JPS60215721A - Method for recovering gallium - Google Patents

Method for recovering gallium

Info

Publication number
JPS60215721A
JPS60215721A JP7052784A JP7052784A JPS60215721A JP S60215721 A JPS60215721 A JP S60215721A JP 7052784 A JP7052784 A JP 7052784A JP 7052784 A JP7052784 A JP 7052784A JP S60215721 A JPS60215721 A JP S60215721A
Authority
JP
Japan
Prior art keywords
gallium
resin
chelate resin
acid
chelate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7052784A
Other languages
Japanese (ja)
Inventor
Yoshiaki Iwaya
岩屋 嘉昭
Hideki Imazu
今津 英輝
Masanobu Hioki
正信 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP7052784A priority Critical patent/JPS60215721A/en
Publication of JPS60215721A publication Critical patent/JPS60215721A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To recover efficiently gallium by simple operation by adsorbing gallium on a chelate resin having hydroxamic acid groups as ligands in the molecule. CONSTITUTION:A chelate resin having hydroxamic acid groups as ligands in the molecule is produced by reacting a methacrylate copolymer with hydroxylamine. Gallium contained in a soln. is adsorbed on the chelate resin and the adsorbed gallium is eluted. By this method gallium is efficiently recovered by simple operation.

Description

【発明の詳細な説明】 本発明は、ガリウムを含有する溶液からガリウムを回収
する方法に関するものであり、さらに詳しくは配位子と
して分子中にヒドロキサム酸基を有するキレート樹脂を
用いて、特に強塩基性液(例えば、バイヤー法によるア
ルミン酸ソーダ溶液)中のガリウムを回収する方法に関
するものである二 近年、電子材料の半導体素子としてのガリウム・ヒ素、
ガリウム・リン及びガリウム・ガドリニウム・ガーネッ
ト等の普及に伴い、ガリウムの需要が急速に増大してい
る。しかしながら、ガリウムは鉱石が存在しないので、
工業的な量が必要とされる場合には、バイヤー法による
アルミン酸ソーダ中に含まれるガリウムが、優れたガリ
ウム原料となっている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering gallium from a solution containing gallium, and more specifically, the present invention relates to a method for recovering gallium from a solution containing gallium. In recent years, gallium arsenide as a semiconductor element for electronic materials has been developed.
With the spread of gallium phosphorous, gallium gadolinium, garnet, etc., the demand for gallium is rapidly increasing. However, since gallium does not exist in ore,
When industrial quantities are required, gallium contained in sodium aluminate produced by the Bayer process is an excellent gallium raw material.

従来より、アルミン酸ソーダ溶液からガリウムを回収す
る方法としては、2.3知られている。
Conventionally, 2.3 methods for recovering gallium from a sodium aluminate solution are known.

例えば1分別炭酸化法や水銀電解法がある。これらの方
法は、電解還元に必要な濃度にまでガリウムを濃縮する
こ・とができるが、その処理工程により溶液が損傷され
るので、バイヤープロセスに再循環できない欠点を有し
ていた。従ってこのような方法を用いて大量のガリウム
を製造することは実際上不可部である。
For example, there is a one-fraction carbonation method and a mercury electrolysis method. Although these methods can concentrate gallium to the concentration required for electrolytic reduction, they have the disadvantage that the solution is damaged by the processing steps and cannot be recycled to the Bayer process. Therefore, it is practically impossible to produce large quantities of gallium using such a method.

そのため、近年、7m (5,5,7,7−テトラメチ
ル−1−オクテン−3−イル−8−ヒドロキシキノリン
等の置換ヒドロキシキノリン類を用いた溶媒抽出法によ
る回収方法が開発され、−その改善が試みられている(
例えば、特開昭51−32.411号公報、特開昭53
−52.289号公報、特開昭!54−99,726号
公報参照)。しかしながら、これらの抽出剤は。
Therefore, in recent years, a recovery method using a solvent extraction method using substituted hydroxyquinolines such as 7m (5,5,7,7-tetramethyl-1-octen-3-yl-8-hydroxyquinoline) has been developed. Improvements are being attempted (
For example, JP-A-51-32.411, JP-A-53
-52.289 Publication, JP-A-Sho! 54-99,726). However, these extractants.

