JPS60213822A - Liquid-level measuring device - Google Patents

Liquid-level measuring device

Info

Publication number
JPS60213822A
JPS60213822A JP59069858A JP6985884A JPS60213822A JP S60213822 A JPS60213822 A JP S60213822A JP 59069858 A JP59069858 A JP 59069858A JP 6985884 A JP6985884 A JP 6985884A JP S60213822 A JPS60213822 A JP S60213822A
Authority
JP
Japan
Prior art keywords
circuit
liquid level
electrodes
terminal
circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59069858A
Other languages
Japanese (ja)
Other versions
JPH0246885B2 (en
Inventor
Yoshihiko Sunakawa
砂川 慶彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP59069858A priority Critical patent/JPS60213822A/en
Publication of JPS60213822A publication Critical patent/JPS60213822A/en
Publication of JPH0246885B2 publication Critical patent/JPH0246885B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor

Abstract

PURPOSE:To extract a liquid level in terms of digital quantity, by connecting a plurality of electrodes, which are provided in a tank at a specified pitch and have electrostatic capacities, to FF circuits constituting a shift registers, and detecting the outputs of the FF circuits. CONSTITUTION:An electrode housing tube 2 having a liquid inlet port 2 at the lower part is penetrated into a protecting tube 1, whose bottom surface is closed. Pairs of facing electrodes 3a and 3b-7a and 7b for capacitors are provided in the housing tube 2. All the electrodes 3b-7b are grounded. The electrodes 3a- 7a are connected to a clock input terminal CKI through the clock terminal of FF circuits 8-12 and resistors 13-17. The circuits 8-12 form a shift register. The Q output terminals of the circuits 8-11 are connected to a level detecting terminal LVE through diodes 18-20 and resistors 22-25. The Q output terminal of the circuit 12 is directly connected to the detecting terminal LVE. The change in output of the detecting terminal LVE is computed, and the liquid level is outputted as a digital quantity. Thus the highly accurate measurement of the liquid level can be performed.

Description

【発明の詳細な説明】 るようにした液位計測装置に関する。[Detailed description of the invention] The present invention relates to a liquid level measuring device configured to

従来液位計測装置としては、フロートを用いたものや、
静電容量式で信号をアナログ量で取り出す方式のものが
あった。・ しかし、フロート式は機械的構成部を備えるため、故障
が起きた時修理が困難であり、また静電容量を用いたア
ナ筒グ式の方法では高精度のものとするには極めて高価
につくという欠点がある。
Conventional liquid level measuring devices include those using floats,
There was a capacitive type that extracted the signal in analog form.・However, since the float type has mechanical components, it is difficult to repair when a failure occurs, and the analog tube type method using capacitance is extremely expensive to achieve high precision. There is a drawback that it sticks.

本発明は静電容量の違いにより検出された液位な直接デ
ジタル量で取り出せるようにしたもので、機械的構成部
分が全くな(、高精度の液位計測装置を安価に提供でき
るようにした。
The present invention enables the liquid level detected by the difference in capacitance to be taken out directly in digital quantities, and there are no mechanical components (it is possible to provide a high-precision liquid level measuring device at a low cost). .

以下本発明を実施例図に基いて説明する。The present invention will be explained below based on embodiment figures.

第1図において、1底面が閉塞した保護筒1に、液流入
口2aを下部に有する電極収納管2が貫通し、同電極収
納管2内には相対向したコンデンサ用の一対の電極3a
と8b,4aと4b,5aと5b,6aと6b,7aと
7bを設は文ある。各電極の一方の極3b〜7bは保護
筒1内で全て接地され、他方の極3a〜7aは、保護筒
l内にあるフリップフロップ回路8, 9, 10, 
11, 12の各クロック端CKと、抵抗13, 14
, 15, 16, 17を介してクロック入力端CK
Iに接続されている。
In FIG. 1, an electrode storage tube 2 having a liquid inlet 2a at the bottom passes through a protection tube 1 with a closed bottom, and a pair of electrodes 3a for a capacitor facing each other are inside the electrode storage tube 2.
and 8b, 4a and 4b, 5a and 5b, 6a and 6b, 7a and 7b. One pole 3b to 7b of each electrode is all grounded inside the protective tube 1, and the other pole 3a to 7a are connected to flip-flop circuits 8, 9, 10, inside the protective tube 1.
Each clock terminal CK of 11 and 12 and resistors 13 and 14
, 15, 16, 17 via the clock input terminal CK
Connected to I.

