極力お
さえることが望ましい。
In addition, A (normal unavoidable impurities contained in it (Fe,
Mn, Zn, Ti, Zr, etc.) are not particularly limited, but it is desirable to suppress Fe and Mn as much as possible from the viewpoint of activation.

又本発明合金、主として板材は、普通の方法で鋳塊を作
り、熱間圧延、冷間圧延、必要に応じて焼鈍して作るこ
とが出来る。これらの板は1m終的には、溶体化処理、
焼入、常温時効(T4の状態)して使用される。
Further, the alloy of the present invention, mainly a plate material, can be produced by forming an ingot using a conventional method, followed by hot rolling, cold rolling, and optionally annealing. These plates are 1m long and are finally solution treated.
It is used after being quenched and aged at room temperature (T4 state).

このようにして作られた根は、すぐれた機械的性能(引
張強さ、耐力、伸び)と溶接性を有し、又電気抵抗も5
μΩ・1以上のものが得られる。
The roots made in this way have excellent mechanical performance (tensile strength, yield strength, elongation) and weldability, and also have an electrical resistance of 5.
A value of μΩ·1 or more can be obtained.

なお、本発明合金は、核融合装置用として、主として板
材で用いられるが、板にかぎるものではなく、押出形材
、棒、管のごとき構造材としても用いることかできる。
The alloy of the present invention is mainly used in plate materials for nuclear fusion devices, but it is not limited to plates, and can also be used in structural materials such as extruded shapes, rods, and tubes.

以下本発明の詳細について、実施例に基づいて説明する
The details of the present invention will be explained below based on examples.

実施例 第1表に示すへ1合金を鋳造し、60m(厚さ)x 1
80aw+ (巾) X 180JIll+ (長さ)
の鋳塊を得た。
Example 1 alloy shown in Table 1 was cast, 60m (thickness) x 1
80aw+ (width) x 180JIll+ (length)
An ingot was obtained.

Aλ地金は99.7%A(を使用した。The Aλ base metal used was 99.7% A.

これを520℃で24時間均熱処理した後、両面を面側
(片面3#IIII)シ、500℃に加熱後、厚さ3.
5銅まで熱間圧延した。次いでこの板を310℃で2時
間焼鈍後、厚さ2.0atiまで冷間圧延した。
After soaking this at 520°C for 24 hours, both sides were turned side-side (one side 3#III), heated to 500°C, and the thickness was 3.
Hot rolled to 5 copper. This plate was then annealed at 310°C for 2 hours and then cold rolled to a thickness of 2.0ati.

最後にこの冷延板を525℃で1時間溶体化処理後、常
温水に水焼入した。
Finally, this cold rolled sheet was solution treated at 525° C. for 1 hour and then water quenched in room temperature water.

この板を室温で4日以上常温時効させたのち、引張試験
、電気抵抗試験に供した。これらの結果を第1表に併記
した。
After aging this plate at room temperature for 4 days or more, it was subjected to a tensile test and an electrical resistance test. These results are also listed in Table 1.

溶接試験については、上記厚さ 3.511II11の
熱間圧延板を上記と同一条件で溶体化、焼入、常温時効
を行なったものを使用した。その結果を第1表に記した
For the welding test, a hot-rolled plate having a thickness of 3.511II11 was solution-treated, quenched, and aged at room temperature under the same conditions as above. The results are shown in Table 1.

尚これらの試験方法は、以下の如くである。Note that these test methods are as follows.

a)引張試験:板幅方向(L Th向)に試験片を採取
して試験した。
a) Tensile test: A test piece was taken in the board width direction (L Th direction) and tested.

b)電気抵抗測定:板の長手方向(L方向)に試験片を
採取して試験した。
b) Electrical resistance measurement: A test piece was taken in the longitudinal direction (L direction) of the plate and tested.