一般に高価であり、アルミン酸ソーダ溶液のごとく強塩
基性水溶液からのガリウムの抽出能もしくは選択性に乏
しいので、ガリウムを90%以上の回収率で抽出するに
は、多段抽出工程を必要とし5装置コスト、抽出剤コス
トが過大となり、あまり実用的ではない。
Generally, it is expensive and has poor extraction ability or selectivity for gallium from strongly basic aqueous solutions such as sodium aluminate solution, so a multi-stage extraction process is required to extract gallium with a recovery rate of 90% or more. The cost and extractant cost are excessive, and it is not very practical.

一方、従来から1重金属イオンと錯体形成能のある配位
子を高分子化合物に導入したキレート樹脂に関しては種
々研究されており、その中で現在。
On the other hand, various studies have been conducted on chelate resins in which a heavy metal ion and a ligand capable of forming a complex are introduced into a polymer compound.

イミノジ酢酸基を有するキレート樹脂1例えばDowe
x A−1(ダウケミカル社製)、ダイヤイオンCRI
0.20 (三菱化成社製)及びユニセレックUR−1
0〜50(ユニチカ社製)などが商品化されている。
Chelate resin 1 having iminodiacetic acid groups, such as Dowe
x A-1 (manufactured by Dow Chemical Company), Diamond Ion CRI
0.20 (manufactured by Mitsubishi Kasei Corporation) and Unicelec UR-1
0 to 50 (manufactured by Unitika) are commercialized.

しかし、これらの樹脂は吸着される重金属イオンの選択
捕捉性能に問題があり、特に強塩基性下での゛ガリウム
の選択吸着能に極めて乏しく、アルミン酸ソーダ溶液か
らのガリウムの分離回収には。
However, these resins have problems in their ability to selectively trap adsorbed heavy metal ions, and in particular, their ability to selectively adsorb gallium under strong basic conditions is extremely poor, making it difficult to separate and recover gallium from a sodium aluminate solution.

全く適用不可能であった。また、これらのイミノジ酢酸
型キレート樹脂による吸着法に代わるものとして、オキ
シンを配位子とするキレート樹脂による回収方法(特開
昭58−7,412号公報、特開昭58−194,83
1号公報)1式(1) で示されるアミドキシム基を配位子とするキレート樹脂
による回収方法(特開昭58−49,620号公報)、
及び式(II) 3C=N−OH’ (II) で示されるオキシム基を配位子とするキレート樹脂によ
る回収方法(特開昭58−52.450号公報)が提案
されているが、アルミン酸ソーダ溶液のごとく強塩基性
の溶液からガリウムを回収するには。
It was completely unapplicable. In addition, as an alternative to the adsorption method using these iminodiacetic acid type chelate resins, recovery methods using chelate resins using oxine as a ligand (JP-A-58-7,412, JP-A-58-194,83) have been proposed.
1) A recovery method using a chelate resin having an amidoxime group represented by the formula (1) as a ligand (JP-A-58-49,620),
A recovery method using a chelate resin using an oxime group represented by the formula (II) and 3C=N-OH' (II) as a ligand has been proposed (Japanese Unexamined Patent Publication No. 58-52.450). To recover gallium from strongly basic solutions such as acid-soda solutions.

ガリウムに対する選択性が乏しかったり、ガリウムに対
する吸着容量が小さかったり、また耐アルカリ、耐酸性
に乏しく、繰り返し使用時に性能が劣化したりして必ず
しも満足されるものでばなく。
They are not always satisfactory because they have poor selectivity for gallium, small adsorption capacity for gallium, poor alkali resistance and acid resistance, and deteriorate performance upon repeated use.

実用上使用するにはさらに改良の余地がある。There is room for further improvement for practical use.

本発明者らは、これらの実状に鑑み、上記不都合を克服
したガリウムの回収方法を提供することを目的として鋭
意研究を重ねた結果、特定の官能基を有するキレート樹
脂を用いると、特にアルミン酸ソーダ溶液のガリウムが
工業的規模で多量に。
In view of these actual circumstances, the present inventors have conducted intensive research with the aim of providing a method for recovering gallium that overcomes the above-mentioned disadvantages, and have found that when a chelate resin having a specific functional group is used, aluminic acid Gallium in soda solution is produced in large quantities on an industrial scale.

しかも極めて効率よく回収されることを見いだし。Moreover, they discovered that it can be recovered extremely efficiently.

本発明に到達した。We have arrived at the present invention.

すなわち本発明は配位子として分子中にヒドロキサム酸
基を有するキレート樹脂とガリウムを含有する溶液とを
接触させて該キレート樹脂にガリウムを吸着させ1次い
で吸着させたガリウムを溶離させることを特徴とするガ
リウムの回収方法である。
That is, the present invention is characterized in that a chelate resin having a hydroxamic acid group in its molecule as a ligand is brought into contact with a solution containing gallium, gallium is adsorbed onto the chelate resin, and then the adsorbed gallium is eluted. This is a method for recovering gallium.