また各フリップフロップ回路のD入力端は、フリップフ
ロップ回路8のD入力端だけが接地され、他は全て1つ
前の7リツプ70ツブ回路のQ出力端に接続されており
、これによりシフトレジスタを形成している。
In addition, only the D input terminal of the flip-flop circuit 8 is grounded, and the other D input terminals of each flip-flop circuit are connected to the Q output terminal of the previous 7-lip 70-tub circuit. is formed.

イニシャル入力端INTには、フリップフロップ回路8
のみがセット入力端Sを接続しであるが、他のフリップ
フロップ回路は全てリセット端Rを接続してあり、レベ
ル検出端LVEは各抵抗22.23.24.25と、こ
れらに直列に接続されたダイオード18.19.20.
21を介して各7リツプフロツプ回路のQ端に接続しで
ある。
The initial input terminal INT has a flip-flop circuit 8.
Only one flip-flop circuit has the set input terminal S connected, but all the other flip-flop circuits have the reset terminal R connected, and the level detection terminal LVE is connected in series with each resistor 22, 23, 24, 25. diode 18.19.20.
21 to the Q terminal of each of the seven lip-flop circuits.

次に本発明の回路動作について説明する。Next, the circuit operation of the present invention will be explained.

第1図において、電極6,7が液中に没していると、空
中にある電極3.4.5に比べて電極6゜7の静電容量
は、液体の比誘電率tεSとすると68倍となる。
In Figure 1, when the electrodes 6 and 7 are submerged in the liquid, the capacitance of the electrode 6°7 is 68, compared to the electrode 3.4.5 in the air, assuming the relative dielectric constant tεS of the liquid. It will be doubled.

ここでクロック入力端CKIよりクロックパルスを入力
すると、空気の静電容量を有する電極3、4.5に接続
されたa、 b、 c点の波形は、第2図のように元の
クロックパルスよりt8時間遅れたクロック波形となる
。ところが液により増大した静電容量を持つ電極6,7
に接続されたd、e点の波形は、同じく第2図のように
元のクロック波形よりさらKt1+ts時間遅れた波形
を示す。
Here, when a clock pulse is input from the clock input terminal CKI, the waveforms at points a, b, and c connected to the electrodes 3 and 4.5, which have air capacitance, are the original clock pulse as shown in Figure 2. The clock waveform is delayed by time t8. However, the electrodes 6 and 7 have increased capacitance due to the liquid.
The waveforms at points d and e, which are connected to , show waveforms that are further delayed by Kt1+ts from the original clock waveform, as shown in FIG.

このためフリップフロップ回路11.12はフリップフ
ロップ回路8.9.10より常にtまたけ遅れたクロッ
クを受けることになる。
Therefore, the flip-flop circuits 11.12 always receive a clock delayed by t from the flip-flop circuits 8.9.10.