C)溶接性試験:厚さ3.51111i%長さ3001
11111板についてMig溶接により、つき合せ 溶接した。溶接部長さ3oomに ついで、ビード部のクラックの 有無を目視により観察し、判定 した。なお、本発明合金、比較 合金について、溶加材はJ−I 5 4043 (A 、e−4,5〜6.0%Si合金)溶
接線を使用した。
C) Weldability test: Thickness 3.51111i% Length 3001
11111 plates were butt welded by MIG welding. After the welded portion had a length of 3 oom, the presence or absence of cracks in the bead portion was visually observed and determined. In addition, for the present invention alloy and the comparative alloy, J-I 5 4043 (A, e-4, 5-6.0% Si alloy) welding wire was used as the filler metal.

又、比較のため、市販の従来合金J I S 5052
−HI3板(厚さ2.01111.及び3.5am)に
ついても、前記と同一の試験条件(但し溶接試験におい
ては、溶加材として、J I 85356 (A f 
−4,5〜5.5%MQ −0,05〜0.20%Mn
 −0,05〜0.20%Cr−0.06〜0.20%
T1合金)溶接線を使用〕で試験を行ない、その結果を
第1表に併記した。
Also, for comparison, commercially available conventional alloy JIS 5052
- HI3 plates (thickness 2.01111.
-4,5~5.5%MQ -0,05~0.20%Mn
-0.05~0.20%Cr-0.06~0.20%
T1 alloy) using a welding wire], and the results are also listed in Table 1.

第1表から明らかな如く、本発明合金は、機械的性能の
点で、引張強さ28に9 / rum 2以上、耐力1
2Kg/InM2以上、伸び13%以上であり、又電気
抵抗はいずれも5.0μΩ・α以上となり、溶接性の点
でも問題なく、づぐれ7;:14料であることが確認さ
れた。
As is clear from Table 1, in terms of mechanical performance, the alloy of the present invention has a tensile strength of 28 to 9/rum 2 or more, and a yield strength of 1.
2Kg/InM2 or more, the elongation was 13% or more, and the electrical resistance was 5.0 μΩ·α or more in all cases, and it was confirmed that there was no problem in terms of weldability and that the material was a grade 7:14 material.

これに比し、従来台金、比較合金は、機械的性能、電気
抵抗いずれかの点で本発明合金より劣っている。
In comparison, the conventional base metal and comparative alloy are inferior to the alloy of the present invention in either mechanical performance or electrical resistance.

以上説明し1=ように本発明合金材は、核融合試験装置
、特にその真空容器に適した種々のすぐれた特性を有す
るものである。
As explained above, the alloy material of the present invention has various excellent properties suitable for a nuclear fusion test device, especially a vacuum vessel thereof.

第1頁の続き 0発 明 者 斎 1) 富 兼 高砂市荒井町新浜2
砂研究所内 丁目1番1号 三菱重工業株式会社高
Continued from page 1 0 Inventor Sai 1) Tomi Kane 2 Shinhama, Arai-cho, Takasago City
Suna Research Institute 1-1 Mitsubishi Heavy Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] S i 4.0〜10wt%、M g O01〜1.6
wt%、cul、1〜3,5wt%と、更にV O,0
5〜o、3wt%、Cr O,05〜0.3wt%の範
囲内でいずれか1種又は2種を含み、残部が不可避的不
純物及びAJ2よりなる核融合装置に適した構造用Aぶ
合金。
Si 4.0~10wt%, MgO01~1.6
wt%, cul, 1 to 3,5 wt%, and further V O,0
Structural aluminum alloy suitable for nuclear fusion devices, containing any one or two of 5 to 3 wt%, CrO, 05 to 0.3 wt%, and the remainder consisting of unavoidable impurities and AJ2. .
JP7240384A 1984-04-11 1984-04-11 Al alloy for structure suitable for nuclear fusion device Pending JPS60215732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7240384A JPS60215732A (en) 1984-04-11 1984-04-11 Al alloy for structure suitable for nuclear fusion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7240384A JPS60215732A (en) 1984-04-11 1984-04-11 Al alloy for structure suitable for nuclear fusion device

Publications (1)

Publication Number Publication Date
JPS60215732A true JPS60215732A (en) 1985-10-29

Family

ID=13488276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7240384A Pending JPS60215732A (en) 1984-04-11 1984-04-11 Al alloy for structure suitable for nuclear fusion device

Country Status (1)