本発明に用いられるキレート樹脂としては、配位子とし
て分子中にヒドロキサム酸基−C(−〇) NHOHを
有するキレート樹脂であれば、特に制限されるものでは
ない。
The chelate resin used in the present invention is not particularly limited as long as it has a hydroxamic acid group -C(-〇)NHOH in the molecule as a ligand.

このようなキレート樹脂としては1例えばアク1J7L
4メチル−ジビニルベンゼン共重合体、メタクリル酸メ
チル−ジビニルベンゼン共重合体に代表される交さ結合
のアクリル酸もしくはメタクリル酸エステル共重合体に
ヒドロキシルアミン又はヒドロキシルアミンの誘導体を
反応させてヒドロキサム酸基を有しめた樹脂;アクリル
酸−ジビニルベンゼン共重合体、メタクリル酸−ジビニ
ルベンゼン共重合体、イタコン酸−ジビニルベンゼン共
重合体に代表される交さ結合のカルボン酸含有共重合体
を塩化チオニルで処理してカルボン酸クロリドにしたの
ち、ヒドロキシルアミン又はヒドロキシルアミンの誘導
体を反応させてヒドロキサム酸基を有しめた樹脂;アク
リロニトリル−ジビニルベンゼン共重合体、メタアクリ
ロニトリル−ジビニルベンゼン共重合体に代表される交
さ結合のニトリル基を有するビニル系共重合体を硫酸で
加水分解してニトリル基を酸アミド基に変換したのち、
ヒドロキシルアミン又はヒドロキシルアミンの誘導体を
反応させてヒドロキサム酸基を有しめた樹脂;無水マレ
イン酸−ジビニルベンゼン共重合体に代表される交さ結
合のカルボン敢無−水物を有する共重合体にヒドロキシ
ルアミン又はヒドロキシルアミンの誘導体を反応させて
ヒドロキサム酸基を有しめた樹脂;アクリル酸メチル、
アクリル酸クロリド、アクリルアミド、メタクリル酸メ
チル、メタクリル酸クロリド、メタクリルアミド等のア
クリル系ビニル単量体又は無水マレイン酸にヒドロキシ
ルアミン又はヒドロキシルアミン誘導体を反応させて得
られるヒドロキサム酸基を含有するビニル系単量体を、
単独重合もしくは共重合可能な他のエチレン系不飽和単
量体と重合させた樹脂;カルボン酸エステル基、カルボ
ン酸クロリド基、カルボン酸アミド基、カルボン酸無水
物等ヒドロキシルアミンと反応する基を有するスチレン
−ジビニルベンゼン共重合体、フェノール樹脂、エポキ
シ樹脂、ポリエチレン、ポリプロピレン等の重合体にヒ
ドロキシムアミン又はヒドロキシルアミン誘導体を反応
させてヒドロキサム酸基を有しめた樹脂;ヒドロキサム
酸基を有するフェノール類をフェノール類とアルデヒド
類で三次元架橋せしめた樹脂;活性炭、多孔性のスチレ
ン−ジビニルベンゼン共重合体(商品名XAD樹脂ロー
ム・アンド・ハース社製)などの多孔質体に。
Examples of such chelate resins include 1, for example, Aku 1J7L.
Hydroxamic acid groups are obtained by reacting cross-linked acrylic acid or methacrylic acid ester copolymers, such as 4-methyl-divinylbenzene copolymer and methyl methacrylate-divinylbenzene copolymer, with hydroxylamine or a hydroxylamine derivative. cross-linked carboxylic acid-containing copolymers such as acrylic acid-divinylbenzene copolymers, methacrylic acid-divinylbenzene copolymers, and itaconic acid-divinylbenzene copolymers with thionyl chloride. A resin that is treated to form a carboxylic acid chloride and then reacted with hydroxylamine or a hydroxylamine derivative to have a hydroxamic acid group; typified by acrylonitrile-divinylbenzene copolymer and methacrylonitrile-divinylbenzene copolymer. After hydrolyzing a vinyl copolymer with cross-linked nitrile groups with sulfuric acid to convert the nitrile groups into acid amide groups,
A resin that has a hydroxamic acid group by reacting hydroxylamine or a derivative of hydroxylamine; Resin with hydroxamic acid group by reacting amine or hydroxylamine derivative; methyl acrylate,
A vinyl monomer containing a hydroxamic acid group obtained by reacting an acrylic vinyl monomer such as acrylic acid chloride, acrylamide, methyl methacrylate, methacrylic acid chloride, or methacrylamide or maleic anhydride with hydroxylamine or a hydroxylamine derivative. Quantity,
Resin polymerized with other ethylenically unsaturated monomers that can be homopolymerized or copolymerized; having groups that react with hydroxylamine, such as carboxylic acid ester groups, carboxylic acid chloride groups, carboxylic acid amide groups, and carboxylic acid anhydrides. A resin that has a hydroxamic acid group by reacting a polymer such as styrene-divinylbenzene copolymer, phenol resin, epoxy resin, polyethylene, or polypropylene with hydroximamine or a hydroxylamine derivative; Resin three-dimensionally crosslinked with phenols and aldehydes; porous bodies such as activated carbon and porous styrene-divinylbenzene copolymer (trade name: XAD resin, manufactured by Rohm and Haas).