最初イニシャル入力端INTにイニシャルセットパルス
を入力すると、第3図に示すように7リツプ70クプ回
路8が七ットされ、他は全てリセットされろ。次にCK
Iより1番目のクロックP1が入力されると、フリップ
フロップ回路8の状態はフリップフロップ回路9に移動
し、以後クロック入力がPs、Psと入力される度に下
段のフリップフロップ回路にQ出力状態がシフトされて
行(。ところが7リツプフロツプ回路11のクロック端
CKK接続されている電極は液中に没しているため静電
容量が多(、実際に7リツプフHyプ回路11のcHに
入力されるクロックパルスはフリップフロップ回路10
に入力されたものよりもt!秒はと遅れて入力されてく
る。これがPrであり、Prが入力されてくる時点では
すでにフリップフロップ回路10はQ出力状態になって
いるためフリップフレ21回路11のD端は高レベルで
あり、したがって12秒後に7リツプフロツグ回路11
もQ出力状態になりてしまう。
When an initial set pulse is first input to the initial input terminal INT, the 7-rip 70-cup circuit 8 is set to 7 as shown in FIG. 3, and everything else is reset. Next, C.K.
When the first clock P1 is input from I, the state of the flip-flop circuit 8 is transferred to the flip-flop circuit 9, and thereafter, every time the clock input is input as Ps and Ps, the Q output state is changed to the lower flip-flop circuit. is shifted to the row (. However, since the electrode connected to the clock terminal CKK of the 7 lip flop circuit 11 is submerged in the liquid, it has a large capacitance (actually input to ch of the 7 lip flop circuit 11. The clock pulse is sent to the flip-flop circuit 10.
t! Seconds are input with a delay. This is Pr, and since the flip-flop circuit 10 is already in the Q output state when Pr is input, the D terminal of the flip-flop circuit 11 is at a high level.
also enters the Q output state.

このためクロックパルスPf入力後P3人力までのtB
・秒間、液面直前と直後の2つの7リツプフロツ、プ回
路が同時にQ出力状態となる。この状態を検出すること
により液位なめることができる。この検出はレベル検出
端LVEから行なっており、そのレベル検出回路を第4
図に基いて説明する。
Therefore, tB up to P3 human power after inputting clock pulse Pf
・For a second, the two 7-lip flop circuits immediately before and immediately after the liquid level are in the Q output state at the same time. By detecting this state, the liquid level can be determined. This detection is performed from the level detection terminal LVE, and the level detection circuit is connected to the fourth
This will be explained based on the diagram.

同図にはオペアンプを用いた加算回路を示してあり、抵
抗の値が全て等しいとみなすと、出力v0は、 Vo =(Vs + Va + Va + V4 )と
なり、■o端電位は複数電圧の加算の和となっている。
The figure shows an adder circuit using an operational amplifier.If all resistance values are assumed to be equal, the output v0 will be Vo = (Vs + Va + Va + V4), and the potential at the o end will be the sum of multiple voltages. It is the sum of additions.

通常7リツプ70ッグ回路8〜12は1個ずっQ出力状
態となるためVoの値も定まったものとなるが、水面付
近の電極に接続された2つのフリップフロップ回路が同
時出力状態になるとV。
Normally, one of the 7-rip-flop circuits 8 to 12 is in the Q output state, so the value of Vo is also fixed, but if the two flip-flop circuits connected to the electrode near the water surface are in the simultaneous output state, V.

出力は変化するので、これを検出回路26で検出する。Since the output changes, this is detected by the detection circuit 26.

電極間のピッチをPb≠#4、イニシャルセット後検出
回路26で同時出力状態が検知されるまでに7リツプ7
四ツブ回路に加えたクロックパルス数をn、基準点Pa
から液面までの相離をLとすると、 L = nP となるので、この演算を行なう回路を設けることにより
液位な算出できる。
The pitch between the electrodes is Pb≠#4, and after the initial setting, it takes 7 rips 7 before the simultaneous output state is detected by the detection circuit 26.
The number of clock pulses applied to the four-tube circuit is n, and the reference point Pa
Letting L be the phase separation from the liquid level to the liquid level, L = nP. Therefore, by providing a circuit for performing this calculation, the liquid level can be calculated.

次に計測値を遠方に伝送する手段を第5〜7図によって
説明する。
Next, means for transmitting measured values to a distant place will be explained with reference to FIGS. 5 to 7.