Country Link
JP (1) JPS60215732A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529529A (en) * 2008-07-30 2011-12-08 リオ ティント アルカン インターナショナル リミテッド Aluminum alloy castings with high resistance to fatigue and hot creep
EP2758557B1 (en) 2011-09-19 2015-11-04 Alcoa GmbH Improved aluminum casting alloys containing vanadium
JP2020169376A (en) * 2019-04-05 2020-10-15 昭和電工株式会社 Aluminum alloy for compressor slide components and compressor slide component forging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514886A (en) * 1979-03-19 1980-02-01 Hitachi Ltd Manufacture of high toughness, high machinability aluminum alloy for cutting use
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
JPS57149445A (en) * 1981-03-09 1982-09-16 Showa Alum Ind Kk Aluminum alloy for parts in contact with vtr tape
JPS58100654A (en) * 1981-12-11 1983-06-15 Sumitomo Alum Smelt Co Ltd Aluminum alloy for casting with superior heat resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5514886A (en) * 1979-03-19 1980-02-01 Hitachi Ltd Manufacture of high toughness, high machinability aluminum alloy for cutting use
JPS5669344A (en) * 1979-11-07 1981-06-10 Showa Alum Ind Kk Aluminum alloy for forging and its manufacture
JPS57149445A (en) * 1981-03-09 1982-09-16 Showa Alum Ind Kk Aluminum alloy for parts in contact with vtr tape
JPS58100654A (en) * 1981-12-11 1983-06-15 Sumitomo Alum Smelt Co Ltd Aluminum alloy for casting with superior heat resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011529529A (en) * 2008-07-30 2011-12-08 リオ ティント アルカン インターナショナル リミテッド Aluminum alloy castings with high resistance to fatigue and hot creep
EP2758557B1 (en) 2011-09-19 2015-11-04 Alcoa GmbH Improved aluminum casting alloys containing vanadium
JP2020169376A (en) * 2019-04-05 2020-10-15 昭和電工株式会社 Aluminum alloy for compressor slide components and compressor slide component forging

Similar Documents

Publication Publication Date Title
Breedis Influence of dislocation substructure on the martensitic transformation in stainless steel
WO2021254028A1 (en) B2 nanoparticle coherent precipitation strengthened ultrahigh-strength maraging stainless steel and preparation method therefor
JP2983289B2 (en) Thermomechanical treatment of metallic materials
US8795449B2 (en) Magnetostrictive material and preparation method thereof
CN113234986B (en) Low-activation refractory medium-entropy alloy and preparation method thereof
JP2018514650A (en) Zirconium alloy having excellent corrosion resistance and creep resistance, and method for producing the same
JPS62180014A (en) Non-oriented electrical sheet having low iron loss and superior magnetic flux density and its manufacture
JP2007084903A (en) Ni3(Si, Ti)-BASED FOIL, AND ITS PRODUCTION METHOD
EP0049141B1 (en) Iron-chromium-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
JPS60215732A (en) Al alloy for structure suitable for nuclear fusion device
KR920004678B1 (en) METHOD FOR MANUFACTURING Ni-Fe ALLOY SHEET HAVING EXCELLENT DC MAGNETIC PROPERTY AND EXCELLENT AC MAGNETIC PROPERTY
US3156560A (en) Ductile niobium and tantalum alloys
JPS6137347B2 (en)
CN105296803B (en) A kind of nuclear reactor fuel can zirconium-niobium alloy and preparation method thereof
US4253883A (en) Fe-Cr-Co Permanent magnet alloy and alloy processing
US3617260A (en) Magnetic alloy
JPS5924178B2 (en) Square hysteresis magnetic alloy and its manufacturing method
US5425912A (en) Low expansion superalloy with improved toughness
JPS6214207B2 (en)
Mukherjee et al. Microstructural studies on lattice imperfections in deformed zirconium-base alloys by X-ray diffraction
JPS60215731A (en) Aluminum alloy for nuclear fusion device
Morito Characteristics of EB-weldable molybdenum and Mo-Re alloys
JP3333419B2 (en) Method for producing aperture grill material for color picture tube
GB2025460A (en) Fe-Cr-Co permanent magnet alloy
JPH0114991B2 (en)