アクリル酸メチル−ジビニルベンゼン共重合体。Methyl acrylate-divinylbenzene copolymer.

メタクリル酸メチル−ジビニルベンゼン共重合体。Methyl methacrylate-divinylbenzene copolymer.

アクリルアミド−ジビニルベンゼン共重合体などのアク
リル系ポリマーを添着させたのち、ヒドロキシルアミン
又はヒドロキシルアミン誘導体を反応させてヒドロキサ
ム酸基を有しめた樹脂などがあげられる。
Examples include resins that have hydroxamic acid groups by impregnating an acrylic polymer such as acrylamide-divinylbenzene copolymer and then reacting with hydroxylamine or a hydroxylamine derivative.

このヒドロキサム酸基を有するキレート樹脂を製造する
には9例えばAnalitical Chemistr
y+ 37巻、919−920頁、 1965年+ A
nalitica Chimica^cta+ 82巻
、369−375頁、 1976年に記載されている方
法に従って行えばよく1通常は交さ結合を有するアクリ
ル酸エステル又はメタクリル酸エステルの共重合体にヒ
ドロキシルアミンを反応させることにより製造すること
ができる。
To produce this chelate resin having a hydroxamic acid group, for example, Analytical Chemistry
y+ Vol. 37, pp. 919-920, 1965+ A
It can be carried out according to the method described in nalitica Chimica^cta+, Vol. 82, pp. 369-375, 1976. 1. Reacting hydroxylamine with a copolymer of acrylic ester or methacrylic ester, which usually has a cross bond. It can be manufactured by

本発明で対象とするガリウムを含有する溶液としては2
通常、水酸イオンの濃度が約3モル/βの強塩基性溶液
があげられるが、もちろん他のガリウムを含有する溶液
であっても適用することができる。そのような具体例と
しては、ノλ゛イヤー法によるアルミン酸ソーダ水溶液
があげられる。この液組成は一般にNag O; to
o〜2oo g / 7!、^1203; 50〜12
0 g/ 1.Ga;0.01〜0.5 g/ It程
度である。
The gallium-containing solution targeted by the present invention is 2
Typically, a strongly basic solution with a hydroxyl ion concentration of about 3 mol/β is used, but of course other gallium-containing solutions can also be used. A specific example of such a solution is a sodium aluminate aqueous solution prepared by the λ year method. This liquid composition is generally Nag O; to
o~2oo g/7! , ^1203; 50-12
0 g/1. Ga; about 0.01 to 0.5 g/It.

本発明の方法を実施するには、まずt記のキレート樹脂
とガリウムそ含有する溶液とを接触させてキレート樹脂
にガリウムを吸着させる。そのためには2通常イオン交
換樹脂による方法と同様Gこバッチ法及びカラム法が用
いられるが、カラム法で行う方が操作上有利である。カ
ラム法で行う場合には、樹脂を塔に充填し、ガリウムを
含有する溶液を空間速度(1時間当たり、樹脂容積の何
倍量の液を処理したかを示すもの)0.5〜20hr’
 +好ましくは1〜10hr−1+温度を常温ないしは
100℃、好ましくは常温〜80℃に設定してダウンフ
ローにより通液させればよい。
To carry out the method of the present invention, first, the chelate resin described in t. is brought into contact with a solution containing gallium to adsorb gallium onto the chelate resin. For this purpose, a batch method and a column method are generally used as well as a method using an ion exchange resin, but the column method is more advantageous in terms of operation. When using the column method, the resin is packed in a column and the gallium-containing solution is heated at a space velocity (indicating how many times the volume of the resin is processed per hour) from 0.5 to 20 hr'.
+Preferably 1 to 10 hr-1+ The temperature may be set to room temperature to 100°C, preferably room temperature to 80°C, and the liquid may be passed through by downflow.