第5図において、27は水晶発振子等を用Lミたクロッ
クパルス発生回路、28は計測制御回路であり、クロッ
クパルスを入力して一定の時間割に従りてパルスを発生
する。発生するパルスは、ITσ端からはイニシャルセ
ットパルス、国からはマークパルス、STA端からはス
タートパルスである。まず制御回路28がIT◇端によ
りイニシャルセラ) パルスを出力するとフリップフロ
ップ回路群が初期化される。次にMKmより長いマーク
信号検出後さし、同パルスはケ−)29を通りて受信側
Pに行き、同時にSTA端よりのパルスにより制御用フ
リップフロップ回路31がQ出力状態となりてANDゲ
ート30より発振器27よりのクロックパルスがCKI
K出力される。このりはツクパルスは同時にデータパル
スとして受信側Pにも出力される。やがて検出回路26
により水面が検出されると、STP端よりストップパル
スが出力され、制御用フリラグフロップ回路31がQ出
力状態となり、クロックパルスの出力は停止する。一方
受信側が受けとるパルスを示したのが第6図で、1周期
内忙マークパルスとデータパルスがあり、これを受信側
では第7図に示すように、マーク信号検出後、データパ
ルスの数を計数し、スペース信号を検出した時点のパル
ス数にピッチPを掛ければ液位が算出される。これによ
り液位表示の更新を行ない、以後同じ操作を行なうこと
で常に最新の液位な知ることができるようになっている
In FIG. 5, 27 is a clock pulse generation circuit using a crystal oscillator or the like, and 28 is a measurement control circuit which inputs clock pulses and generates pulses according to a fixed time schedule. The pulses generated are an initial set pulse from the ITσ end, a mark pulse from the country, and a start pulse from the STA end. First, when the control circuit 28 outputs an initial cell pulse from the IT◇ terminal, the flip-flop circuit group is initialized. Next, after detecting a mark signal longer than MKm, the same pulse passes through K) 29 to the receiving side P, and at the same time, the control flip-flop circuit 31 enters the Q output state due to the pulse from the STA terminal, and the AND gate 30 Therefore, the clock pulse from the oscillator 27 becomes CKI.
K is output. This pulse is also output to the receiving side P at the same time as a data pulse. Eventually the detection circuit 26
When the water surface is detected, a stop pulse is output from the STP end, the control free lag flop circuit 31 enters the Q output state, and the output of the clock pulse is stopped. On the other hand, Fig. 6 shows the pulses received by the receiving side. There are busy mark pulses and data pulses within one cycle, and the receiving side calculates the number of data pulses after detecting the mark signal as shown in Fig. 7. The liquid level is calculated by counting and multiplying the number of pulses at the time the space signal is detected by the pitch P. This allows the liquid level display to be updated, and by performing the same operation in the future, you can always know the latest liquid level.

以上のように本発明によれば、簡単な回路により正確な
液位なデジタル値で検出することができ、クロックパル
スをデータパルスとして直接送信することKより液位デ
ータを送信回路等で処理する手間が省ける利点がある。
As described above, according to the present invention, accurate liquid level digital values can be detected using a simple circuit, and rather than directly transmitting clock pulses as data pulses, the liquid level data is processed by a transmitting circuit, etc. This has the advantage of saving time and effort.

なお第8図は液位計測回路と電極群とを1個・の保護筒
に設けず、分離して別々(した他の実施例を示す。
Note that FIG. 8 shows another embodiment in which the liquid level measuring circuit and the electrode group are not provided in one protective tube, but are separated.