次にガリウムを吸着したキレート樹脂から力゛リウムを
溶離させるには1例えば、水洗したのち。
Next, to elute gallium from the chelate resin that has adsorbed gallium, for example, after washing with water.

キレート樹脂を塩酸、硫酸などの鉱酸水溶液を用いて処
理すればよく9例えば0.1〜6モル/It。
The chelate resin may be treated with an aqueous mineral acid solution such as hydrochloric acid or sulfuric acid9, for example, 0.1 to 6 mol/It.

好ましくは1〜4モル/7!の塩酸、硫酸水溶液が溶離
剤として用いられる。
Preferably 1 to 4 mol/7! An aqueous solution of hydrochloric acid or sulfuric acid is used as an eluent.

以上説明したように1本発明はキレート樹脂による方法
であるので、簡虫な操作で、しかも効率よ(ガリウムを
回収することができる。さらに本発明に用いられるキレ
ート樹脂は従来公知のイオン交換樹脂やイミノジ酢酸型
キレート樹脂では全く回収不能であった強塩基性溶液中
のガリウムに対して選択吸着性が著しく優れているので
、)<イヤー法によるアルミン酸ソーダ溶液からガリウ
ムを選択的に回収することができるという効果も有する
。また9本発明に用いられるキレート樹脂は。
As explained above, since the present invention is a method using a chelate resin, it is possible to recover gallium with simple and efficient operations.Furthermore, the chelate resin used in the present invention is a conventionally known ion exchange resin. The selective adsorption of gallium in strong basic solutions, which was completely unrecoverable with chelate resins or iminodiacetic acid type chelate resins, is extremely excellent. It also has the effect of being able to Furthermore, the chelate resin used in the present invention is as follows.

物理的、化学的及び機械的安定にも優れており。It also has excellent physical, chemical and mechanical stability.

樹脂を再生することにより何回でも使用することができ
るので、その工業的価値は大なるものである。
Since the resin can be recycled and used any number of times, its industrial value is great.

以下実施例により本発明をさらに具体的に説明する。な
お参考例及び実施例中の%はすべて重量%を示す。
The present invention will be explained in more detail with reference to Examples below. Note that all percentages in Reference Examples and Examples indicate weight percent.

参考例1 小球状のメタクリ/L、=酸メチルージビニルヘンゼン
共重合体(ジビニルベンゼン15mole%9粒径20
〜48メツシュ)20gにベンゼン2QQmlを加えて
膨潤させた後9次いでこの系にヒドロキシルアミン塩酸
塩26.5gとナトリウムメチラー) 20.5 gと
を添加し、80℃で24時間反応させた。
Reference Example 1 Small spherical methacrylate/L, = acid methyl-divinylhenzene copolymer (divinylbenzene 15 mole% 9 particle size 20
After adding 2QQml of benzene to 20g of 48 mesh to swell it, 26.5g of hydroxylamine hydrochloride and 20.5g of sodium methylammonium were added to the system, and the mixture was reacted at 80°C for 24 hours.

反応終了後、濾別し、水とメタノールで洗浄したのち、
4%カセイソーダ水溶液で中和処理し。
After the reaction was completed, it was filtered and washed with water and methanol.
Neutralize with 4% caustic soda aqueous solution.

続いて十分に水洗することにより、目的とするキレート
樹脂を得た。
Subsequently, the desired chelate resin was obtained by thorough washing with water.

参考例2 小球状のアクリル酸メチル−ジビニルベンゼン共重合体
(ジビニルベンゼン4mole%9粒径20〜48メソ
シュ)20gにベンゼン300m1を加えて膨潤させた
のち、ヒドロキシルアミン塩酸基26.5gとナトリウ
ムメチラート20.5gとを添加し、85℃で200時
間反応せた。反応終了後、参考例1と同様にして単離し
、目的とするキレート樹脂を得た。
Reference Example 2 After adding 300 ml of benzene to 20 g of small spherical methyl acrylate-divinylbenzene copolymer (divinylbenzene 4 mole%, 9 particle size 20-48 mesh) and swelling it, 26.5 g of hydroxylamine hydrochloride group and sodium methane were added. 20.5 g of Lato was added thereto, and the mixture was reacted at 85° C. for 200 hours. After the reaction was completed, it was isolated in the same manner as in Reference Example 1 to obtain the desired chelate resin.

参考例3 小球状のアクリロニトリル−ジビニルベンゼン共重合体
(ジビニルヘンゼン8 mole%7粒径20〜4Bメ
ソシュ)15gに50%硫酸水溶液中に入れ、攪拌下で
75℃で16時間反応させ、ニトリル基をカルボン酸ア
ミド基に変換させた。これを濾別し、水洗水が中性にな
るまで十分に水洗した。
Reference Example 3 15 g of a small spherical acrylonitrile-divinylbenzene copolymer (divinylhenzene 8 mole% 7 particle size 20-4B mesh) was added to a 50% aqueous sulfuric acid solution and reacted at 75°C for 16 hours with stirring to form a nitrile. group was converted to a carboxylic acid amide group. This was filtered and thoroughly washed with water until the washing water became neutral.

次にヒドロキシルアミン塩酸基15.6 g 、酢酸ナ
トリウム12.3gを150m1のイオン交換水に熔か
した液を加え80℃で18時間反応させた。反応終了後
Next, a solution prepared by dissolving 15.6 g of hydroxylamine hydrochloride groups and 12.3 g of sodium acetate in 150 ml of ion-exchanged water was added and reacted at 80° C. for 18 hours. After the reaction is complete.

濾別し、メタノールで洗浄し2次いで十分に水洗するこ
とにより目的とするキレート樹脂を得た。
The desired chelate resin was obtained by filtering, washing with methanol, and then thoroughly washing with water.

参考例4 小球状のメタアクリロニトリル−ジビニルベンゼン共重
合体(ジビニルベンゼン含量4mole%。
Reference Example 4 Small spherical methacrylonitrile-divinylbenzene copolymer (divinylbenzene content 4 mole%.

粒径20〜48メソシユ)20gを50%硫酸水溶液中
に入れ、攪拌下で80℃で200時間反応せ、ニトリル
基をカルボン酸アミドに変換させた。これを濾別したの
ち、水洗水が中性になるまで十分に水洗した。
20 g (particle size: 20-48 mS) was placed in a 50% aqueous sulfuric acid solution and reacted with stirring at 80° C. for 200 hours to convert the nitrile group to carboxylic acid amide. After this was filtered off, it was thoroughly washed with water until the washing water became neutral.

次に、ヒドロキシルアミン塩酸塩21.0g、 F?l
[tナトリウム24.6 gを150m1に熔かした液
を加えて85℃で200時間反応せた。反応終了後、濾
別し。
Next, 21.0 g of hydroxylamine hydrochloride, F? l
A solution prepared by dissolving 24.6 g of sodium in 150 ml was added and reacted at 85° C. for 200 hours. After the reaction was completed, it was filtered.

メタノールで洗浄し2次いで十分に水洗することにより
目的とするキレート樹脂を得た。
The desired chelate resin was obtained by washing with methanol and then thoroughly washing with water.

参考例5 参考例1におけるメタクリル酸メチル−ジビニルベンゼ
ン共重合体の代わりに、メタクリル酸メチル−トリエチ
レングリコールジメタクリレート共重合体を用いること
以外は、参考例1と全く同様にして目的とするキレート
樹脂を得た。
Reference Example 5 The desired chelate was prepared in the same manner as in Reference Example 1, except that methyl methacrylate-triethylene glycol dimethacrylate copolymer was used instead of the methyl methacrylate-divinylbenzene copolymer in Reference Example 1. Resin was obtained.

参考例6 小球状のビニルアミドキシム−ジビニルベンゼン共重合
体(ジビニルベンゼン含?t+ 7mole、粒径20
〜48メソシユ)20gにエタノール200m1を加え
て膨潤させたのち、二硫化炭素23.0gを加えて40
℃で12時間反応させ1次いで4%水酸化ナトリウム水
溶液にてアルカリ処理し、十分に水洗することにより−
Nonと−C5,H基のNa金属塩を有するキレート樹
脂を得た。
Reference Example 6 Small spherical vinylamidoxime-divinylbenzene copolymer (contains divinylbenzene, t+ 7 mole, particle size 20
After adding 200 ml of ethanol to 20 g (~48 mSO) to swell it, add 23.0 g of carbon disulfide to 40 g
By reacting at ℃ for 12 hours, then alkali treatment with 4% sodium hydroxide aqueous solution, and thoroughly washing with water.
A chelate resin containing Na metal salt of Non and -C5,H groups was obtained.