また電極の構造は、第9図に示すように一様な導体35
を内側に設けた円筒34内に、電極板37を所要ピッチ
で表面に設けた筒36を設けた構造のものとするばあい
もある。さらに第10図に示すように、導体35はタン
ク側壁に設け、電極板37は、導体35側タンク内側壁
近くに立設したボスト36へ所定ピッチで設けて導体3
5と対向させるようにするばあいもある。
The structure of the electrode is a uniform conductor 35 as shown in FIG.
In some cases, the structure is such that a cylinder 36 having electrode plates 37 provided at a required pitch on the surface thereof is provided in a cylinder 34 having an electrode plate 37 provided on the inside thereof. Furthermore, as shown in FIG. 10, the conductor 35 is provided on the side wall of the tank, and the electrode plates 37 are provided at a predetermined pitch on the bosses 36 that are erected near the inner wall of the tank on the conductor 35 side.
In some cases, it is made to face 5.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る液位計測装置の一例を示す回路図
、第2図はクロックパルス波形図、第3図はクロックパ
ルスとフリップフロップ回路の出力との関係を示す出力
波形図、第4図&ニレベル検出回路図、第5図は信号伝
送回路図、第6図は送信データの出方波形図、第7図は
計測データを処理する方法を示すフローチャート、第8
図は電極と計測回路とを別々にしてタンクに取り付けた
状態を示す図、第9図と第10図は電極構造の他の実施
例を示す図である。 図 中 l 保護筒 2 電極収納管 2a 液流入口 3,4.5.6.7 電 極8.9.
10.11,12 フリラグフロップ回路13.14,
15,16,17,22,23,24,25抵抗18、
19.20.21 ダイオード 26 検出回路27 
発振器 28 制御回路 29、30 ゲート回路 31 制御用フリップ70ツ
ブ回路32 タ/り 33 液位計測回路 出願人 東京計装株式会社 第1 i*1 第8図 11 第9図 第10妥1 6
FIG. 1 is a circuit diagram showing an example of a liquid level measuring device according to the present invention, FIG. 2 is a clock pulse waveform diagram, FIG. 3 is an output waveform diagram showing the relationship between the clock pulse and the output of a flip-flop circuit, and FIG. Figure 4 & two-level detection circuit diagram, Figure 5 is a signal transmission circuit diagram, Figure 6 is a waveform diagram of how the transmitted data is output, Figure 7 is a flowchart showing the method of processing measurement data, Figure 8
The figure shows a state where the electrode and the measurement circuit are separated and attached to the tank, and FIGS. 9 and 10 are diagrams showing other embodiments of the electrode structure. Figure middle l Protective tube 2 Electrode storage tube 2a Liquid inlet 3, 4.5.6.7 Electrode 8.9.
10.11, 12 Free lag flop circuit 13.14,
15, 16, 17, 22, 23, 24, 25 resistance 18,
19.20.21 Diode 26 Detection circuit 27
Oscillator 28 Control circuit 29, 30 Gate circuit 31 Control flip 70 tube circuit 32 T/R 33 Liquid level measurement circuit Applicant Tokyo Keiso Co., Ltd. No. 1 i*1 Fig. 8 11 Fig. 9 Fig. 10 1 6

Claims (1)

【特許請求の範囲】[Claims] タンク内に垂直に設けられた導体と、この導体と対峙す
るようタンク内に所定ピッチで垂直に設けられた静電容
量を有する複数の電極、これら各電極に対応するシフト
レジスタを構成するフリップフロップ回路の各りpツク
端とクロックパルスを出力するクロック入力端に前記各
電極を接続し、各7リツプ7oツブ回路の出力を検知す
る液位計測回路、とを備えてなる液位計測装置。
A conductor provided vertically within the tank, a plurality of electrodes having capacitance provided vertically within the tank at a predetermined pitch to face the conductor, and flip-flops forming a shift register corresponding to each of these electrodes. A liquid level measuring device comprising: a liquid level measuring circuit for detecting the output of each 7-lip, 7-o-tub circuit, with each of the electrodes connected to each of the circuit's pin terminals and a clock input terminal for outputting clock pulses.
JP59069858A 1984-04-07 1984-04-07 Liquid-level measuring device Granted JPS60213822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59069858A JPS60213822A (en) 1984-04-07 1984-04-07 Liquid-level measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59069858A JPS60213822A (en) 1984-04-07 1984-04-07 Liquid-level measuring device

Publications (2)

Publication Number Publication Date
JPS60213822A true JPS60213822A (en) 1985-10-26
JPH0246885B2 JPH0246885B2 (en) 1990-10-17

Family

ID=13414922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59069858A Granted JPS60213822A (en) 1984-04-07 1984-04-07 Liquid-level measuring device

Country Status (1)