実施例1〜5.比較例1〜5 ガリウムを200mg/ 12含有する弱塩基性の溶液
20m1中に参考例1〜5で製造されたキレート樹脂を
膨潤状態で各々1.9ml添加し、振とうさせながら2
5℃で24時間接触させたのち、処理液中ガリウム濃度
を原子吸光光度法により測定し、ガリウムの回収率求め
た。
Examples 1-5. Comparative Examples 1 to 5 1.9 ml of each of the chelate resins produced in Reference Examples 1 to 5 in a swollen state was added to 20 ml of a weakly basic solution containing 200 mg/12 of gallium, and the mixture was mixed with 200 mg of gallium while shaking.
After contacting at 5° C. for 24 hours, the gallium concentration in the treatment liquid was measured by atomic absorption spectrophotometry to determine the gallium recovery rate.

その結果を表1に示す。The results are shown in Table 1.

なお、ガリウムを含有する強塩基溶液の液組成は次の通
りである。(Ga: 0.2g/L At、 O。
The composition of the strong base solution containing gallium is as follows. (Ga: 0.2g/L At, O.

:15g/l!、 Nag O: 120g/jりまた
。比較のため、市販のイミノジ酢酸型キレート樹脂(M
社製)、アミノリン酸型キレート樹脂(D社製)、アミ
ドキシム型キレート樹脂(D社製)9強塩基性イオン交
換樹脂(M社製)及び参考例6で得た樹脂を用いた結果
も表1に示す。
:15g/l! , Nag O: 120g/jrimata. For comparison, a commercially available iminodiacetic acid type chelate resin (M
The results using aminophosphoric acid type chelate resin (manufactured by Company D), amidoxime type chelate resin (manufactured by Company D), 9 strongly basic ion exchange resin (manufactured by Company M), and the resin obtained in Reference Example 6 are also shown. Shown in 1.

次に、ガリウムを吸着したキレート樹脂を水洗し、 6
0+nlのIN塩酸を用いて5V2hr−’で溶離した
ところ、ガリウムを1.3 g / It含む溶液が得
られた。
Next, the chelate resin that adsorbed gallium was washed with water, and 6
Elution with 0+nl of IN hydrochloric acid at 5V2hr-' gave a solution containing 1.3 g/It of gallium.

特許出願人 ユ=亭力株式会社Patent applicant: Yu-Tei Riki Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] +1)配位子として分子中にヒドロキサム酸基を有する
キレート樹脂とガリウムを含有する溶液とを接触させて
該キレート樹脂にガリウムを吸着させ1次いで吸着させ
たガリウムを溶離させることを特徴とするガリウムの回
収方法。
+1) Gallium characterized by contacting a chelate resin having a hydroxamic acid group in the molecule as a ligand with a solution containing gallium, adsorbing gallium onto the chelate resin, and then eluting the adsorbed gallium. collection method.
JP7052784A 1984-04-06 1984-04-06 Method for recovering gallium Pending JPS60215721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7052784A JPS60215721A (en) 1984-04-06 1984-04-06 Method for recovering gallium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7052784A JPS60215721A (en) 1984-04-06 1984-04-06 Method for recovering gallium

Publications (1)

Publication Number Publication Date
JPS60215721A true JPS60215721A (en) 1985-10-29

Family

ID=13434090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7052784A Pending JPS60215721A (en) 1984-04-06 1984-04-06 Method for recovering gallium

Country Status (1)

Country Link
JP (1) JPS60215721A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999171A (en) * 1987-04-03 1991-03-12 Sumitomo Chemical Co. Ltd. Process for recovery of gallium by chelate resin
WO2011134402A1 (en) * 2010-04-27 2011-11-03 中国神华能源股份有限公司 Method for extracting gallium from fly ash
WO2011134403A1 (en) * 2010-04-27 2011-11-03 中国神华能源股份有限公司 Method for extracting gallium from fly ash
CN102534214A (en) * 2012-01-18 2012-07-04 西安蓝晓科技新材料股份有限公司 New method for recycling gallium from Bayer mother solution by using chelate resin
RU2507280C1 (en) * 2012-07-23 2014-02-20 Открытое Акционерное Общество "Челябинский цинковый завод" Processing method of zinc-containing metallurgical waste
CN103894241A (en) * 2013-10-28 2014-07-02 上海长翊科技股份有限公司 Non-alkaline gallium ion exchange resin
RU2667592C1 (en) * 2018-02-22 2018-09-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Method of separation of gallium and aluminum on weak-base anion exchanger d-403 from alkaline solutions
CN113856640A (en) * 2021-08-26 2021-12-31 中南大学 Preparation method of hydroximic acid modified resin and application of hydroximic acid modified resin in separation of gallium from high-acid high-impurity gallium-containing solution