Country Link
JP (1) JPS60213822A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587728A1 (en) * 1991-05-29 1994-03-23 Lee/Maatuk Engineering, Inc. Digital level sensing probe system
EP1744132A1 (en) * 2005-07-11 2007-01-17 Siemens Milltronics Process Instruments Inc. Capacitive level sensor with a plurality of segments comprising each a capacitor and a circuit
CN105572479A (en) * 2015-11-27 2016-05-11 贵州铜仁高新区科创互联生产力促进中心 Circuit module for capacitor capacity measurement and capable of realizing stacked expansion and liquid level height detection circuit convenient to expand
WO2017189009A1 (en) 2016-04-29 2017-11-02 Hewlett-Packard Development Company, L.P. Printing apparatus and methods for detecting fluid levels

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218740A (en) * 2006-02-16 2007-08-30 Taiheiyo Cement Corp Liquid level sensor device, concrete product, and submergence state detection system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0587728A1 (en) * 1991-05-29 1994-03-23 Lee/Maatuk Engineering, Inc. Digital level sensing probe system
EP0587728A4 (en) * 1991-05-29 1994-04-27 Lee/Maatuk Engineering, Inc.
EP1744132A1 (en) * 2005-07-11 2007-01-17 Siemens Milltronics Process Instruments Inc. Capacitive level sensor with a plurality of segments comprising each a capacitor and a circuit
WO2007006788A1 (en) * 2005-07-11 2007-01-18 Siemens Milltronics Process Instruments, Inc. Capacitive level sensor with a plurality of segments comprising each a capacitor and a circuit
CN105572479A (en) * 2015-11-27 2016-05-11 贵州铜仁高新区科创互联生产力促进中心 Circuit module for capacitor capacity measurement and capable of realizing stacked expansion and liquid level height detection circuit convenient to expand
WO2017189009A1 (en) 2016-04-29 2017-11-02 Hewlett-Packard Development Company, L.P. Printing apparatus and methods for detecting fluid levels
CN109070617A (en) * 2016-04-29 2018-12-21 惠普发展公司,有限责任合伙企业 For detecting the printing equipment and method of liquid level
US20190126631A1 (en) * 2016-04-29 2019-05-02 Hewlett-Packard Development Company, L.P. Printing apparatus and methods for detecting fluid levels
EP3448688A4 (en) * 2016-04-29 2019-12-25 Hewlett-Packard Development Company, L.P. Printing apparatus and methods for detecting fluid levels
US10926548B2 (en) 2016-04-29 2021-02-23 Hewlett-Packard Development Company, L.P. Printing apparatus and methods for detecting fluid levels

Also Published As

Publication number Publication date
JPH0246885B2 (en) 1990-10-17

Similar Documents

Publication Publication Date Title
EP0183454B1 (en) Tilt angle detection device
CN110069009A (en) Multichannel time-to-digit converter and Electro-Optical Sensor Set
JPS60213822A (en) Liquid-level measuring device
US5045797A (en) Continuous condition sensing system determining liquid level by admittance measurement
JPS5920860A (en) Digital output type integration circuit
JP3363903B2 (en) Circuit device for transmitter
CN111092611A (en) Signal processing device and method with small edge slope
US2921469A (en) Fluid level indicating system
US3121824A (en) Electroluminescent information display system
US4728816A (en) Error and calibration pulse generator
Kasparis et al. A method for the precise measurement of the difference between two low frequencies
US4017794A (en) Circuit for measuring time differences among events
US3486381A (en) Supersonic-energy measuring devices and systems
EP1070965A2 (en) Method for measuring an electric voltage and arrangement for implementing the method
US4392749A (en) Instrument for determining coincidence and elapse time between independent sources of random sequential events
SU817605A1 (en) Digital phase meter
US7224193B2 (en) Current-voltage conversion circuit
CN210807222U (en) Signal processing device with small edge slope and signal counting equipment
CN209313803U (en) The non-equilibrium ac-coupled circuit of diode
CN206863222U (en) Timing circuit, laser ranging circuit and laser range finder
JPS6373116A (en) Measuring device for liquid level
CN111707149A (en) Multi-channel time sequence time interval measuring device
SU1323985A1 (en) Digital meter of four-pole network gain factor
SU1425834A1 (en) Device for measuring ratio of time intervals
SU777454A1 (en) Electric capacitive level meter

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term