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852450A (en) * 1981-09-19 1983-03-28 Sumitomo Chem Co Ltd Recovering method for gallium

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5852450A (en) * 1981-09-19 1983-03-28 Sumitomo Chem Co Ltd Recovering method for gallium

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999171A (en) * 1987-04-03 1991-03-12 Sumitomo Chemical Co. Ltd. Process for recovery of gallium by chelate resin
WO2011134402A1 (en) * 2010-04-27 2011-11-03 中国神华能源股份有限公司 Method for extracting gallium from fly ash
WO2011134403A1 (en) * 2010-04-27 2011-11-03 中国神华能源股份有限公司 Method for extracting gallium from fly ash
RU2506332C1 (en) * 2010-04-27 2014-02-10 Чайна Шэньхуа Энерджи Компани Лимитед Method for extraction of gallium from fly ash
RU2507282C1 (en) * 2010-04-27 2014-02-20 Чайна Шэньхуа Энерджи Компани Лимитед Method for extraction of gallium from fly ash
US8728296B2 (en) 2010-04-27 2014-05-20 China Shenhua Energy Company Limited Method for extracting gallium from fly ash
CN102534214A (en) * 2012-01-18 2012-07-04 西安蓝晓科技新材料股份有限公司 New method for recycling gallium from Bayer mother solution by using chelate resin
RU2507280C1 (en) * 2012-07-23 2014-02-20 Открытое Акционерное Общество "Челябинский цинковый завод" Processing method of zinc-containing metallurgical waste
CN103894241A (en) * 2013-10-28 2014-07-02 上海长翊科技股份有限公司 Non-alkaline gallium ion exchange resin
RU2667592C1 (en) * 2018-02-22 2018-09-21 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Method of separation of gallium and aluminum on weak-base anion exchanger d-403 from alkaline solutions
CN113856640A (en) * 2021-08-26 2021-12-31 中南大学 Preparation method of hydroximic acid modified resin and application of hydroximic acid modified resin in separation of gallium from high-acid high-impurity gallium-containing solution

Similar Documents

Publication Publication Date Title
US4098867A (en) Water-insoluble chelate exchange resins from aminopyridines and process for the selective extraction of valuable metals using the same
Vernon Chelating ion exchangers-the synthesis and uses of poly (hydroxamic acid) resins
RU2052271C1 (en) Extraction system for separation from group: gold, silver, copper and zinc
JPS6261522B2 (en)
Hubicki et al. Application of ion exchange methods in recovery of Pd (II) ions—a review
AU2006236027A1 (en) Process for uranium recovery
JPS60215721A (en) Method for recovering gallium
Hubicki et al. Ion exchange method for removal and separation of noble metal ions
US4320099A (en) Process for nickel removal from concentrated aqueous cobaltous sulfate solutions
Vernon et al. Chelating ion-exchangers containing N-substituted hydroxylamine functional groups: Part 6. Sorption and separation of gold and silver by a polyhydroxamic acid
EP0252912B1 (en) Immobilised extractants
US4157298A (en) Method for the removal of ferric ions from a concentrated aqueous zinc solution
CA1119416A (en) Process for nickel removal from concentrated aqueous cobaltous sulfate solutions
Zhang et al. Studies on macroporous cross-linked polyacrolein-styrene resin I. Synthesis of polyacrylic aldehyde-hydrazone and polyacrolein-phenylhydrazone resins and their chelating properties for gold and platinum group metals
Juang et al. Column sorption of divalent metals from sulfate solutions by extractant‐impregnated macroporous resins
JPH07238113A (en) Three-dimensional styrene copolymer and nitrate ion adsorbent
RU2227170C1 (en) Method of extraction of rhenium
JPS61215215A (en) Separation of gallium from aqueous solution of aluminate
JPS62228436A (en) Method for separating and recovering cobalt
JPH02204324A (en) Method for recovering thallium
JPH0548286B2 (en)
JPS6355117A (en) Fractional recovery of gallium and indium
JPS6352101B2 (en)
JPH01310737A (en) Adsorbent for lithium and manufacture thereof
JPS5983729A (en) Recovery of heavy metal